Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (2): 224-235.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0661
Previous Articles Next Articles
XIAO Xiao-shuang1(), AN Xue-jiao1, YE Han-yuan1, WANG Lin-ping2, ZHONG Bin1, ZHANG Qing-hua1()
Received:
2020-05-28
Online:
2021-02-26
Published:
2021-02-26
Contact:
ZHANG Qing-hua
E-mail:1336367078@qq.com;zqh_net@163.com
XIAO Xiao-shuang, AN Xue-jiao, YE Han-yuan, WANG Lin-ping, ZHONG Bin, ZHANG Qing-hua. Research Progress on Microbial Degradation of Thiocyanate in Wastewater[J]. Biotechnology Bulletin, 2021, 37(2): 224-235.
分类依据 | 菌株类型 | 参考文献 |
---|---|---|
自养菌 | Thiobacillus thioparus、Paracoccus spp.、Thiobacillus denitrificans、Thiohalophilus thiocyanoxidans、Halothiobacillus spp.、Thioalkalivibrio paradoxus、Thioalkalivibrio thiocyanoxidans、Thioalkalivibrio thiocyanodenitrificans、T. denitrificans、T. thiocyanodenitrificans and Pseudomonas aeuginosa | [ |
异养菌 | Ralstonia、Sphingomonas、Klebsiella、Pseudomonas、Arthrobacter and Methylobacterium | [ |
混合营养菌 | Burkholderia phytofirmans | [ |
真菌 | Acremonium strictum、Schizophyllum commune、Polyporus arcularius、Ganoderma applanatum、Pleurotus eryngii、Clavariadelphus truncatus、Cerrena unicolor、Trametes versicolor、Ganoderma lucidum and Schizophyllum commune | [ |
分类依据 | 菌株类型 | 参考文献 |
---|---|---|
自养菌 | Thiobacillus thioparus、Paracoccus spp.、Thiobacillus denitrificans、Thiohalophilus thiocyanoxidans、Halothiobacillus spp.、Thioalkalivibrio paradoxus、Thioalkalivibrio thiocyanoxidans、Thioalkalivibrio thiocyanodenitrificans、T. denitrificans、T. thiocyanodenitrificans and Pseudomonas aeuginosa | [ |
异养菌 | Ralstonia、Sphingomonas、Klebsiella、Pseudomonas、Arthrobacter and Methylobacterium | [ |
混合营养菌 | Burkholderia phytofirmans | [ |
真菌 | Acremonium strictum、Schizophyllum commune、Polyporus arcularius、Ganoderma applanatum、Pleurotus eryngii、Clavariadelphus truncatus、Cerrena unicolor、Trametes versicolor、Ganoderma lucidum and Schizophyllum commune | [ |
影响因素 | 影响原因 | 参考文献 |
---|---|---|
温度 | 温度的降低和升高会影响微生物的生长、代谢和繁殖以及SCNase的活性 | [ |
pH | pH的过低和过高会影响微生物的生长、代谢和繁殖以及SCNase的活性 | [ |
溶解氧 | 好氧微生物需要高浓度的溶解氧,厌氧微生物则需要低浓度的溶解氧 | [ |
硫氰酸盐浓度 | 硫氰酸盐浓度过高会出现底物抑制 | [ |
无机盐 | 无机盐是微生物生长、代谢和繁殖过程所必需的 | [ |
外加营养物质(C源或N源) | 有些微生物单一利用硫氰酸盐中的碳源或者氮源,这就需要相对应的补充氮源或碳源 | [ |
代谢产物浓度 | 产物浓度过高会抑制微生物降解硫氰酸盐 | [ |
影响因素 | 影响原因 | 参考文献 |
---|---|---|
温度 | 温度的降低和升高会影响微生物的生长、代谢和繁殖以及SCNase的活性 | [ |
pH | pH的过低和过高会影响微生物的生长、代谢和繁殖以及SCNase的活性 | [ |
溶解氧 | 好氧微生物需要高浓度的溶解氧,厌氧微生物则需要低浓度的溶解氧 | [ |
硫氰酸盐浓度 | 硫氰酸盐浓度过高会出现底物抑制 | [ |
无机盐 | 无机盐是微生物生长、代谢和繁殖过程所必需的 | [ |
外加营养物质(C源或N源) | 有些微生物单一利用硫氰酸盐中的碳源或者氮源,这就需要相对应的补充氮源或碳源 | [ |
代谢产物浓度 | 产物浓度过高会抑制微生物降解硫氰酸盐 | [ |
[1] | Budaev SL, Batoeva AA, Tsybikoya BA. Degradation of thiocyanate in aqueous solution by persulfate activated ferric ion[J]. Minerals Engineering, 2015,81:88-95. |
[2] | Gould WD, King M, Mohapatra BR, et al. A critical review on destruction of thiocyanate in mining effluents[J]. Minerals Engineering, 2012,34:38-47. |
[3] |
Watts MP, Gan HM, Peng LY, et al. In situ stimulation of thiocyanate biodegradation through phosphate amendment in gold mine tailings water[J]. Environmental Science & Technology, 2017,51:13353-13362.
