[1] Fatima A, Waters S, Boyle PO, et al.Alterations in hepatic miRNA expression during negative energy balance in postpartum dairy cattle[J]. BMC Genomics, 2014, 15(1):28. [2] Shibano KI, Kawamura S.Serum free amino acid concentration in hepatic lipidosis of dairy cows in the periparturient period[J]. Journal of Veterinary Medical Science, 2006, 68(4):393-396. [3] Hammon DS, Evjen IM, Dhiman TR, et al.Neutrophil function and energy status in Holstein cows with uterine health disorders[J]. Veterinary Immunology and Immunopathology, 2006, 113(1-2):21-29. [4] Mulligan FJ, O’Grady L, Rice DA, et al. A herd health approach to dairy cow nutrition and production diseases of the transition cow[J]. Animal Reproduction Science, 2006, 96(3-4):331-353. [5] Minor DJ, Trower SL, Strang BD, et al.Effects of nonfiber carbohydrate and niacin on periparturient metabolic status and lactation of dairy cows[J]. Journal of Dairy Science, 1998, 81(1):189-200. [6] Bertoni G, Trevisi E, Han X, et al.Effects of inflammatory conditions on liver activity in puerperium period and consequences for performance in dairy cows[J]. Journal of Dairy Science, 2008, 91(9):3300-3310. [7] Mulligan FJ, Doherty ML.Production diseases of the transition cow[J]. Veterinary Journal, 2008, 176(1):3-9. [8] Marczuk J, Brodzki P, Brodzki A, et al.The concentration of free amino acids in blood serum of dairy cows with primary ketosis[J]. Polish Journal of Veterinary Sciences, 2018, 21(1):149-156. [9] Shibano KI, Kawamura S.Serum free amino acid concentration in hepatic lipidosis of dairy cows in the periparturient period[J]. Journal of Veterinary Medical Science, 2006, 68(4):393-396. [10] Maeda Y, Ohtsuka H, Oikawa MA, et al.Effect of the periparturient period on blood free amino acid concentration in dairy cows/healthy cows[J]. Journal of Veterinary Medicine and Animal Health, 2012, 4(9):124-129. [11] Kolk J, Gross JJ, Gerber V, et al.Disturbed bovine mitochondrial lipid metabolism:a review[J]. The Veterinary Quarterly, 2017, 37(1):1-18. [12] Bell AW.Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation[J]. Journal of Animal Science, 1995, 73(9):2804-2819. [13] 陶金忠, 郭延生. 奶牛产后血浆~1H-NMR代谢组学分析[J]. 畜牧兽医学报, 2016, 47(1):198-206. [14] 张萌, 刘国林, 李向龙, 等. 围产前期添加山楂和黄芪混合物对奶牛血浆代谢组的影响[J]. 生物技术通报, 2019, 35(8):127-137. [15] Baslow MH.N-Acetylaspartate in the vertebrate brain:metabolism and function[J]. Neurochemical Research, 2003, 28(6):941-953. [16] Lu ZH, Chakraborty G, Ledeen RW, et al.N-Acetylaspartate synthase is bimodally expressed in microsomes and mitochondria of brain[J]. Molecular Brain Research, 2004, 122(1):71-78. [17] Moffett JR, Ross B, Arun P, et al.N-Acetylaspartate in the CNS:From neurodiagnostics to neurobiology[J]. Progress in Neurobiology, 2007, 81(2):89-131. [18] Liu MC, Gong XH, Quan YY, et al.A cell-based metabonomics approach to investigate the varied influences of chrysophanol-8-o-β-d-glucoside with different concentrations on L-02 cells[J]. Frontiers in Pharmacology, 2019, 9(1):1-15. [19] Li YX, Gong XH, Liu MC, et al.Investigation of liver injury of polygonum multiflorum thunb. in rats by metabolomics and traditional approaches[J]. Frontiers in Pharmacology, 2017, 11(8):791-802. [20] Lanpher BC, Gropman A, Chapman KA, et al.Urea cycle disorders overview[M]. University of Washington, Seattle GeneReviewsTM, 2005. [21] Jin ML, Zhang H, Wang JJ, et al.Response of intestinal metabolome to polysaccharides from mycelia of Ganoderma lucidum[J]. International Journal of Biological Macromolecules, 2019, 122(2):723-731. [22] Clem BF, Clem AL, Yalcin A, et al.A novel small molecule antagonist of choline kinase-α that simultaneously suppresses MAPK and PI3K/AKT signaling[J]. Oncogene, 2011, 30(30):3370-3380. [23] Saed S, Sina Z, Grilli Y, et al.Fatty liver develops with nonuniform changes in hepatic choline-containing sphingomyelins and phosphatidylcholines[C]. Reads Conference:ADSA Annual Meeting, 2018. [24] Myers WA, Rico JE, Davis AN, et al.Effects of abomasal infusions of fatty acids and one-carbon donors on hepatic ceramide and phosphatidylcholine in lactating Holstein dairy cows[J]. Journal of Dairy Science, 2019, 102(8):1-15. [25] Wu G, Aoyama C, Young SG, et al.Early embryonic lethality caused by disruption of the gene for choline kinase, the first enzyme in phosphatidylcholine biosynthesis[J]. Journal of Biological Chemistry, 2008, 283(3):1456-1462. [26] Vernon RG.Lipid metabolism during lactation:a review of adipose tissue-liver interactions and the development of fatty liver[J]. Journal of Dairy Research, 2005, 72(4):460-469. [27] Tharwat M, Iwasaki Y, Mizunuma Y, et al.Changes of very low-density lipoprotein concentration in hepatic blood from cows with fasting-induced hepatic lipidosis[J]. Canadian Journal of Veterinary Research, 2010, 74(4):317-320. [28] Bobe G, Young JW, Beitz DC.Invited review:pathology, etiology, prevention, and treatment of fatty liver in dairy cows[J]. Journal of Dairy Science, 2004, 87(10):3105-3124. [29] Artegoitia VM, Middleton JL, Harte FM, et al.Choline and choline metabolite patterns and associations in blood and milk during lactation in dairy cows[J]. PLoS One, 2014, 9(8):e103412. [30] Imhasly S, Bieli C, Naegeli H, et al.Blood plasma lipidome profile of dairy cows during the transition period[J]. BMC Veterinary Research, 2015, 11(1):252-264. [31] Samii SS, Yu Z, Grilli E, et al.Lipidomics reveals phosphatidylcholines as candidate biomarkers for metabolic disease[C]. Reads Conference:ADSA Annual Meeting, 2017. [32] Anastasi G, Antonelli ML, Biondi A, et al.Orotic acid:a milk constituent[J]. Talanta, 2000, 52(5):947-952. [33] Sun HZ, Shi K, WU XH, et al.Lactation-related metabolic mechanism investigated based on mammary gland metabolomics and 4 biofluids metabolomics relationships in dairy cows[J]. BMC Genomics, 2017, 18(1):936-950. [34] Wang YM, Hu XQ, Xue Y, et al.Study on possible mechanism of orotic acid-induced fatty liver in rats[J]. Nutrition, 2011, 27(5):571-575. [35] Morkuniene K, Biziene R, Renata Detection of leukocyte adhesion defect uridine monophosphate synthase defect and complex vertebral deformity in holstein cattle[J]. Slovenian Veterinary Research, 2019, 56(2):75-82. [36] Dance N, Price RG, Cattell WR, et al.The excretion of N-acetyl-β-glucosaminidase and β-galactosidase by patients with renal disease[J]. International Journal of Clinical Chemistry, 1970, 27(1):87-92. |