Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (3): 35-43.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0852
Previous Articles Next Articles
LI Xin-yue(), ZHANG Jin-fang, XU Xiao-jian, LU Fu-ping, LI Yu()
Received:
2020-07-11
Online:
2021-03-26
Published:
2021-04-02
Contact:
LI Yu
E-mail:lixinyue941@126.com;liyu@tust.edu.cn
LI Xin-yue, ZHANG Jin-fang, XU Xiao-jian, LU Fu-ping, LI Yu. Effects of Spore Formation Related Gene Deletion on Biomass and Extracellular Enzyme Expression of Bacillus amyloliquefaciens[J]. Biotechnology Bulletin, 2021, 37(3): 35-43.
菌株/质粒 | 特征/目的 | 来源 | |
---|---|---|---|
菌株 | E.coli JM109 | 敲除载体构建 | 中国科学院 |
E.coli EC135 pM.Bam | 对质粒DNA进行甲基化修饰 | 中国科学院 | |
B.amyloliquefaciens TCCC111018Δupp(BA Δupp) | 出发菌株 | 本研究 | |
B.amyloliquefaciens TCCC111018Δspo0A(BA Δspo0A) | spo0A 基因敲除 | 本研究 | |
B.amyloliquefaciens TCCC111018ΔsigE(BA ΔsigE) | sig E基因敲除 | 本研究 | |
B.amyloliquefaciens TCCC111018ΔsigF(BA ΔsigF) | sigF 基因敲除 | 本研究 | |
质粒 | pWH-T2 | 穿梭表达载体 | 湖北大学 |
pWH-T2-Δspo0A | 敲除载体,spo0A基因敲除 | 本研究 | |
pWH-T2-ΔsigE | 敲除载体,sigE 基因敲除 | 本研究 | |
pWH-T2-ΔsigF | 敲除载体,sigF 基因敲除 | 本研究 | |
pLY-1 | 耐酸性α-淀粉酶表达载体 | 本实验室 | |
pLY-2 | 碱性蛋白酶表达载体 | 本实验室 |
菌株/质粒 | 特征/目的 | 来源 | |
---|---|---|---|
菌株 | E.coli JM109 | 敲除载体构建 | 中国科学院 |
E.coli EC135 pM.Bam | 对质粒DNA进行甲基化修饰 | 中国科学院 | |
B.amyloliquefaciens TCCC111018Δupp(BA Δupp) | 出发菌株 | 本研究 | |
B.amyloliquefaciens TCCC111018Δspo0A(BA Δspo0A) | spo0A 基因敲除 | 本研究 | |
B.amyloliquefaciens TCCC111018ΔsigE(BA ΔsigE) | sig E基因敲除 | 本研究 | |
B.amyloliquefaciens TCCC111018ΔsigF(BA ΔsigF) | sigF 基因敲除 | 本研究 | |
质粒 | pWH-T2 | 穿梭表达载体 | 湖北大学 |
pWH-T2-Δspo0A | 敲除载体,spo0A基因敲除 | 本研究 | |
pWH-T2-ΔsigE | 敲除载体,sigE 基因敲除 | 本研究 | |
pWH-T2-ΔsigF | 敲除载体,sigF 基因敲除 | 本研究 | |
pLY-1 | 耐酸性α-淀粉酶表达载体 | 本实验室 | |
pLY-2 | 碱性蛋白酶表达载体 | 本实验室 |
引物名称 | 寡核苷酸序列 |
---|---|
上游同源臂 | F:CCACCGCGGTGGCGGCCGCTCTAGACGATCATCCAGAACGGGAAAG |
R:CCAATCTCAGATCAGCAACACAAACTTTAATTTTCTCCACG | |
下游同源臂 | F:TGTTGCTGATCTGAGATTGGAGCATAAAGCTTCATAACGC |
R:TTAACGAATTCCTGCAGCCCGGGAGAGTGACGATGGATATGATTATG | |
同源臂重叠PCR | F:CCACCGCGGTGGCGGCCGCTCTAGACGATCATCCAGAACGGGAAAG |
R:TTAACGAATTCCTGCAGCCCGGGAGAGTGACGATGGATATGATTATG | |
单交换验证(上游交换) | F:CCGCAAAAATTCCCGGCGAC |
R:AGAGTGACGATGGATATGATTATGGTCAGTTTG | |
单交换验证(下游交换) | F:CGATCATCCAGAACGGGAAAGTCG |
R:CACTCAGTTTAAAGGCGCGTATCGCTTATG | |
双交换验证 | F:CCGCAAAAATTCCCGGCGAC |
R:CACTCAGTTTAAAGGCGCGTATCGCTTATG |
引物名称 | 寡核苷酸序列 |
---|---|
上游同源臂 | F:CCACCGCGGTGGCGGCCGCTCTAGACGATCATCCAGAACGGGAAAG |
R:CCAATCTCAGATCAGCAACACAAACTTTAATTTTCTCCACG | |
下游同源臂 | F:TGTTGCTGATCTGAGATTGGAGCATAAAGCTTCATAACGC |
R:TTAACGAATTCCTGCAGCCCGGGAGAGTGACGATGGATATGATTATG | |
同源臂重叠PCR | F:CCACCGCGGTGGCGGCCGCTCTAGACGATCATCCAGAACGGGAAAG |
R:TTAACGAATTCCTGCAGCCCGGGAGAGTGACGATGGATATGATTATG | |
单交换验证(上游交换) | F:CCGCAAAAATTCCCGGCGAC |
R:AGAGTGACGATGGATATGATTATGGTCAGTTTG | |
单交换验证(下游交换) | F:CGATCATCCAGAACGGGAAAGTCG |
R:CACTCAGTTTAAAGGCGCGTATCGCTTATG | |
双交换验证 | F:CCGCAAAAATTCCCGGCGAC |
R:CACTCAGTTTAAAGGCGCGTATCGCTTATG |
