Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (1): 193-201.doi: 10.13560/j.cnki.biotech.bull.1985.2019-1008
Previous Articles Next Articles
WU Ya, XU Zhi-hui, ZHANG Biao, ZHAO Dong-fang, CAO Wen-xin, ZHANG Xing-ping
Received:
2019-10-21
Online:
2020-01-26
Published:
2020-01-08
WU Ya, XU Zhi-hui, ZHANG Biao, ZHAO Dong-fang, CAO Wen-xin, ZHANG Xing-ping. Research Progress of Nucleic Acid Aptamer Optical Biosensor in Kanamycin Detection[J]. Biotechnology Bulletin, 2020, 36(1): 193-201.
[1] Megoulas NC, Koupparis MA.Direct determination of kanamycin in raw materials, veterinary formulation and culture media using a novel liquid chromatography-evaporative light scattering method[J]. Analytica Chimica Acta, 2005, 547(1):64-72. [2] Gonzalez LS, Spencer JP.Aminoglycosides:A practical review[J]. Am Fam Physician, 1998, 58(8):1811-1820. [3] Oertel R, Neumeister V, Kirch W.Hydrophilic interaction chromatography combined with tandem-mass spectrometry to determine six aminoglycosides in serum[J]. J Chromatogr A, 2004, 1058(1-2):197-201. [4] Leung KH, He HZ, Chan SH, et al.An oligonucleotide-based switch-on luminescent probe for the detection of kanamycin in aqueous solution[J]. Sens Actuators B Chem, 2013, 177:487-492. [5] Kaufmann A, Butcher P, Maden K.Determination of aminoglycoside residues by liquid chromatography and tandem mass spectrometry in a variety of matrices[J]. Analytica Chimica Acta, 2012, 711:46-53. [6] Bogialli S, Curini R, Corcia AD, et al.Simple confirmatory assay for analyzing residues of aminoglycoside antibiotics in bovine milk:hot water extraction followed by liquid chromatography-tandem mass spectrometry[J]. J Chromatogr A, 2005, 1067(1-2):93-100. [7] Lin YF, Wang YC, Chang SY.Capillary electrophoresis of aminoglycosides with argon-ion laser-induced fluorescence detection[J]. J Chromatogr A, 2008, 1188(2):331-333. [8] Patel KN, Limgavkar RS, Raval HG, et al.High-performance liquid chromatographic determination of cefalexin monohydrate and kanamycin monosulfate with precolumn derivatization[J]. J Liq Chromatogr Relat Technol, 2015, 38(6):716-721. [9] Yu S, Wei Q, Du B, et al.Label-free immunosensor for the detection of kanamycin using Ag@Fe3O4 nanoparticles and thionine mixed graphene sheet[J]. Biosensors and Bioelectronics, 2013, 48:224-229. [10] Mishra RK, Hayat A, Catanante G, et al.Sensitive quantitation of Ochratoxin A in cocoa beans using differential pulse voltammetry based aptasensor[J]. Food Chemistry, 2016, 192:799-804. [11] Hermandez M, Borrull F, Calull M.Analysis of antibiotics in biological samples by capillary electrophoresis[J]. TrAC Trends in Analytical Chemistry, 2003, 22(7):416-427. [12] Wu S, Wang Y, Duan N, et al.Colorimetric aptasensor based on enzyme for the detection of Vibrio parahaemolyticus[J]. J Agric Food Chem, 2015, 63(35):7849-7854. [13] Luo X, Davis JJ.Electrical biosensors and the label free detection of protein disease biomarkers[J]. Chemical Society Reviews, 2013, 42(13):5944-5962. [14] Ahmed A, Rushworth JV, Hirst NA, et al.Biosensors for whole-cell bacterial detection[J]. Clinical Microbiology Reviews, 2014, 