[1] Seeman NC.Nucleic acid junctions and lattices[J]. Journal of Theoretical Biology, 1982, 99(2):237-247.
[2] Wilson DS, Szostak JW.In vitro selection of functional nucleic acids[J]. Annu Rev Biochem, 1999, 68(1):611-647.
[3] Navani NK, Li Y.Nucleic acid aptamers and enzymes as sensors[J]. Curr Opin Chem Biol, 2006, 10(3):272-281.
[4] Perumal V, Hashim U.Advances in biosensors:Principle, architecture and applications[J]. Journal of Applied Biomedicine, 2014, 12(1):1-15.
[5] Gibriel AA, Adel O.Advances in ligase chain reaction and ligation-based amplifications for genotyping assays:Detection and applications[J]. Mutat Res, 2017, 773:66-90.
[6] Cheng N, Zhu P, Xu Y, et al.High-sensitivity assay for Hg(II)and Ag(I)ion detection:a new class of droplet digital PCR logic gates for an intelligent DNA calculator[J]. Biosens Bioelectron, 2016, 84:1-6.
[7] Jiang H, Liang Z, Ma Y, et al.G-quadruplex fluorescent probe-mediated real-time rolling circle amplification strategy for highly sensitive microRNA detection[J]. Anal Chim Acta, 2016, 943:114-122.
[8] Zhu G, Li Y, Zhang C.Simultaneous detection of mercury(II)and silver(I)ions with picomolar sensitivity[J]. Chem Commun, 2014, 50(5):572-574.
[9] Zhu W, Zhao Z, Li Z, et al.A label free exonuclease III-aided fluorescence assay for adenosine triphosphate based on graphene oxide and ligation reaction[J]. New J Chem, 2013, 37(4):927-932.
[10] Gerasimova YV, Kolpashchikov DM.Enzyme-assisted target recycling(EATR)for nucleic acid detection[J]. Chem Soc Rev, 2014, 43(17):6405-6438.
[11] Henikoff S.Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing[J]. Gene, 1984, 28(3):351-359.
[12] Guo L, Wu R.New rapid methods for DNA sequencing based on exonuclease III digestion followed by repair synthesis[J]. Nucleic Acids Research, 1982, 10(6):2065-2084.
[13] Weiss B.Endonuclease II of Escherichia coli is exonuclease III[J]. J Biol Chem, 1976, 251(7):1896-1901.
[14] Mol CD, Kuo CF, Thayer MM, et al.Structure and function of the multifunctional DNA-repair enzyme exonuclease III[J]. Nature, 1995, 374(6520):381-386.
[15] Richardson CC, Kornberg A.A deoxyribonucleic acid phosphatase-exonuclease from Escherichia coli[J]. J Biol Chem, 1964, 239:242-250.
[16] Richardson CC, Lehman I, Kornberg A.A deoxyribonucleic acid phosphatase-exonuclease from Escherichia coli II. Characterization of the exonuclease activity[J]. J Biol Chem, 1964, 239(1):251-258.
[17] Wen L, Xu F, He X, et al.Application progress of exonuclease-assisted signal amplification strategies in biochemical analysis[J]. Chinese Journal of Anal Chem, 2015, 43(11):1620-1628.
[18] Rogers SG, Weiss B.Exonuclease III of Escherichia coli K-12, an AP endonuclease[J]. Methods Enzymol, 1980, 65:201-211.
[19] Wu R, Ruben G, Siegel B, et al.Synchronous digestion of SV40 DNA by exonuclease III[J]. Biochemistry, 1976, 15(4):734-740.
[20] Donelson JE, Wu R.Nucleotide sequence analysis of deoxyribonuc-leic acid VII. characterization of Escherichia coli exonuclease III activity for possible use in terminal nucleotide sequence analysis of duplex deoxyribonucleic acid[J]. J Biol Chem, 1972, 247(14):4661-4668.
