Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (2): 71-76.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0876
Previous Articles Next Articles
WANG Hong-fang, XU Bao-hua
Received:
2019-09-20
Online:
2020-02-26
Published:
2020-02-23
WANG Hong-fang, XU Bao-hua. The Relationship Between Gut Microflora and Sociality of Honeybee[J]. Biotechnology Bulletin, 2020, 36(2): 71-76.
[1] White PB.The normal bacterial flora of the honey bee[J]. J Pathol Bacteriol, 1921, 24:64-78. [2] Lotmar R.Uber flagellaten und akterien in Diinndarm der Honigbiene(Apis vicllifica)[J]. Schweiz Bienen-Ztg, 1946, 2:49-76. [3] Gilliam M.Microbial sterility of the intestinal content of the immature honey bee, Apis mellifera[J]. Ann Entomol Soc Am, 1971, 64:315-316. [4] Kluge R.Untersuchungen über die Darmflora der Honigbiene, Apis mellifera[J]. Z Bienenforsch, 1963, 6:141-69. [5] Gilliam M, Prest DB.Microbiology of feces of the larval honey bee, Apis mellifera[J]. J Invertebr Pathol, 1987, 49:70-75. [6] Zheng H, Steele MI, Leonard SP, et al.Honey bees as models for gut microbiota research. Lab Anim(NY), 2018, 47(11):317-325. [7] Jeyaprakash A, Hoy MA, Allsopp MH.Bacterial diversity in worker adults of Apis mellifera capensis and Apis mellifera scutellata(Insecta:Hymenoptera)assessed using 16S rRNA sequences[J]. J Invertebr Pathol, 2003, 84:96-103. [8] Babendreier D, Joller D, Romeis J, et al.Bacterial community structures in honeybee intestines and their response to two insecti-cidal proteins[J]. FEMS Microbiol Ecol, 2007, 59:600-610. [9] Moran NA, Hansen AK, Powell JE, et al.Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees[J]. PLoS One, 2012, 7:e36393. [10] Sabree ZL, Hansen AK, Moran NA.Independent studies using deep sequencing resolve the same set of core bacterial species dominating gut communities of honey bees[J]. PLoS One, 2012, 7:e41250. [11] Kwong WK, Moran NA.Cultivation and characterization of the gut symbionts of honey bees and bumble bees:description of Snodgrassella alvi gen. nov. , sp. nov. , a member of the family Neisseriaceae of the Betaproteobacteria, and Gilliamella apicola gen. nov. , sp. nov. , a member of Orbaceae fam. nov. , Orbales ord. nov. , a sister taxon to the order ‘Enterobacteriales’ of the Gammaproteobacteria[J]. Int J Syst Evol Microbiol, 2013, 63:2008-2018. [12] Martinson VG, Danforth BN, Minckley RL, et al.A simple and distinctive microbiota associated with honey bees and bumble bees[J]. Mol Ecol, 2011, 20:619-628. [13] Martinson VG, Moy J, Moran NA.Establishment of characteristic gut bacteria during development of the honeybee worker[J]. Appl Environ Microbiol, 2012, 78:2830-2840. [14] Powell JE, Martinson VG, Urban-Mead K, et al.Routes of acquisition of the gut microbiota of Apis mellifera[J]. Appl Environ Microbiol, 2014, 80:7378-7387. [15] Scardovi V, Trovatelli D.New species of Bifidobacteria from Apis mellifica L and Apis indica F. A contribution to the taxonomy and biochemistry of the genus Bifidobacterium[J]. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg, 1969, 123:64-88. [16] Bottacini F, et al.Bifidobacterium asteroides PRL2011 genome analysis reveals clues for colonization of the insect gut[J]. PLoS One, 2012, 7:e44229. [17] Engel P, Kwong WK, Moran NA.Frischella perrara gen. nov. , sp. nov. , a gammaproteobacterium isolated from the gut of the honeybee, Apis mellifera[J]. Int J Syst Evol Microbiol, 2013, 63:3646-3651. [18] Corby-Harris V, Maes P, Anderson KE.The bacterial communities associated with honey bee(Apis mellifera)foragers[J]. PLoS One, 2014, 9:e95056. [19] Kešnerová L, Moritz R, Engel P.Bartonella apis sp. nov. , a honey bee gut symbiont of the class Alphaproteobacteria[J]. Int J Syst Evol Microbiol, 2016, 66(1):414-421. [20] Engel P, Bartlett KD, Moran NA.The bacterium Frischella perrara causes scab formation in the gutof its honeybee host[J]. MBio, 2015, 6:e00193-15. [21] Corby-Harris V, Snyder LA, Schwan MR, et al.Origin and effect of Alpha 2. 2 Acetobacteraceae in honey bee larvae and description of Parasaccharibacter apium gen. nov. , sp. nov[J]. Appl Environ Microbiol, 2014, 80:7460-7472. [22] Anderson KE, Sheehan TH, Mott BM, et al.Microbial ecology of the hive and pollination landscape:bacterial associates from floral nectar, the alimentary tract and stored food of honey bees(Apis mellifera)[J]. PLoS One, 2013, 8:e83125. [23] Anderson KE, Carroll MJ, Sheehan T, et al.Hive-stored pollen of honey bees:many lines of evidence are consistent with pollen preservation, not nutrient conversion[J]. Mol Ecol, 2014, 23:5904-5917. [24] Corby-Harris V, Maes P, Anderson KE.The bacterial communities associated with Honey Bee(Apis mellifera)foragers[J]. PLoS One, 2014, 9(4):e95056. [25] Olofsson TC, Vasquez A.Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera[J]. Current Microbiology, 2008, 57:356-363. [26] Va’squez A, Olofsson TC, Sammataro D.A scientific note on the lactic acid bacterial flora in honeybees in the USA - A comparison with bees from Sweden[J]. Apidologie, 2009, 40:26-28. [27] Olofsson TC, Va’squez A, Sammataro D, et al.A scientific note on the lactic acid bacterial flora within the honeybee subspecies;Apis mellifera(Buckfast), A. m. scutellata, A. m. mellifera, and A. m. monticola[J]. Apidologie, 2011, 42(6):696-699. [28] Ludvigsen J, Rangberg A, Avershina E, et al.Shifts in the midgut/pyloric microbiota composition within a honey bee apiary throughout a season[J]. Microbes Environ, 2015, 30(3):235-244. [29] Kwong WK, Moran NA.Gut microbial communities of social bees[J]. Nat Rev Microbiol, 2016, 14(6):374-384. [30] Kapheim KM, Rao VD, Yeoman CJ, et al.Caste-specific differences in hindgut microbial communities of honey bees(Apis mellifera)[J]. PLoS One, 2015, 10(4):e0123911. [31] Powell JE, Eiri D, Moran NA, et al.Modulation of the honey bee queen microbiota:Effects of early social contact[J]. PLoS One, 2018, 13(7):e0200527. [32] Anderson KE, Ricigliano VA, Mott BM, et al.The queen’s gut refines with age:longevity phenotypes in a social insect model[J]. Microbiome, 2018, 6:108. [33] Wolschin F, Mutti NS, Amdam GV.Insulin receptor substrate influences female caste development in honeybees[J]. Biol Lett, 2011, 7(1):112-115. [34] Shin SC, Kim SH, You H, et al.Drosophila microbiome modulates host developmental and metabolic homeostasis via insulinsignaling[J]. Science, 2011, 334(6056):670-674. [35] Zheng H, Powell JE, Steele MI, et al.Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling[J]. Proc Natl Acad Sci USA, 2017, 114:4775-4780. [36] Kešnerová L, Mars RAT, Ellegaard KM, et al.Disentangling metabolic functions of bacteria in the honey bee gut[J]. PLoS Biol, 2017, 15:e2003467. [37] Rachinsky A, Strambi C, Strambi A, et al.Caste and metamorphosis:hemolymph titers of juvenile hormone and ecdysteroids in last instar honeybee larvae[J]. Gen Comp Endocrinol, 1990, 79(1):31-38. [38] Rembold H.Caste specific modulation of juvenile-hormone titers in Apis mellifera[J]. Insect Biochem, 1987, 17(7):1003-1006. [39] Schwarz RS, Moran NA, Evans JD.Early gut colonizers shape parasite susceptibility and microbiota composition in honey bee workers[J]. Proc Natl Acad Sci USA, 2016, 113(33):9345-9350. [40] Amdam GV, Omholt SW.The hive bee to forager transition in honeybee colonies:The double repressor hypothesis[J]. J Theor Biol, 2003, 223:451-464. [41] Guidugli KR, Nascimento AM, Amdam GV, et al.Vitellogenin regulates hormonal dynamics in the worker caste of a eusocial insect[J]. FEBS Lett, 2005, 579:4961-4965. [42] Nelson CM, Ihle KE, Fondrk MK, et al.The Gene vitellogenin has multiple coordinating effects on social organization[J]. PLoS Biol, 2007, 5(3):e62. [43] Harris JW, Woodring J.Effects of stress, age, season, and source colony on levels of octopamine, dopamine and serotonin in the honey bee(Apis mellifera L.)brain[J]. J Insect Physiol, 1992, 38, 29-35. [44] Jones JC, Fruciano C, Marchant J, et al.The gut microbiome is associated with behavioural task in honey bees[J]. Insectes Soc, 2018, 65(3):419-429. [45] Amdam GV, Omholt SW.The regulatory anatomy of honeybee lifespan[J]. J Theor Biol, 2002, 216:209-28. [46] Amdam GV, Simões ZLP, Hagen A, et al.Hormonal control of the yolk precursor vitellogenin regulates immune function and longevity in honeybees[J]. Exp Gerontol, 2004, 39:767-73. [47] Seehuus SC, Norberg K, Gimsa U, et al.Reproductive protein protects functionally sterile honey bee workers from oxidative stress[J]. Proc Natl Acad Sci, 2006, 103:962-7. [48] Corona M, Velarde RA, Remolina S, et al.Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity[J]. Proc Natl Acad Sci, 2007, 104:7128-33. [49] Maes PW, Rodrigues PAP, Oliver R, et al.Diet-related gut bacterial dysbiosis correlates with impaired development, increased mortality and Nosema disease in the honeybee(Apis mellifera)[J]. Mol Ecol, 2016, 25:5439-5450. [50] Schwarz RS, Huang Q, Evans JD.Hologenome theory and the honey bee pathosphere[J]. Curr Opin Insect Sci, 2015, 10:1-7. [51] Koch H, Schmid-Hempel P.Socially transmitted gut microbiota protect bumble bees against an intestinal parasite[J]. Proc Natl Acad Sci USA, 2011, 108:19288-19292. [52] Cariveau DP, Powell JE, Koch H, et al.Variation in gut microbial communities and its association with pathogen infection in wild bumble bees(Bombus)[J]. ISME J, 2014, 12:2369-2379. [53] Koch H, Schmid-Hempel P.Gut microbiota instead of host genotype drive the specificity in the interaction of a natural host-parasite system[J]. Ecol Lett, 2012, 15:1095-1103. [54] Forsgren E, Olofsson TC, Vásquez A, et al.Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae[J]. Apidologie, 2010, 41:99-108. [55] Wu M, Sugimura Y, Takaya N, et al.Characterization of bifidobacteria in the digestive tract of the Japanese honeybee, Apis cerana japonica[J]. J Invertebr Pathol, 2013, 112:88-93. [56] Engel P, Martinson VG, Moran NA.Functional diversity within the simple gut microbiota of the honey bee[J]. Proc Natl Acad Sci USA, 2012, 109:11002-11007. [57] Ellegaard KM, Tamarit D, Javelind E, et al.Extensive intra-phylotype diversity in Lactobacilli and Bifidobacteria from the honeybee gut[J]. BMC Genomics, 2015, 16:284. [58] Kwong WK, Mancenido AL, Moran NA.Genome sequences of Lactobacillus sp. strains wkB8 and wkB10, members of the Firm-5 clade, from honey bee guts[J]. Genome Announc, 2014, 13:e01176-14. |