27(3):631-646. [15] Harel E, Schröder, Leif, Xu S. Novel detection schemes of nuclear magnetic resonance and magnetic resonance imaging:applications from analytical chemistry to molecular sensors[J]. Annual Review of Analytical Chemistry, 2008, 1(1):133-163. [16] Pires N, Dong T, Hanke U, et al.Recent Developments in optical detection technologies in lab-on-a-chip devices for biosensing applications[J]. Sensors, 2014, 14(8):15458-15479. [17] Ellington AD, Szostak JW.In vitro selection of RNA molecules that bind specific ligands[J]. Nature, 1990, 346(6287):818-822. [18] Tuerk C, Gold L.Systematic evolution of ligands by exponential enrichment:RNA ligands to bacteriophage T4 DNA polymerase[J]. Science, 1990, 249(4968):505-510. [19] Liu R, Huang Y, Ma Y, et al.Design and synthesis of target-responsive aptamer-cross-linked hydrogel for visual quantitative detection of ochratoxin A[J]. ACS Applied Materials & Interfaces, 2015, 7(12):6982-6990. [20] Yang CJ, Jockusch S, Vicens M, et al.Light-switching excimer probes for rapid protein monitoring in complex biological fluids[J]. Proc Natil Acad Sci USA, 2005, 102(48):17278-17283. [21] Song KM, Cho M, Jo H, et al.Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer[J]. Analytical Biochemistry, 2011, 415(2):175-181. [22] Song YJ, Wei WL, Qu XG.Colorimetric biosensing using smart materials[J]. Advanced Materials, 2011, 23(37):4215-4236. [23] Oliveira E, Núnez, Cristina, Santos HM, et al. Revisiting the use of gold and silver functionalised nanoparticles as colorimetric and fluorometric chemosensors for metal ions[J]. Sensors and Actuators B:Chemical, 2015, 212:297-328. [24] Liu XG, Huang DL, Lai C.Facile hydrothermal synthesis of Z-scheme Bi2Fe4O9/Bi2WO6 heterojunction photocatalyst with enhanced visible light photocatalytic activity[J]. Trac-trends in Analytical Chemistry, 2018, 109:260-274. [25] Xu Y, Han T, Li X, et al.Colorimetric detection of kanamycin based on analyte-protected silver nanoparticles and aptamer-selective sensing mechanism[J]. Analytica Chimica Acta, 2015, 891:298-303. [26] Lai C, Liu XG, Qin L, et al.Chitosan-wrapped gold nanoparticles for hydrogen-bonding recognition and colorimetric determination of the antibiotic kanamycin[J]. Microchimica Acta, 2017, 184(19):1-9. [27] Xu CN, Ying YB, Ping JF.Colorimetric aggregation assay for kanamycin using gold nanoparticles modified with hairpin DNA probes and hybridization chain reaction-assisted amplification[J]. Microchimica Acta, 2019, 186(7):448. [28] Sharma TK, Ramanathan R, Weerathunge P, et al.Aptamer-mediated ‘turn-off/turn-on’ nanozyme activity of gold nanoparticles for kanamycin detection[J]. Chemical Communications, 2014, 50(100):15856-15859. [29] Chen ZC, Xiong F, Yu AM, et al.Aptamer-biorecognition triggered DNAzyme liberation and Exo III assisted target recycling for ultrasensitive homogeneous colorimetric bioassay of kanamycin antibiotic[J]. Chem Commun, 2019, 55(27):3959-3962. [30] Cui X, Li R, Liu X, et al.Low-background and visual detection of antibiotic based on target-activated colorimetric split peroxidase DNAzyme coupled with dual nicking enzyme