[21] Lawley PD.Effects of some chemical mutagens and carcinogens on nucleic acids[J]. Progress in Nucleic Acid Research and Molecular Biology, 1966, 5:89-131.
[22] Friedberg EC, Goldthwait DA.Endonuclease II of E. coli, I. Isolation and Purification[J]. Proc Natl Acad Sci USA, 1969, 62(3):934-940.
[23] Friedberg EC, Hadi SM, Goldthwait DA.Endonuclease II of Escherichia coli II. Enzyme properties and studies on the degradation of alkylated and native deoxyribonucleic acid[J]. J Biol Chem, 1969, 244(21):5879-5889.
[24] Yajko DM, Weiss B.Mutations simultaneously affecting endonuclease II and exonuclease III in Escherichia coli[J]. Proc Natl Acad Sci, 1975, 72(2):688-692.
[25] Iorio MV, Croce CM.MicroRNA dysregulation in cancer:diagnostics, monitoring and therapeutics. A comprehensive review[J]. EMBO Molecular Medicine, 2012, 4(3):143-159.
[26] Huang R, Chiu W, Li Y, et al.Detection of microRNA in tumor cells using exonuclease III and graphene oxide-regulated signal amplification[J]. ACS Appl Mater Interfaces, 2014, 6(24):21780-21787.
[27] Min X, Zhang M, Huang F, et al.Live cell microRNA imaging using exonuclease III-aided recycling amplification based on aggregation-induced emission luminogens[J]. ACS Appl Mater Interfaces, 2016, 8(14):8998-9003.
[28] Cai Z, Chen Y, Lin C, et al.A dual-signal amplification method for the DNA detection based on exonuclease III[J]. Biosens Bioelectron, 2014, 61:370-373.
[29] Zuo X, Xia F, Xiao Y, et al.Sensitive and selective amplified fluorescence DNA detection based on exonuclease III-aided target recycling[J]. J Am Chem Soc, 2010, 132(6):1816-1818.
[30] Huang Y, Gao Z, Luo H, et al.Sensitive detection of HIV gene by coupling exonuclease III-assisted target recycling and guanine nanowire amplification[J]. Sensors and Actuators B:Chemical, 2017, 238:1017-1023.
[31] Lin J, Yan Y, Ou T, et al.Effective detection and separation method for G-quadruplex DNA based on its specific precipitation with Mg2+[J]. Biomacromolecules, 2010, 11(12):3384-3389.
[32] Chen Y, Duong H, Wen S, et al.Exonuclease III-assisted upconversion resonance energy transfer in a wash-free suspension DNA assay[J]. Anal Chem, 2018, 90:663-668.
[33] Luo C, Tang H, Cheng W, et al.A sensitive electrochemical DNA biosensor for specific detection of Enterobacteriaceae bacteria by Exonuclease III-assisted signal amplification[J]. Biosens Bioelectron, 2013, 48:132-137.
[34] Zhang B, Meng H, Wang X, et al.Fe3+ doped ZnO-Ag photocatalyst for photoelectrochemical sensing platform of ultrasensitive Hg2+ detection using exonuclease III-assisted target recycling and DNAzyme-catalyzed amplification[J]. Sensors and Actuators B:Chemical, 2018, 255:2531-2537.
[35] Gan X, Zhao H, Chen S, et al.Electrochemical DNA sensor for specific detection of picomolar Hg(II)based on exonuclease III-assisted recycling signal amplification[J]. Analyst, 2015, 140(6):2029-2036.
[36] Hong M, Zeng B, Li M, et al.An ultrasensitive conformation-dependent colorimetric probe for the detection of mercury(II)using exonuclease III-assisted target recycling and gold nanoparticles[J]. Microchimica Acta, 2018, 185(1):72.
[37] Franchini M, Mannucci PM.Thrombin and cancer:from molecular basis to therapeutic implications[J]. Semin Thromb Hemost, 2012, 38(1):95-101.
