Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (6): 191-199.doi: 10.13560/j.cnki.biotech.bull.1985.2019-1065
Previous Articles Next Articles
ZHANG Meng1, LUO Fang1, WANG Min2, WU Yan-ze3, WANG Jun-kui1, HE Dong-qian1, CHEN Li-yao1, TAO Jin-zhong1
Received:2019-11-01
Online:2020-06-26
Published:2020-06-28
ZHANG Meng, LUO Fang, WANG Min, WU Yan-ze, WANG Jun-kui, HE Dong-qian, CHEN Li-yao, TAO Jin-zhong. Changes in Plasma Metabolites After Calving in Dairy Cows[J]. Biotechnology Bulletin, 2020, 36(6): 191-199.
| [1] Fatima A, Waters S, Boyle PO, et al.Alterations in hepatic miRNA expression during negative energy balance in postpartum dairy cattle[J]. BMC Genomics, 2014, 15(1):28. [2] Shibano KI, Kawamura S.Serum free amino acid concentration in hepatic lipidosis of dairy cows in the periparturient period[J]. Journal of Veterinary Medical Science, 2006, 68(4):393-396. [3] Hammon DS, Evjen IM, Dhiman TR, et al.Neutrophil function and energy status in Holstein cows with uterine health disorders[J]. Veterinary Immunology and Immunopathology, 2006, 113(1-2):21-29. [4] Mulligan FJ, O’Grady L, Rice DA, et al. A herd health approach to dairy cow nutrition and production diseases of the transition cow[J]. Animal Reproduction Science, 2006, 96(3-4):331-353. [5] Minor DJ, Trower SL, Strang BD, et al.Effects of nonfiber carbohydrate and niacin on periparturient metabolic status and lactation of dairy cows[J]. Journal of Dairy Science, 1998, 81(1):189-200. [6] Bertoni G, Trevisi E, Han X, et al.Effects of inflammatory conditions on liver activity in puerperium period and consequences for performance in dairy cows[J]. Journal of Dairy Science, 2008, 91(9):3300-3310. [7] Mulligan FJ, Doherty ML.Production diseases of the transition cow[J]. Veterinary Journal, 2008, 176(1):3-9. [8] Marczuk J, Brodzki P, Brodzki A, et al.The concentration of free amino acids in blood serum of dairy cows with primary ketosis[J]. Polish Journal of Veterinary Sciences, 2018, 21(1):149-156. [9] Shibano KI, Kawamura S.Serum free amino acid concentration in hepatic lipidosis of dairy cows in the periparturient period[J]. Journal of Veterinary Medical Science, 2006, 68(4):393-396. [10] Maeda Y, Ohtsuka H, Oikawa MA, et al.Effect of the periparturient period on blood free amino acid concentration in dairy cows/healthy cows[J]. Journal of Veterinary Medicine and Animal Health, 2012, 4(9):124-129. [11] Kolk J, Gross JJ, Gerber V, et al.Disturbed bovine mitochondrial lipid metabolism:a review[J]. The Veterinary Quarterly, 2017, 37(1):1-18. [12] Bell AW.Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation[J]. Journal of Animal Science, 1995, 73(9):2804-2819. [13] 陶金忠, 郭延生. 奶牛产后血浆~1H-NMR代谢组学分析[J]. 畜牧兽医学报, 2016, 47(1):198-206. [14] 张萌, 刘国林, 李向龙, 等. 围产前期添加山楂和黄芪混合物对奶牛血浆代谢组的影响[J]. 生物技术通报, 2019, 35(8):127-137. [15] Baslow MH.N-Acetylaspartate in the vertebrate brain:metabolism and function[J]. Neurochemical Research, 2003, 28(6):941-953. [16] Lu ZH, Chakraborty G, Ledeen RW, et al.N-Acetylaspartate synthase is bimodally expressed in microsomes and mitochondria of brain[J]. Molecular Brain Research, 2004, 122(1):71-78. [17] Moffett JR, Ross B, Arun P, et al.N-Acetylaspartate in the CNS:From neurodiagnostics to neurobiology[J]. Progress in Neurobiology, 2007, 81(2):89-131. [18] Liu MC, Gong XH, Quan YY, et al.A cell-based metabonomics approach to investigate the varied influences of chrysophanol-8-o-β-d-glucoside with different concentrations on L-02 