signal amplification[J]. Analytica Chimica Acta, 2018, 2(997):1-8. [31] Kim SE, Ahn KY, Park JS, et al.Fluorescent ferritin nanoparticles and application to the aptamer sensor[J]. Analytical Chemistry, 2011, 83(15):5834-5843. [32] Feng C, Dai S, Wang L.Optical aptasensors for quantitative detection of small biomolecules:A review[J]. Biosensors and Bioelectronics, 2014, 59:64-74. [33] Liao QG, Wei BH, Luo LG.Aptamer based fluorometric determination of kanamycin using double-stranded DNA and carbon nanotubes[J]. Microchimica Acta, 2016, 184(2):1-6. [34] Ahmed SF, Azza I, Mai M, et al.Click chemistry inspired copper sulphide nanoparticle-based fluorescence assay of kanamycin using DNA aptamer[J]. Spectrochimica Acta, 2018, 205:48-54. [35] Wu Z, Li H, Liu Z.An aptasensor for carcinoembryonic antigen based on upconversion fluorescence resonance energy transfer[J]. Sens Actuators B Chem, 2015, 206:531-537. [36] Xing YP, Liu C, Zhou XH, et al.Label-free detection of kanamycin based on a G-quadruplex DNA aptamer-based fluorescent intercalator displacement assay[J]. Scientific Reports, 2015, 5:8125. [37] Zhu YQ, Li W, Tan SZ, et al.A label-free and functional fluorescent oligonucleotide probe based on a G-quadruplex molecular beacon for the detection of kanamycin[J]. 高等学校化学研究:英文版, 2018, 4:541-545. [38] Zhang K, Cao J, Wu Y.A fluorometric aptamer method for kanamycin by applying a dual amplification strategy and using double Y-shaped DNA probes on a gold bar and on magnetite nanoparticles[J]. Microchimica Acta, 2019, 186(2):120. [39] Dehghani S, Danesh NM, Ramezani M, et al.A label-free fluorescent aptasensor for detection of kanamycin based on dsDNA-capped mesoporous silica nanoparticles and Rhodamine B[J]. Analytica Chimica Acta, 2018, 1030:142-147. [40] Emrani AS, Danesh NM, Ramezani M.et al.A novel electrochemical aptasensor based on arch-shape structure of aptamer-complimentary strand conjugate and exonuclease I for sensitive detection of streptomycin[J]. Biosensors and Bioelectronics, 2016, 79:288-293. [41] Pang Y, Rong Z, Wang J, et al.A fluorescent aptasensor for H5N1 influenza virus detection based-on the core-shell nanoparticles metal-enhanced fluorescence(MEF)[J]. Biosensors and Bioelectronics, 2015, 66:527-532. [42] Leung KH, He HZ, Chan SH, et al.An oligonucleotide-based switch-on luminescent probe for the detection of kanamycin in aqueous solution[J]. Sensors and Actuators B:Chemical, 2013, 177:487-492. [43] Yao Y, Wang X, Duan W, et al.A label-free, versatile and low-background chemiluminescence aptasensing strategy based on gold nanocluster catalysis combined with the separation of magnetic beads[J]. Analyst, 2018, 143(3):709-714. [44] Hao LL, Gu HJ, Duan N, et al.A Chemiluminescent aptasensor for simultaneous detection of three antibiotics in milk[J]. Analytical Methods, 2016. 8(44):7929-7936. |
[1] | XUE Ning, WANG Jin, LI Shi-xin, LIU Ye, CHENG Hai-jiao, ZHANG Yue, MAO Yu-feng, WANG Meng. Construction of L-phenylalanine High-producing Corynebacterium glutamicum Engineered Strains via Multi-gene Simultaneous Regulation Combined with High-throughput Screening [J]. Biotechnology Bulletin, 2023, 39(9): 268-280. |