URL pmid: 29064247 |
[4] | 张玉秀, 尹莉, 李海波, 等. 焦化废水处理厂活性污泥对硫氰化物的降解机制[J]. 环境化学, 2016,35(1):118-124. |
Zhang YX, Yin L, Li HB, et al. Biodegradation mechanism of thiocyanate by activated sludge from coking wastewater treatment plant[J]. Environmental Chemistry, 2016,35(1):118-124. | |
[5] |
Alessandro B, Victor W, Maciej SK, et al. Ammonia, thiocyanate, and cyanate removal in an aerobic up-flow submerged attached growth reactor treating gold mine wastewater[J]. Chemosphere, 2020,243:125395.
doi: 10.1016/j.chemosphere.2019.125395 URL pmid: 31765897 |
[6] | Guamán Guadalima MP, Nieto Monteros DA. Evaluation of the rotational speed and carbon source on the biological removal of free cyanide present on gold mine wastewater, using a rotating biological contactor[J]. Journal of Water Process Engineering, 2018,23:84-90. |
[7] | 邱陆明, 刘影, 张宇, 等. 印染废水中极高质量浓度氰化物处理试验研究[J]. 黄金, 2018,39(3):71-73, 76. |
Qiu LM, Liu Y, Zhang Y, et al. Experimental study on the treatment of extremely high mass concentration cyanide in printing and dyeing wastewater[J]. Gold, 2018,39(3):71-73, 76. | |
[8] | Raper E, Fisher R, Anderson DR, et al. Nitrogen removal from coke making wastewater through a pre-denitrification activated sludge process[J]. Science of the Total Environment, 2019,666:31-38. |
[9] | Pan JX, Ma JD, Wu HZ, et al. Simultaneous removal of thiocyanate and nitrogen from wastewater by autotrophic denitritation process[J]. Bioresource Technology, 2018,267:30-37. |
[10] |
Pan JX, Wei CH, Fu BB, et al. Simultaneous nitrite and ammonium production in an autotrophic partial denitrification and ammonification of wastewaters containing thiocyanate[J]. Bioresource Technology, 2018,252:20-27.
doi: 10.1016/j.biortech.2017.12.059 URL pmid: 29306125 |
[11] |
Eleanor R, Tom S, Raymond F, et al. Characterisation of thiocyanate degradation in a mixed culture activated sludge process treating coke wastewater[J]. Bioresource Technology, 2019,288:121524.
doi: 10.1016/j.biortech.2019.121524 URL pmid: 31154279 |
[12] |
Oshiki M, Masuda Y, Yamaguchi T, et al. Synergistic inhibition of anaerobic ammonium oxidation(anammox)activity by phenol and thiocyanate[J]. Chemosphere, 2018,213:498-506.
doi: 10.1016/j.chemosphere.2018.09.055 URL pmid: 30245226 |
[13] | Sharma VK, Yngard RA, Cabelli DE, et al. Ferrate(VI)and ferrate(V)oxidation of cyanide, thiocyanate, and copper(I)cyanide[J]. Radiation Physics and Chemistry, 2008,77(6):761-767. |
[14] |
Oulego P, Collado S, Garrido L, et al. Wet oxidation of real coke wastewater containing high thiocyanate concentration[J]. Journal of Environmental Management, 2014,132:16-23.