[38] Marchetti M, Diani E, Ten Cate H, et al.Characterization of the thrombin generation potential of leukemic and solid tumor cells by calibrated automated thrombography[J]. Haematologica, 2012, 97(8):1173-1180.
[39] Yang M, Chen Y, Xiang Y, et al.Target-induced structure switching of DNA for label-free and ultrasensitive electrochemiluminescent detection of proteins[J]. Chem Commun, 2014, 50(24):3211-3213.
[40] Zhao J, Xin M, Cao Y, et al.An electrochemical aptasensor for thrombin detection based on the recycling of exonuclease III and double-stranded DNA-templated copper nanoparticles assisted signal amplification[J]. Anal Chim Acta, 2015, 860:23-28.
[41] Rong Z, Wang C, Wang J, et al.Magnetic immunoassay for cancer biomarker detection based on surface-enhanced resonance Raman scattering from coupled plasmonic nanostructures[J]. Biosens Bioelectron, 2016, 84:15-21.
[42] Petricoin EF, Belluco C, Araujo RP, et al.The blood peptidome:a higher dimension of information content for cancer biomarker discovery[J]. Nature Reviews Cancer, 2006, 6(12):961-967.
[43] He M, Wang K, Wang W, et al.Smart DNA machine for carcinoembryonic antigen detection by exonuclease III-assisted target recycling and DNA walker cascade amplification[J]. Anal Chem, 2017, 89(17):9292-9298.
[44] Lu L, Su H, Li F.Ultrasensitive homogeneous electrochemical detection of transcription factor by coupled isothermal cleavage reaction and cycling amplification based on exonuclease III[J]. Anal Chem, 2017, 89(16):8328-8334.
[45] Li B, Xu L, Chen Y, et al.Sensitive and label-free fluorescent detection of transcription factors based on DNA-Ag nanoclusters molecular beacons and exonuclease III-assisted signal amplification[J]. Anal Chem, 2017, 89(14):7316-7323.
[46] Yang X, Gao Z.Gold nanoparticle-based exonuclease III signal amplification for highly sensitive colorimetric detection of folate receptor[J]. Nanoscale, 2014, 6(6):3055-3058.
[47] Xue Q, Zhang Y, Xu S, et al.Magnetic nanoparticles-cooperated fluorescence sensor for sensitive and accurate detection of DNA methyltransferase activity coupled with exonuclease III-assisted target recycling[J]. Analyst, 2015, 140(22):7637-7644.
[48] Li X, Xie Z, Wang W, et al.Rapid detection of Dam methyltransferase activity based on the exonuclease III-assisted isothermal amplification cycle[J]. Analytical Methods, 2016, 8(13):2771-2777.
[49] Liu H, Ma C, Zhou M, et al.Quencher-free fluorescence strategy for detection of DNA methyltransferase activity based on exonuclease III-assisted signal amplification[J]. Analytical and BioAnal Chem, 2016, 408(28):8111-8116.
[50] Morin GB.The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats[J]. Cell, 1989, 59(3):521-529.
[51] Kim NW, Piatyszek MA, Prowse KR, et al.Specific association of human telomerase activity with immortal cells and cancer[J]. Science, 1994, 266(5193):2011-2015.
[52] Hiyama E, Yokoyama T, Tatsumoto N, et al.Telomerase activity in gastric cancer[J]. Cancer Res, 1995, 55(15):3258-3262.
[53] Sommerfeld HJ, Meeker AK, Piatyszek MA, et al.Telomerase activity:a prevalent marker of malignant human prostate tissue[J]. Cancer Res, 1996, 56(1):218-222.
[54] Kinoshita H, Ogawa O, Kakehi Y, et al.Detection of telomerase activity in exfoliated cells in urine from patients with bladder cancer[J]. J Natl Cancer Inst, 1997, 89(10):724-730.
[55] Min X, Xia L, Zhuang Y, et al.An AIEgens and exonuclease III ai-ded quadratic amplification assay for detecting and cellular imaging of telomerase activity[J]. Science Bulletin, 2017, 62(14):997-1003.