基因名称 | 6 h-fpkm | 10 h-fpkm | 12 h-fpkm | 30 h-fpkm |
---|---|---|---|---|
spo0A | 582.56 | 511.54 | 658.06 | 1517.13 |
sigE | 4.97 | 30.06 | 9.21 | 0.93 |
sigF | 2380.91 | 4785.86 | 3287.31 | 1270.81 |
基因名称 | 6 h-fpkm | 10 h-fpkm | 12 h-fpkm | 30 h-fpkm |
---|---|---|---|---|
spo0A | 582.56 | 511.54 | 658.06 | 1517.13 |
sigE | 4.97 | 30.06 | 9.21 | 0.93 |
sigF | 2380.91 | 4785.86 | 3287.31 | 1270.81 |
[1] | 吴庆, 解淀粉芽胞杆菌胞苷代谢途径分析与高效基因敲除系统构建的研究[D]. 银川:宁夏大学, 2016. |
Wu Q, Study on metabolic pathway analysis of cytidine and construction of effective gene knockout system in Bacillus amyloliquefaciens[D]. Yinchuan:Ningxia University, 2016. | |
[2] | Gao W, Liu F, Zhang W, et al. Mutations in genes encoding antibiotic substances increase the synjournal of poly-γ-glutamic acid in Bacillus amyloliquefaciens LL3[J]. Microbiology Open, 2017,6(1):1-11. |
[3] |
Cai D, Rao Y, Zhan Y, et al. Engineering Bacillus for efficient production of heterologous protein:current progress, challenge and prospect[J]. J Appl Microbiol, 2019,126(6):1632-1642.
doi: 10.1111/jam.14192 URL pmid: 30609144 |
[4] |
Gao W, He Y, Zhang F, et al. Metabolic engineering of Bacillus amyloliquefaciens LL3 for enhanced poly-γ-glutamic acid synjournal[J]. Microbial Biotechnology, 2019,12(5):932-945.
doi: 10.1111/1751-7915.13446 URL pmid: 31219230 |
[5] |
Feng J, Quan Y, Gu Y, et al. Enhancing poly-γ-glutamic acid production in Bacillus amyloliquefaciens by introducing the glutamate synjournal features from Corynebacterium glutamicum[J]. Microbial Cell Factorie, 2017,16(1):1-12.
doi: 10.1186/s12934-016-0616-2 URL |
[6] | Feng J, Gu Y, Quan Y, et al. Recruiting a new strategy to improve levan production in Bacillus amyloliquefaciens[J]. Scientific Reports, 2015,5(1):1-12. |
[7] | 刘润泽, 王世伟, 王卿惠, 等. 解淀粉芽胞杆菌酶系及其应用研究进展[J]. 高师理科学刊, 2019,39(3):70-75. |
Liu RZ, Wang SW, Wang HQ, et al. Study advances in enzyme systems and their applications of Bacillus amyloliquefaciens[J]. Journal of Science of Teachers’College and University, 2019,39(3):70-75. | |
[8] | 王慧. 解淀粉芽胞杆菌k11高效表达体系的建立及其高效表达元件的优化[D]. 北京:中国农业科学院, 2018. |
Wang H. Establishment of the highly effective expression system in Bacillus amyloliquefaciens K11 and optimization of its efficient expression elements[D]. Beijing:Chinese Academy of Agricultural Sciences, 2018. | |
[9] | Arrieta-Ortiz ML, Hafemeister C, Bate AR, et al. An experimentally supported model of the Bacillus subtilis global transcriptional regulatory network[J]. Mol Syst Biol, 2015,11(11):1-17. |
[10] | 肖静, 王瑞明, 原梨萍. 芽胞形成相关基因spoⅡE在影响菌株生长及产酶中的应用:中国, 201810886538.5[P], 2018-12-04 |
Xiao J, Wang RM, Yuan LP. Application of sporulation-related gene spoIIE in affecting scale growth and enzyme production:China, 201810886538.5[P] 2018-12-04 | |
[11] |
Haggett L, Bhasin A, Srivastava P, et al. A revised model for the control of fatty acid synjournal by master regulator Spo0A in Bacillus subtilis[J]. Molecular Microbiology, 2018,108(4):424-442.