doi: 10.1016/j.jenvman.2013.10.011 URL pmid: 24269931 |
[15] | Ding J. Recovery gold cyanide using inheretly conducing polymers[J]. Polymer International, 2003,52(1):51-55. |
[16] | 刘二博, 赵兵强, 张明亮, 等. 化学沉淀法脱除HPF脱硫废液中的硫氰酸盐[J]. 环境工程学报, 2016,10(3):1328-1332. |
Liu RB, Zhao BQ, Zhang ML, et al. Removal of thiocyanate from HPF desulfurization waste solution with chemical precipitation[J]. Chinese Journal of Environmental Engineering, 2016,10(3):1328-1332. | |
[17] |
Zaia DAM, de Carvalho PCG, Samulewski RB, et al. Unexpected thiocyanate adsorption onto ferrihydrite under prebiotic chemistry conditions[J]. Origins of Life and Evolution of the Biosphere, 2020,50:57-76.
doi: 10.1007/s11084-020-09594-w URL pmid: 32266585 |
[18] |
Vu HP, Moreau JW. Thiocyanate adsorption on ferrihydrite and its fate during ferrihydrite transformation to hematite and goethite[J]. Chemosphere, 2015,119:987-993.
doi: 10.1016/j.chemosphere.2014.09.019 URL pmid: 25303658 |
[19] | Wang J, Han Y, Li J, et al. Selective adsorption of thiocyanate anions using straw supported ion imprinted polymer prepared by surface imprinting technique combined with RAFT polymerization[J]. Separation and Purification Technology, 2017,177:62-70. |
[20] |
Xie F, Borowiec J, Zhang J. Synjournal of AgCl nanoparticles-loaded hydrotalcite as highly efficient adsorbent for removal of thiocyanate[J]. Chemical Engineering Journal, 2013,223:584-591.
doi: 10.1016/j.cej.2013.03.073 URL |
[21] |
Huddy RJ, Zyl AW, Hille RP, et al. Characterisation of the complex microbial community associated with the ASTERTM thiocyanate biodegradation system[J]. Minerals Engineering, 2015,76:65-71.
doi: 10.1016/j.mineng.2014.12.011 URL |
[22] | 陆洪宇, 孙亚全, 董春娟, 等. 焦化废水中COD、挥发酚和硫氰化物同步高效去除[J]. 环境工程学报, 2014,8(7):2848-2852. |
Lu HY, Sun YQ, Dong CJ, et al. Removal of COD, volatile phenol and thiocyanate from coking wastewater[J]. Chinese Journal of Environmental Engineering, 2014,8(7):2848-2852. | |
[23] | Shoji T, Sueoka K, Satoh H, et al. Identification of the microbial community responsible for thiocyanate and thiosulfate degradation in an activated sludge process[J]. Process Biochem, 2014,49(7):1176-1181. |
[24] |
Villemur R, Juteau P, Bougie V, Mnard J, et al. Development of four-stage moving bed biofilm reactor train with a pre-denitrification configuration for the removal of thiocyanate and cyanate[J]. Bioresource Technology, 2015,181:254-262.
doi: 10.1016/j.biortech.2015.01.051 URL pmid: 25656870 |
[25] |
Watts M, Moreau J. New insights into the genetic and metabolic diversity of thiocyanate-degrading microbial consortia[J]. Applied Microbiology and Biotechnology, 2016,100(3):1101-1108.
doi: 10.1007/s00253-015-7161-5 URL pmid: 26596573 |
[26] |
Mahendran R, Thandeeswaran M, Vijayasarathy M, et al. Microbial(Enzymatic)degradation of cyanide to produce pterins as cofactors[J]. Current Microbiology, 2020,77(4):578-587.