cells[J]. Frontiers in Pharmacology, 2019, 9(1):1-15. [19] Li YX, Gong XH, Liu MC, et al.Investigation of liver injury of polygonum multiflorum thunb. in rats by metabolomics and traditional approaches[J]. Frontiers in Pharmacology, 2017, 11(8):791-802. [20] Lanpher BC, Gropman A, Chapman KA, et al.Urea cycle disorders overview[M]. University of Washington, Seattle GeneReviewsTM, 2005. [21] Jin ML, Zhang H, Wang JJ, et al.Response of intestinal metabolome to polysaccharides from mycelia of Ganoderma lucidum[J]. International Journal of Biological Macromolecules, 2019, 122(2):723-731. [22] Clem BF, Clem AL, Yalcin A, et al.A novel small molecule antagonist of choline kinase-α that simultaneously suppresses MAPK and PI3K/AKT signaling[J]. Oncogene, 2011, 30(30):3370-3380. [23] Saed S, Sina Z, Grilli Y, et al.Fatty liver develops with nonuniform changes in hepatic choline-containing sphingomyelins and phosphatidylcholines[C]. Reads Conference:ADSA Annual Meeting, 2018. [24] Myers WA, Rico JE, Davis AN, et al.Effects of abomasal infusions of fatty acids and one-carbon donors on hepatic ceramide and phosphatidylcholine in lactating Holstein dairy cows[J]. Journal of Dairy Science, 2019, 102(8):1-15. [25] Wu G, Aoyama C, Young SG, et al.Early embryonic lethality caused by disruption of the gene for choline kinase, the first enzyme in phosphatidylcholine biosynthesis[J]. Journal of Biological Chemistry, 2008, 283(3):1456-1462. [26] Vernon RG.Lipid metabolism during lactation:a review of adipose tissue-liver interactions and the development of fatty liver[J]. Journal of Dairy Research, 2005, 72(4):460-469. [27] Tharwat M, Iwasaki Y, Mizunuma Y, et al.Changes of very low-density lipoprotein concentration in hepatic blood from cows with fasting-induced hepatic lipidosis[J]. Canadian Journal of Veterinary Research, 2010, 74(4):317-320. [28] Bobe G, Young JW, Beitz DC.Invited review:pathology, etiology, prevention, and treatment of fatty liver in dairy cows[J]. Journal of Dairy Science, 2004, 87(10):3105-3124. [29] Artegoitia VM, Middleton JL, Harte FM, et al.Choline and choline metabolite patterns and associations in blood and milk during lactation in dairy cows[J]. PLoS One, 2014, 9(8):e103412. [30] Imhasly S, Bieli C, Naegeli H, et al.Blood plasma lipidome profile of dairy cows during the transition period[J]. BMC Veterinary Research, 2015, 11(1):252-264. [31] Samii SS, Yu Z, Grilli E, et al.Lipidomics reveals phosphatidylcholines as candidate biomarkers for metabolic disease[C]. Reads Conference:ADSA Annual Meeting, 2017. [32] Anastasi G, Antonelli ML, Biondi A, et al.Orotic acid:a milk constituent[J]. Talanta, 2000, 52(5):947-952. [33] Sun HZ, Shi K, WU XH, et al.Lactation-related metabolic mechanism investigated based on mammary gland metabolomics and 4 biofluids metabolomics relationships in dairy cows[J]. BMC Genomics, 2017, 18(1):936-950. [34] Wang YM, Hu XQ, Xue Y, et al.Study on possible mechanism of orotic acid-induced fatty liver in rats[J]. Nutrition, 2011, 27(5):571-575. [35] Morkuniene K, Biziene R, Renata Detection of leukocyte adhesion defect uridine monophosphate synthase defect and complex vertebral deformity in holstein cattle[J]. Slovenian Veterinary Research, 2019, 56(2):75-82. [36] Dance N, Price RG, Cattell WR, et al.The excretion of N-acetyl-β-glucosaminidase and β-galactosidase by patients with renal disease[J]. International Journal of Clinical Chemistry, 1970, 27(1):87-92. |