[1] | SHA Shan-shan, DONG Shi-rong, YANG Yu-ju. Research Progress in Gut Microbiota and Metabolites Regulating Host Intestinal Immunity [J]. Biotechnology Bulletin, 2023, 39(8): 126-136. |
[2] | XIONG Shu-qi. Towards the Understanding on the Physiological Functions of Bile Acids and Interactions with Gut Microbiota [J]. Biotechnology Bulletin, 2023, 39(4): 187-200. |
[3] | JIANG Xian-zhe, ZHANG Bo-yan, LUO Hai-ling, ZHANG Xin-meng, WANG Bing. Role of Gut-Liver Axis in Animal Nutritional Metabolism and Immunity [J]. Biotechnology Bulletin, 2022, 38(7): 128-135. |
[4] | HE Ya-lun, ZENG Li-rong, LIU Xiong, ZHANG Ling, WANG Qiong. Effects of High-dose Tannic Acid on the Intestinal Barrier Function and Gut Microbiota in Mice [J]. Biotechnology Bulletin, 2022, 38(4): 278-287. |
[5] | TANG Bin, LIU Wen-bin, LI Xiao-bo, WANG Ning, JIN Xiao-bao. Screening and Identification of Strains Producing 7-β-xylosyltaxanes Glycoside Hydrolases from the Periplaneta americana Gut [J]. Biotechnology Bulletin, 2022, 38(3): 139-148. |
[6] | ZHONG Ming-yue, LIU Chun-yan, YAN Yan, ZHANG Xiao-hui, YUAN Hai-sheng, XU Guo-quan, ZHANG He-ping, WANG Yu-zhen. Improvement Effect of Bifidobacterium lactis V9 on NAFLD Rats Induced by High-fat Diet [J]. Biotechnology Bulletin, 2022, 38(3): 181-187. |
[7] | FU Wei-jie, KUANG Jie-hua, LUO Jun, HUANG Jian-sheng, CHEN You-ming, CHEN Gang. Gene Cloning of Galectin-8 in Epinephelus fuscoguttatus♀×E. polyphekadion♂ and Its Expression Responses Under Different of Ferulic Acid Level [J]. Biotechnology Bulletin, 2022, 38(12): 312-323. |
[8] | QIU Xiao-yu, LIU Zuo-hua, QI Ren-li. Differences in Early Fat Development and Gene Transcription Expression in the Adipose Tissues of Piglets with and Without Gut Microbiota [J]. Biotechnology Bulletin, 2021, 37(5): 56-66. |
[9] | LI Hai-chao, XIE Fei, ZHANG Yuan-qi, GUAN Ruo-bing. Effects of Resistant and Sensitive Rice Varieties on Gut Microbiota of Nilaparvata lugens [J]. Biotechnology Bulletin, 2021, 37(3): 1-9. |
[10] | HUANG Xiao-dan, CHEN Meng-yu, HUANG Wen-jie, ZHANG Ming-wei, YAN Shi-juan. Progress Based on Metabolomics:Plant Polyphenols and Their Gut Health Benefit [J]. Biotechnology Bulletin, 2021, 37(1): 123-136. |
[11] | YANG Li-jie, ZENG Xiang-fang, QIAO Shi-yan. Research Advances on Non-starch Polysaccharide in the Regulation of Intestinal Microflora in Pigs [J]. Biotechnology Bulletin, 2020, 36(2): 9-16. |
[12] | LIU Yu, DING Qian-wen, RAN Chao, YANG Ya-lin, WANG An-ran, ZHANG Hong-ling, ZHANG Jin-xiong, LI Jie, Rolf Erik OLSEN, Einar RINGØ, ZHANG Zhen, ZHOU Zhi-gang. Research Advances on Short-chain Fatty Acids of Metabolites of Gut Microbiota in Aquatic Animals [J]. Biotechnology Bulletin, 2020, 36(2): 58-64. |
[13] | WU Qin, XU Zi-yang, LIU Li-ping, ZHANG Wen-ying, SONG Si-yuan. Role of Gut Microbiota in Stress-induced Hypertension in Rats [J]. Biotechnology Bulletin, 2020, 36(2): 83-90. |
[14] | LIU Shu-jun, CHEN Miao, WANG Feng-zhong, BAO Yu-ming, XIN Feng-jiao, WEN Bo-ting. In Vitro Fermentation of Monosodium Glutamate with Human Gut Microbes [J]. Biotechnology Bulletin, 2020, 36(12): 104-112. |
[15] | CUI Hong-jing, ZHOU Tao, QIU Kun-pei, SONG Hao-chang, LIU Xin-guang. Effects of PMT1 and PMT3 Double-gene Deficiency on the Lifespan of Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2018, 34(4): 139-143. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||