URL pmid: 31111225 |
[27] | Wynand A, Susan TL, Rober HP, et al. Determining an effective operating window for a thiocyanate-degrading mixed microbial community[J]. Journal of Environmental Chemical Engineering, 2017,5(1):660-666. |
[28] |
Watts MP, Spurr LP, Gan HM, et al. Characterization of an autotrophic bioreactor microbial consortium degrading thiocyanate[J]. Applied Microbiology and Biotechnology, 2017,101(14):5889-5901.
doi: 10.1007/s00253-017-8313-6 URL pmid: 28510801 |
[29] |
Watts MP, Spurr LP, Wick R, et al. Genome-resolved metagenomics of an autotrophic thiocyanate-remediating microbial bioreactor consortium[J]. Water Research, 2019,158:106-117.
doi: 10.1016/j.watres.2019.02.058 URL pmid: 31022528 |
[30] |
Oshiki M, Fukushima T, Kawano S, et al. Thiocyanate degradation by a highly enriched culture of the neutrophilic halophile Thiohalobacter sp. strain FOKN1 from activated sludge and genomic insights into thiocyanate metabolism[J]. Microbes and Environments, 2019,34(4):402-413.
doi: 10.1264/jsme2.ME19068 URL pmid: 31631078 |
[31] |
Mekuto L, Ntwampe SKO, Mudumbi JBN. Microbial communities associated with the co-metabolism of free cyanide and thiocyanate under alkaline conditions[J]. 3 Biotech, 2018,8(2):93.
doi: 10.1007/s13205-018-1124-3 URL pmid: 29430355 |
[32] | Rahman SF, Kantor RS, Huddy R, et al. Genome-resolved metagenomics of a bioremediation system for degradation of thiocyanate in mine water containing suspended solid tailings[J]. Microbiology Open, 2017,6(3):e00446. |
[33] | Kelly DP, Wood AP. Confirmation of Thiobacillus denitrificans as a species of the genus Thiobacillus, in the β-subclass of the Proteobacteria, with strain NCIMB 9548 as the type strain[J]. International Journal of Systematic and Evolutionary Microbiology, 2000,50(2):547-550. |
[34] |
Beller HR, Chain PSG, Letain TE, et al. The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans[J]. Journal of Bacteriology, 2006,188(4):1473-1488.
doi: 10.1128/JB.188.4.1473-1488.2006 URL pmid: 16452431 |
[35] | Bezsudnova EY, Sorokin DY, Tikhonova TV, et al. Thiocyanate hydrolase, the primary enzyme initiating thiocyanate degradation in the novel obligately chemolithoautotrophic halophilic sulfur-oxidizing bacterium Thiohalophilus thiocyanoxidans[J]. Biochimica et Biophysica Acta, Proteins and Proteomics, 2008,1774(12):1563-1570. |
[36] | Sorokin DY, Abbas B, Zessen E, et al. Isolation and characterization of an obligately chemolithoautotrophic Halothiobacillus strain capable of growth on thiocyanate as an energy source[J]. FEMS Microbiogy Letters, 2014,354(1):69-74. |
[37] | Sorokin DY, Tourova TP, Lysenko AM, et al. Thioalkalivibrio thiocyanoxidans sp. nov. and Thioalkalivibrio paradoxus sp. nov. , novel alkaliphilic, obligately autotrophic, sulfur-oxidizing bacteria capable of growth on thiocyanate, from soda lakes[J]. International Journal of Systematic and Evolutionary Microbiology, 2002,52(2):657-664. |
[38] | Sorokin DY, Tourova TP, Antipov AN, et al. Anaerobic growth of the haloalkaliphilic denitrifying sulfur-oxidizing bacterium Thialkalivibrio thiocyanodenitrificans sp. nov. with thiocyanate[J]. Microbiology, 2004,150(7):2435-2442. |
[39] | Via MJJ, Fernandez PB, Fernandez MC, et al. Photochemical degradation of cyanides and thiocyanates from an industrial wastewater[J]. Molecules, 2019,24(7):1373. |
[40] |
Siraporn P, Nootjalee S, Rattana T. Development of a mixed microbial culture for thiocyanate and metal cyanide degradation[J]. 3 Biotech, 2017,7(3):191.