[56] Wang Y, Wu Y, Wang Y, et al.A sensitive immobilization-free electrochemical assay for T4PNK activity based on exonuclease III-assisted recycling[J]. RSC Advances, 2015, 5(92):75348-75353.
[57] Sun N, Kong R, Qu F, et al.An amplified fluorescence detection of T4 polynucleotide kinase activity based on coupled exonuclease III reaction and a graphene oxide platform[J]. Anal, 2015, 140(6):1827-1831.
[58] Zhao J, Ma Y, Kong R, et al.Tungsten disulfide nanosheet and exonuclease III co-assisted amplification strategy for highly sensitive fluorescence polarization detection of DNA glycosylase activity[J]. Anal Chim Acta, 2015, 887:216-223.
[59] Niu S, Lou X, Jiang Y, et al.A novel fluorescence sensor for cocaine with signal amplification through cycling exo-cleaving with a hairpin probe[J]. Anal Lett, 2012, 45(13):1919-1927.
[60] Zhao T, Lin C, Yao Q, et al.A label-free electrochemiluminescent sensor for ATP detection based on ATP-dependent ligation[J]. Talanta, 2016, 154:492-497.
[61] Ramezani M, Danesh NM, Lavaee P, et al.A selective and sensitive fluorescent aptasensor for detection of kanamycin based on catalytic recycling activity of exonuclease III and gold nanoparticles[J]. Sensors and Actuators B:Chemical, 2016, 222:1-7.
[62] Fu C, Liu C, Li Y, et al.Homogeneous electrochemical biosensor for melamine based on DNA triplex structure and exonuclease III-assisted recycling amplification[J]. Anal Chem, 2016, 88(20):10176-10182.
[63] Sun Y, Zhao C, Yan Z, et al.Simple and sensitive microbial pathogen detection using a label-free DNA amplification assay[J]. Chem Commun, 2016, 52(47):7505-7508.
[64] Gill P, Ghaemi A.Nucleic acid isothermal amplification technologies:a review[J]. Nucleosides, Nucleotides, and Nucleic Acids, 2008, 27(3):224-243.
[65] Ali MM, Li F, Zhang Z, et al.Rolling circle amplification:a versatile tool for chemical biology, materials science and medicine[J]. Chem Soc Rev, 2014, 43(10):3324-3341.
[66] Chen A, Ma S, Zhuo Y, et al.In situ electrochemical generation of electrochemiluminescent silver naonoclusters on target-cycling synchronized rolling circle amplification platform for microRNA detection[J]. Anal Chem, 2016, 88(6):3203-3210.
[67] Deng R, Zhang K, Sun Y, et al.Highly specific imaging of mRNA in single cells by target RNA-initiated rolling circle amplification[J]. Chem Sci, 2017, 8(5):3668-3675.
[68] Zhou X, Guo S, Gao J, et al.Cascade dual-signal enhancement by integrating exonuclease III-assisted target-recycling and rolling circle amplification for ultrasensitive electrochemical detection of DNA[J]. J Electrochem Soci, 2017, 164(13):B603-B609.
[69] Ragavan K, Rastogi NK, Thakur M.Sensors and biosensors for analysis of bisphenol-A[J]. TrAC Trends in Anal Chem, 2013, 52:248-260.
[70] Rezg R, El-Fazaa S, Gharbi N, et al.Bisphenol A and human chronic diseases:current evidences, possible mechanisms, and future perspectives[J]. Environ Int, 2014, 64:83-90.
[71] Li X, Song J, Xue Q, et al.A label-free and sensitive fluorescent
qualitative assay for bisphenol a based on rolling circle amplifica-tion/exonuclease III-combined cascade amplification[J]. Nanomaterials, 2016, 6(10):190.