| [1] | ZHOU Ai-ting, PENG Rui-qi, WANG Fang, WU Jian-rong, MA Huan-cheng. Analysis of Metabolic Differences of Biocontrol Strain DZY6715 at Different Growth Stages [J]. Biotechnology Bulletin, 2023, 39(9): 225-235. |
| [2] | SHA Shan-shan, DONG Shi-rong, YANG Yu-ju. Research Progress in Gut Microbiota and Metabolites Regulating Host Intestinal Immunity [J]. Biotechnology Bulletin, 2023, 39(8): 126-136. |
| [3] | XIE Tian-peng, ZHANG Jia-ning, DONG Yong-jun, ZHANG Jian, JING Ming. Effect of Premature Bolting on the Rhizosphere Soil Microenvironment of Angelica sinensis [J]. Biotechnology Bulletin, 2023, 39(7): 206-218. |
| [4] | ZHAO Yan-xia, ZHANG Jing-ying, SUN Jun-fei, WANG Jiang-hui, SUN Jia-bo, LV Xiao-hui. Analyses of Transcription and Metabolic Differential in the Flower Development Processes of ‘Rose rugosa cv. Plena’ [J]. Biotechnology Bulletin, 2023, 39(3): 184-195. |
| [5] | WANG Wei-chen, ZHAO Jin, HUANG Wei-yi, GUO Xin-zhu, LI Wan-ying, ZHANG Zhuo. Research Progress in Metabolites Produced by Bacillus Against Three Common Plant Pathogenic Fungi [J]. Biotechnology Bulletin, 2023, 39(3): 59-68. |
| [6] | HE Meng-ying, LIU Wen-bin, LIN Zhen-ming, LI Er-tong, WANG Jie, JIN Xiao-bao. Whole Genome Sequencing and Analysis of an Anti Gram-positive Bacterium Gordonia WA4-43 [J]. Biotechnology Bulletin, 2023, 39(2): 232-242. |
| [7] | YANG Yu-ping, ZHANG Xia, WANG Chong-chong, WANG Xiao-yan. Study on Urine Metabolomics in Rats of Different Ages [J]. Biotechnology Bulletin, 2022, 38(2): 166-172. |
| [8] | YANG Rui-xian, LIU Ping, WANG Zu-hua, RUAN Bao-shuo, WANG Zhi-da. Analysis of Antimicrobial Active Metabolites from Antagonistic Strains Against Fusarium solani [J]. Biotechnology Bulletin, 2022, 38(2): 57-66. |
| [9] | LIU Chuan-he, HE Han, HE Xiu-gu, LAI Qiu-qin, LIU Kai, SHAO Xue-hua, LAI Duo, KUANG Shi-zi, XIAO Wei-qiang. Unveiling the Mechanisms of Pineapple Responding to Anti-chilling by Gauze Covering in Winter via Transcriptome and Metabolome Profiling [J]. Biotechnology Bulletin, 2022, 38(11): 58-69. |
| [10] | LIU Chuan-he, HE Han, HE Xiu-gu, LIU Kai, SHAO Xue-hua, LAI Duo, KUANG Shi-zi, XIAO Wei-qiang. Analysis of Differential Metabolites and Bacterial Community Structure in Soils of a Pineapple Orchard in Different Continuous-cropping Years [J]. Biotechnology Bulletin, 2021, 37(8): 162-175. |
| [11] | WANG Nan, SU Yu, LIU Wen-jie, FENG Ming, MAO Yu, ZHANG Xin-guo. Research Progress on Active Compounds Against Drug-resistant Microorganism from Plant Endophytes [J]. Biotechnology Bulletin, 2021, 37(8): 263-274. |
| [12] | LIANG Zhen-ting, TANG Ting. Effects of Endophytes on Biosynthesis of Secondary Metabolites and Stress Tolerance in Plants [J]. Biotechnology Bulletin, 2021, 37(8): 35-45. |
| [13] | ZHAO Jiang-hua, FANG Huan, ZHANG Da-wei. Research Progress in Biosynthesis of Secondary Metabolites of Microorganisms [J]. Biotechnology Bulletin, 2020, 36(11): 141-147. |
| [14] | LAN Qing-kuo, ZHAO Xin, SHEN Xiao-ling, WEI Jing-na, LIU Shuang, CHEN Rui, TAN Jian-xin, WANG Yong. Biosafety Assessment Technology Research for Genetically Modified Rice Based on Metabolomics [J]. Biotechnology Bulletin, 2020, 36(11): 222-229. |
| [15] | ZHANG Meng, LIU Guo-lin, LI Xiang-long, CHEN Yong-hong, BAI Ling-rong, LUO Fang, LI Ya-chao, TAO Jin-zhong. Effect of Adding Hawthorn and Astragalus Mixtures on the Plasma Metabolome of Perinatal Dairy Cows [J]. Biotechnology Bulletin, 2019, 35(8): 127-137. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||