URL pmid: 28664381 |
[41] |
Sorokin DY, Tourova TP, Lysenko AM, et al. Microbial thiocyanate utilization under highly alkaline conditions[J]. Appl Environ Microbiol, 2001,67(2):528-538.
doi: 10.1128/AEM.67.2.528-538.2001 URL pmid: 11157213 |
[42] |
Spurr LP, Watts MP, Gan HM, et al. Biodegradation of thiocyanate by a native groundwater microbial consortium[J]. PeerJ, 2019,7:e6498.
doi: 10.7717/peerj.6498 URL pmid: 30941266 |
[43] |
Plessis C, Barnard P, Muhlbauer R, et al. Empirical model for the autotrophic biodegradation of thiocyanate in an activated sludge reactor[J]. Letters in Applied Microbiology, 2001,32(2):103-107.
doi: 10.1046/j.1472-765x.2001.00859.x URL pmid: 11169052 |
[44] |
Lee C, Kim J, Chang J, et al. Isolation and identification of thiocyanate utilizing chemolithotrophs from gold mine soils[J]. Biodegradation, 2003,14(3):183-188.
doi: 10.1023/a:1024256932414 URL pmid: 12889608 |
[45] | Vu HP, Moreau JW. Effects of environmental parameters on thiocyanate biodegradation by Burkholderia phytofirmans candidate strain ST01hv[J]. Environmental Engineering Science, 2018,35(1):62-66. |
[46] |
Irina K, Halevy I, Alexey KJ. Kinetics of decomposition of thiocyanate in natural aquatic systems[J]. Environmental Science & Technology, 2018,52(3):1234-1243.
URL pmid: 29283564 |
[47] | Lukhanyo M, Kim YM, Maxwell MN, et al. Heterotrophic nitrification-aerobic denitrification potential of cyanide and thiocyanate degrading microbial communities under cyanogenic conditions[J]. Environmental Engineering Research, 2019,24(2):254-262. |
[48] |
Kim J, Cho KJ, Han G, et al. Effects of temperature and pH on the biokinetic properties of thiocyanate biodegradation under autotrophic conditions[J]. Water Research, 2013,47(1):251-258.
doi: 10.1016/j.watres.2012.10.003 URL pmid: 23137831 |
[49] |
Lukhanyo M, Seteno KON, Margaret K, et al. Free cyanide and thiocyanate biodegradation by Pseudomonas aeruginosa STK 03 capable of heterotrophic nitrification under alkaline conditions[J]. 3 Biotech, 2016,6(1):6.
doi: 10.1007/s13205-015-0317-2 URL pmid: 28330076 |
[50] | Vu H, Mu A, Moreau J. Biodegradation of thiocyanate by a novel strain of burkholderia phytofirmans from soil contaminated by gold mine tailings[J]. Letters in Applied Microbiology, 2013,57(4):368-372. |
[51] | Kwon HK, Woo SH, Park JM. Thiocyanate degradation by Acremonium strictum and inhibition by secondary toxicants[J]. Biotechnology Letters, 2002,24(16):1347-1351. |
[52] |
Ozel YK, Gedikli S, Aytar P, et al. New fungal biomasses for cyanide biodegradation[J]. Journal of Bioscience and Bioengineering, 2010,110(4):431-435.
doi: 10.1016/j.jbiosc.2010.04.011 URL pmid: 20547364 |
[53] |
Ryu BG, Kim W, Nam K, et al. A comprehensive study on algal-bacterial communities shift during thiocyanate degradation in a microalga-mediated process[J]. Bioresource Technology, 2015,191:496-504.
doi: 10.1016/j.biortech.2015.03.136 URL pmid: 25911193 |
[54] |
Kantor RS, van Zyl AW, van Hille RP, et al. Bioreactor microbial ecosystems for thiocyanate and cyanide degradation unravelled with genome-resolved metagenomics[J]. Environmental Microbiology, 2015,17(12):4929-4941.
doi: 10.1111/1462-2920.12936 URL pmid: 26031303 |
[55] | Stott MB, Franzmann PD, Zappia LR. Thiocyanate removal from saline CIP process water by a rotating biological contactor, with reuse of the water for bioleaching[J]. Hydrometallurgy, 2001,62(2):93-105. |
[56] |
Chaudhari AU, Kodam KM. Biodegradation of thiocyanate using co-culture of Klebsiella pneumoniae and Ralstonia sp.[J]. Applied Microbiology and Biotechnology, 2010,85(4):1167-1174.