[72] Xue Q, Lv Y, Cui H, et al.A DNA nanomachine based on rolling circle amplification-bridged two-stage exonuclease III-assisted recycling strategy for label-free multi-amplified biosensing of nucleic acid[J]. Anal Chim Acta, 2015, 856:103-109.
[73] Liu C, Kong X, Yuan J, et al.A dual-amplification fluorescent sensing platform for ultrasensitive assay of nuclease and ATP based on rolling circle replication and exonuclease III-aided recycling[J]. RSC Advances, 2015, 5(92):75055-75061.
[74] Dirks RM, Pierce NA.Triggered amplification by hybridization chain reaction[J]. Proc Natl Acad Sci USA, 2004, 101(43):15275-15278.
[75] Sun Y, Peng P, Guo R, et al.Exonuclease III-boosted cascade reactions for ultrasensitive SERS detection of nucleic acids[J]. Biosens Bioelectron, 2018, 104:32-38.
[76] Yu L, Lan W, Xu H, et al.Label-free detection of Hg2+ based on Hg2+-triggered toehold binding, Exonuclease III assisted target recycling and hybridization chain reaction[J]. Sensors and Actuators B:Chemical, 2017, 248:411-418.
[77] Bao T, Wen W, Zhang X, et al.An exonuclease-assisted amplification electrochemical aptasensor for Hg2+ detection based on hybridization chain reaction[J]. Biosens Bioelectron, 2015, 70:318-323.
[78] Xiong E, Zhang X, Liu Y, et al.An electrochemical biosensor for sensitive detection of Hg2+ based on exonuclease III-assisted target recycling and hybridization chain reaction amplification strategies[J]. Analytical Methods, 2016, 8(9):2106-2111.
[79] Sun J, Jiang W, Zhu J, et al.Label-free fluorescence dual-amplified detection of adenosine based on exonuclease III-assisted DNA cycling and hybridization chain reaction[J]. Biosens Bioelectron, 2015, 70:15-20.
[80] Zhong W.Nanomaterials in fluorescence-based biosensing[J]. Analytical and BioAnal Chem, 2009, 394(1):47-59.
[81] Liu J, Hu Y, Yang Y, et al.Emerging functional nanomaterials for the detection of food contaminants[J]. Trends in Food Science & Technology, 2018, 71:94-106.
[82] Chen J, Li Z, Ge J, et al.An aptamer-based signal-on bio-assay for sensitive and selective detection of kanamycin A by using gold nanoparticles[J]. Talanta, 2015, 139:226-232.
[83] Zhao Y, Liu R, Sun W, et al.Ochratoxin A detection platform based on signal amplification by exonuclease III and fluorescence quenching by gold nanoparticles[J]. Sensors and Actuators B:Chemical, 2018, 255:1640-1645.
[84] Huang L, Zheng L, Chen Y, et al.A novel GMO biosensor for rapid ultrasensitive and simultaneous detection of multiple DNA components in GMO products[J]. Biosens Bioelectron, 2015, 66:431-437.
[85] Jie G, Zhao Y, Wang X, et al.Multiplexed fluorescence detection of microRNAs based on novel distinguishable quantum dot signal probes by cycle amplification strategy[J]. Sensors and Actuators B:Chemical, 2017, 252:1026-1034.
[86] Jie G, Lu Z, Zhao Y, et al.Quantum dots bilayers/Au@Ag-based electrochemiluminescence resonance energy transfer for detection of thrombin by autocatalytic multiple amplification strategy[J]. Sensors and Actuators B:Chemical, 2017, 240:857-862.
[87] Zhang C, Ding C, Zhou G, et al.One-step synthesis of DNA functionalized cadmium-free quantum dots and its application in FRET-based protein sensing[J]. Anal Chim Acta, 2017, 957:63-69.
[88] Wang W, Bao T, Zeng X, et al.Ultrasensitive electrochemical DNA biosensor based on functionalized gold clusters/graphene nanohybrids coupling with exonuclease III-aided cascade target recycling[J]. Biosens Bioelectron, 2017, 91:183-189. |