[2] | LI Ren-han, ZHANG Le-le, LIU Chun-li, LIU Xiu-xia, BAI Zhong-hu, YANG Yan-kun, LI Ye. Development of an L-tryptophan Biosensor Based on the Violacein Biosynthesis Pathway [J]. Biotechnology Bulletin, 2023, 39(10): 80-92. |
[3] | CHEN Xiao-lin, LIU Yang-er, XU Wen-tao, GUO Ming-zhang, LIU Hui-lin. Application of Synthetic Biology Based Whole-cell Biosensor Technology in the Rapid Detection of Food Safety [J]. Biotechnology Bulletin, 2023, 39(1): 137-149. |
[4] | ZHOU Zi-qi, ZHANG Yang-zi, LAN Xin-yue, LIU Yang-er, ZHU Long-jiao, XU Wen-tao. Selection and Application of Light-up Nucleic Acid Aptamers [J]. Biotechnology Bulletin, 2022, 38(5): 240-247. |
[5] | ZHANG Ya-han, ZHU Li-xia, HU Jing, ZHU Ya-jing, ZHANG Xue-jing, CAO Ye-zhong. Opportunities and Challenges of Glyphosate in the Application of Biotechnology Breeding in China [J]. Biotechnology Bulletin, 2022, 38(11): 1-9. |
[6] | WANG Peng-fei, YANG Min, ZHU Long-jiao, XU Wen-tao. Advances in Biosensors Based on Platinum Nanoclusters [J]. Biotechnology Bulletin, 2021, 37(12): 235-242. |
[7] | ZHENG Fang-fang, LIN Jun-sheng. Selection and Specificity of Nucleic Acid Aptamers for a Proliferation Inducing Ligand [J]. Biotechnology Bulletin, 2021, 37(10): 196-202. |
[8] | ZHAO Ying, WANG Nan, LU An-xiang, FENG Xiao-yuan, GUO Xiao-jun, LUAN Yun-xia. Application in the Detection of Fungal Toxins by Nucleic Acid Aptamer Lateral Flow Chromatography Analysis Technique [J]. Biotechnology Bulletin, 2020, 36(8): 217-227. |
[9] | FANG Shun-yan, SONG Dan, LIU Yan-ping, XU Wen-juan, LIU Jia-yao, HAN Xiang-zhi, LONG Feng. Study on Evanescent Wave Fluorescence Aptasensor for Direct and Rapid Detection of Escherichia coli O157∶H7 [J]. Biotechnology Bulletin, 2020, 36(7): 228-234. |
[10] | YE Jian-wen, CHEN Jiang-nan, ZHANG Xu, Wu Fu-qing, CHEN Guo-qiang. Dynamic Control:An Efficient Strategy for Metabolically Engineering Microbial Cell Factories [J]. Biotechnology Bulletin, 2020, 36(6): 1-12. |
[11] | YANG Min, LI Shu-ting, YANG Wen-ping, LI Xiang-yang, XU Wen-tao. Research Progress on Functional Nucleic Acid Biosensors Mediated by DNA/Silver Nanoclusters [J]. Biotechnology Bulletin, 2020, 36(6): 245-254. |
[12] | LIU Su-yue, TIAN Jing-jing, TIAN Hong-tao, XU Wen-tao. Terbium(III)and Its Complexes:from Luminescent Properties to Sensing and Bioimaging Applications [J]. Biotechnology Bulletin, 2020, 36(4): 192-207. |
[13] | SUN Yu-ge, LI Chen-wei, DU Zai-hui, XU Wen-tao. Research Progress on FEN1-mediated Functional Nucleic Acid Biosensors [J]. Biotechnology Bulletin, 2020, 36(4): 208-224. |
[14] | WANG Qi, YAN Chun-lei, GAO Hong-wei, WU Wei, YANG Qing-li. Research Progress of DNA Aptasensors for Foodborne Pathogen Detection [J]. Biotechnology Bulletin, 2020, 36(11): 245-258. |
[15] | XIAO Bing, LUO Yun-bo, HUANG Kun-lun, ZHANG Yuan, XU Wen-tao. Research Progress in the Quantitative and Unitive Detecting Technologies Based on Functional Nucleic Acid and Labeled Fluorescence [J]. Biotechnology Bulletin, 2019, 35(7): 213-221. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||