URL pmid: 19838695 |
[57] |
Dev JR, Zhang Y, Gao YX, et al. Biotransformation of nitrogen- and sulfur-containing pollutants during coking wastewater treatment:Correspondence of performance to microbial community functional structure[J]. Water Research, 2017,121:338-348.
doi: 10.1016/j.watres.2017.05.045 URL pmid: 28570873 |
[58] |
Hussain A, Ogawa T, Saito M, et al. Cloning and expression of a gene encoding a novel thermostable thiocyanate-degrading enzyme from a mesophilic alphaproteobacteria strain THI201[J]. Microbiology, 2013,159:2294-2302.
doi: 10.1099/mic.0.063339-0 URL pmid: 24002749 |
[59] |
Tamas F, Anna SJ, Robert G. Polyphasic bacterial community analysis of an aerobic activated sludge removing phenols and thiocyanate from coke plant effluent[J]. Bioresource Technology, 2010,101(10):3406-3414.
doi: 10.1016/j.biortech.2009.12.053 URL pmid: 20093025 |
[60] | Grigor’eva NV, Kondrat’eva TF, Krasil’nikova EN, et al. Mecha-nism of cyanide and thiocyanate decomposition by an association of Pseudomonas putida and Pseudomonas stutzeri strains[J]. Microbiology, 2006,75(3):266-273. |
[61] |
Palatinszky M, Herbold C, Jehmlich N, et al. Cyanate as an energy source for nitrifiers[J]. Nature, 2015,524(7563):105-108.
doi: 10.1038/nature14856 URL pmid: 26222031 |
[62] |
Kim SW, Fushinobu S, Zhou S. et al. Genes encoding copper-containing nitrite reductase:Originating from the protomitochondrion[J]. Applied and Environmental Microbiology, 2009,75(9):2652-2658.
doi: 10.1128/AEM.02536-08 URL pmid: 19270125 |
[63] | Cameron1 S, Paul L. Thiocyanate degradation during activated sludge treatment of coke-ovens wastewater[J]. Biochemical Engineering Journal, 2007,34(2):122-130. |
[64] |
Berben T, Balkema C, Sorokin DY, et al. Analysis of the genes involved in thiocyanate oxidation during growth in continuous culture of the haloalkaliphilic sulfur-oxidizing bacterium Thioalkalivibrio thiocyanoxidans ARh 2T using transcriptomics[J]. Msystems, 2017, 2(6): e00102-17.
URL pmid: 29285524 |
[65] | Mekuto L, Ntwampe SKO, Mudumbi JBN, et al. Metagenomic data of free cyanide and thiocyanate degrading bacterial communities[J]. Data In Brief, 2017,13(1):738-741. |
[66] |
Kantor RS, Huddy RJ, Iyer R, et al. Genome-resolved meta-omics ties microbial dynamics to process performance in biotechnology for thiocyanate degradation[J]. Environmental Science & Technology, 2017,51(5):2944-2953.
doi: 10.1021/acs.est.6b04477 URL pmid: 28139919 |
[67] | Robert J. Huddy RK, Wynand RP, et al. Analysis of the microbial community associated with a bioprocess system for bioremediation of thiocyanate- and cyanide-laden mine water effluents[J]. Advanced Materials Research, 2015,1130:614-617. |
[68] |
Takahiro O, Keiichi N, Masahiko S, et al. Carbonyl sulfide hydrolase from Thiobacillus thioparus strain THI115 is one of the β-carbonic anhydrase family enzymes[J]. Journal of the American Chemical Society, 2013,135(10):3818-3825.
URL pmid: 23406161 |
[69] |
Chen X, Yang L, Sun J, et al. Modelling of simultaneous nitrogen and thiocyanate removal through coupling thiocyanate-based denitrification with anaerobic ammonium oxidation[J]. Environmental Pollution, 2019,253:974-980.
URL pmid: 31352189 |
[70] |
Rashad K, Omar1 AZ. Expression of the cyanobacterial enzyme cyanase increases cyanate metabolism and cyanate tolerance in Arabidopsis[J]. Environmental Science & Pollution Research, 2017,24(12):11825-11835.
URL pmid: 28343358 |
[71] |
Zarlenga DS, Mitreva M, Thompson P, et al. A tale of three kingdoms:members of the Phylum Nematoda independently acquired the detoxifying enzyme cyanase through horizontal gene transfer from plants and bacteria[J]. Parasitology, 2019,146(4):445-452.
doi: 10.1017/S0031182018001701 URL pmid: 30301483 |
[72] |
Mekuto L, Alegbeleye OO, Ntwampe SKO, et al. Co-metabolism of thiocyanate and free cyanide by Exiguobacterium acetylicum and Bacillus marisflavi under alkaline conditions[J]. 3 Biotech, 2016,6(2):173.
doi: 10.1007/s13205-016-0491-x URL pmid: 28330245 |
[73] |
Stratford J, Dias AEXO, Knowles CJ. The utilization of thiocyanate as a nitrogen source by a heterotrophic bacterium:the degradative pathway involves formation of ammonia and tetrathionate[J]. Microbiology, 1994,140:2657-2662.
URL pmid: 8000536 |
[74] |
Fux C, Velten S, Carozzi V, et al. Efficient and stable nitritation and denitritation of ammonium-rich sludge dewatering liquor using an SBR with continuous loading[J]. Water research, 2006,40(14):2765-2775.
doi: 10.1016/j.watres.2006.05.003 URL pmid: 16815527 |
[75] |
Schaubroeck T, De CH, Weissenbacher N, et al. Environmental sustainability of an energy self-sufficient sewage treatment plant:improvements through DEMON and co-digestion[J]. Water Research, 2015,74:166-179.
doi: 10.1016/j.watres.2015.02.013 URL pmid: 25727156 |
[76] |
Broman E, Jawad A, Wu XF, et al. Low temperature, autotrophic microbial denitrification using thiosulfate or thiocyanate as electron donor[J]. Biodegradation, 2017,28(4):287-301.
doi: 10.1007/s10532-017-9796-7 URL pmid: 28577026 |
[77] |
Chung J, Amin K, Kim S, et al. Autotrophic denitrification of nitrate and nitrite using thiosulfate as an electron donor[J]. Water Research, 2014,58:169-178.
doi: 10.1016/j.watres.2014.03.071 URL pmid: 24755301 |
[78] |
Li P, Wang YJ, Zuo J. Nitrogen removal and N2O accumulation during hydrogenotrophic denitrification:Influence of environmental factors and microbial community characteristics[J]. Environmental Science & Technology, 2017,51(2):870-879.
doi: 10.1021/acs.est.6b00071 URL |
[79] |
Ramos C, Suarez-Ojeda ME, Carrera J. Denitritation in an anoxic granular reactor using phenol as sole organic carbon source[J]. Chemical Engineering Journal, 2016,288:289-297.
doi: 10.1016/j.cej.2015.11.099 URL |
[80] |
Pan JX, Ma JD, Wu HZ, et al. Application of metabolic division of labor in simultaneous removal of nitrogen and thiocyanate from wastewater[J]. Water Research, 2019,150:216-224.
URL pmid: 30528918 |
[81] | Fan C, Guo CL, Zhang JH, et al. Thiocyanate-induced labilization of schwertmannite:Impacts and mechanisms[J]. Journal of Environmental Sciences, 2019,80(6):218-228. |
[1] | YUAN Ye, ZHOU Jia, QU Jian-hang, ZHANG Bo-yuan, LUO Yu, LI Hai-feng. Screening of an Efficient Denitrifying Phosphorus-accumulating Bacterium and Its Denitrification and Phosphorus Removal [J]. Biotechnology Bulletin, 2023, 39(7): 266-276. |
[2] | ZHANG Yu-hong, DONG Xian-bo, LIU Xiang-yu, XU Jia-qi, XU Zi-ling. Isolation of a Novel Heterotrophic Nitrification-Aerobic Denitrification Bacterium Paracoccus sp. QD-19 and Its Characterization of Removing Nitrogen [J]. Biotechnology Bulletin, 2023, 39(3): 301-310. |
[3] | GAO Yu-xuan, JIN Jing-chen, XU Li-shan, GAO Ya-Juan, ZHANG Wen-tian, LI Chen-chen, ZHANG Guo-wei, JIN Yong-sheng. Isolation of Halophilic Heterotrophic Nitrification-aerobic Denitrification Bacterium Bacillus megatherium N07 and Its Denitrification Characteristics [J]. Biotechnology Bulletin, 2022, 38(7): 247-257. |
[4] | WANG Ya-jun, SI Yun-mei. Screening and Degradation Characteristics of a CP-7 Strain of Dephosphorization Bacteria [J]. Biotechnology Bulletin, 2022, 38(7): 258-268. |
[5] | MA Qing-yun, JIANG Xu, LI Qing-qing, SONG Jin-long, ZHOU Yi-qing, RUAN Zhi-yong. Isolation and Identification of Nicosulfuron Degrading Strain Chryseobacterium sp. LAM-M5 and Study on Its Degradation Pathway [J]. Biotechnology Bulletin, 2022, 38(2): 113-122. |
[6] | NIU Hong-yu, SHU Qian, YANG Hai-jun, YAN Zhi-yong, TAN Ju. Isolation, Identification, Degradation Characteristics and Metabolic Pathway of an Efficient Sodium Dodecyl Sulfate-degrading Bacterium [J]. Biotechnology Bulletin, 2022, 38(12): 287-299. |
[7] | DING Li, ZENG Ping, CHENG Lu-yao, SONG Yong-hui, Hu Li-na. Optimization of a Strain of Microbe Degrading α-phenylethylamine and Its Optimal Growth Conditions [J]. Biotechnology Bulletin, 2021, 37(3): 65-74. |
[8] | SUN Kai, CHEN Zheng-jie, WANG Deng-yang, SHU Ru-yu, WU Ji, WEI Fan. Removal of Bisphenol A in Wastewater by Immobilized Laccase [J]. Biotechnology Bulletin, 2020, 36(12): 188-198. |
[9] | WU Xue-ling, ZHOU Xiang-yu, WU Xiao-yan, LUO Kui, GU Yi-chao, ZHOU Han, LIAO Wan-qing, ZENG Wei-min. Construction of Tetracycline-degrading Bacterial Co-culture System and Community Analysis of Wastewater Remediation [J]. Biotechnology Bulletin, 2020, 36(10): 116-126. |
[10] | LIU Chang-rong, ZHANG Feng-li, LI Zhi-yong. Immobilization of Marine Urease and Its Utilization in the Treatment of Urea Wastewater [J]. Biotechnology Bulletin, 2019, 35(9): 75-82. |
[11] | WANG Ya-ni, SONG Jin-long, HAN Gang, MU Ying-chun, JIANG Xu, WANG Jin-yao, RUAN Zhi-yong, LI Le. Analysis of Diversity of Malachite Green-degrading Microbial Community and Degradation Characteristics of Efficiently-degrading Bacteria [J]. Biotechnology Bulletin, 2019, 35(9): 150-155. |
[12] | LIU Na, LIU Zhi-min, SONG Dong-hui. Degradation Characteristics of Catechol and Sodium Benzoate by a Petroleum-degrading Bacterium [J]. Biotechnology Bulletin, 2019, 35(9): 156-164. |
[13] | ZHAO Jie, YUE Hua, GOU Xue-lei, ZHOU Jin-yan, TAN Hong. Analysis of Free Amino Acids During Fermentation of Iturin A by High Performance Liquid Chromatography [J]. Biotechnology Bulletin, 2018, 34(8): 151-158. |
[14] | MA Hao-tian, LI Run-zhi, ZHANG Hong-jiang, HANG Wei, CUI Hong-li. Research Progress on the Treatment of Wastewater from Poultry and Livestock Breeding Based on the Microalgae Cultivation [J]. Biotechnology Bulletin, 2018, 34(11): 83-90. |
[15] | QIAO Neng-hu, ZHANG Jing-jing, LIU De-jian, TANG Xiao-sheng, XI Li-jun, LIU Jian-guo. Study On the Degradation and Mechanism of Phenolic Compounds by the Thauera sp. K11 [J]. Biotechnology Bulletin, 2017, 33(10): 184-190. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||