doi: 10.1111/mmi.13945 URL pmid: 29488667 |
[12] |
Ara K, Ozaki K, Nakamura K, et al. Bacillus minimum genome factory:effective utilization of microbial genome information[J]. Biotechnology and Applied Biochemistry, 2007,46(3):169-178.
doi: 10.1042/BA20060111 URL |
[13] |
Seo S, Wang Y, Lu T, et al. Characterization of a Clostridium beijerinckii spo0A mutant and its application for butyl butyrate production[J]. Biotechnology and Bioengineering, 2017,114(1):106-112.
doi: 10.1002/bit.26057 URL pmid: 27474812 |
[14] |
Kodama T, Endo K, Ara K, et al. Effect of Bacillus subtilis spo0A mutation on cell wall lytic enzymes and extracellular proteases, and prevention of cell lysis[J]. Journal of Bioscience and Bioengineering, 2007,103(1):13-21.
URL pmid: 17298895 |
[15] |
Gupta M, Dixit M, Rao KK. Spo0A positively regulates epr expression by negating the repressive effect of co-repressors, SinR and ScoC, in Bacillus subtilis[J]. J Biosci, 2013,38(2):291-299.
doi: 10.1007/s12038-013-9309-8 URL pmid: 23660663 |
[16] | 张群. spo0A基因突变对解淀粉芽胞杆菌PEBA20生物膜和抑菌活性的影响[D]. 泰安:山东农业大学, 2014. |
Zhang Q. Effect of spo0A gene mutation on the biofilm and antibacterial activity of Bacillus amyloliquefaciens PEBA20[D]. Taian:Shandong Agricultural University, 2014. | |
[17] | 周习旺. spo0A基因缺失对克劳氏芽胞杆菌发酵性能的影响[D]. 济南:齐鲁工业大学, 2017. |
Zhou XW. Effect on fermentation performance of Bacillus clausii by spo0A genetic deletion[D]. Ji’nan:Qilu University of Technology, 2017. | |
[18] |
Barak I, Muchova K, Labajova N. Asymmetric cell division during Bacillus subtilis sporulation[J]. Future Microbiol, 2019,14:353-363.
URL pmid: 30855188 |
[19] | 张虎. 芽胞缺失型地衣芽胞杆菌自溶基因敲除的研究[D]. 济南:齐鲁工业大学, 2019. |
Zhang H. Study on autolysis gene knockout of Bacillus licheniformis with spore deficiency[D]. Ji’nan:Qilu University of Technology, 2019. | |
[20] | Overkamp W, Kuipers OP. Transcriptional profile of Bacillus subtilis sigF-mutant during vegetative growth[J]. PLoS One, 2015,10(10):1-12. |
[21] | 洪一平, 王东澍, 吕宇飞, 等. 炭疽芽胞杆菌sigF缺失株的构建及其对芽胞形成的影响[J]. 军事医学, 2017,41(3):199-204. |
Hong YP, Wang DZ, Lv YF, et al. Construction of sigF deletion mutant of Bacillus anthracis and its effect on formation of spores[J]. Mil Med Sci, 2017,41(3):199-204. | |
[22] | Omony J, de Jong A, Krawczyk A O, et al. Dynamic sporulation gene co-expression networks for Bacillus subtilis 168 and the food-borne isolate Bacillus amyloliquefaciens:a transcriptomic model[J]. Microbial Genomics, 2018,4(2):1-13. |
[23] |
Zhang K, Duan X, Wu J. Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system[J]. Scientific Reports, 2016,6(1):1-11.
doi: 10.1038/s41598-016-0001-8 URL pmid: 28442746 |
[24] | 张虎, 肖静, 原梨萍, 等. spollE基因缺失对克劳氏芽胞杆菌淀粉酶酶活的影响[J]. 食品工业科技, 2019,40(1):131-135. |
Zhang H, Xiao J, Yuan LP, et al. Effect of spollE Genedeletion on amylase activity in Bacillus clausii[J]. Science and Technology of Food Industry, 2019,40(1):131-135. | |
[25] |
Zhou C, Zhou H, Zhang H, et al. Optimization of alkaline protease production by rational deletion of sporulation related genes in Bacillus licheniformis[J]. Microbial Cell Factories, 2019,18(127):1-12.
doi: 10.1186/s12934-018-1049-x URL |
[26] |
Tännler S, Decasper S, Sauer U. Maintenance metabolism and carbon fluxes in Bacillus species[J]. Microbial Cell Factories, 2008,19(7):1-13.
doi: 10.1186/s12934-019-1269-8 URL |
[27] |
Hümpel A, Gebhard S, Cook GM, et al. The SigF regulon in mycobacterium smegmatis reveals roles in adaptation to stationary phase, heat, and oxidative stress[J]. Journal of Bacteriology, 2010,192(10):2491-2502.
URL pmid: 20233930 |
[28] | Shen Y, Shaw G. A membrane transporter required for 3-hydroxybutyrate uptake during the early sporulation stage in Bacillus subtilis[J]. FEMS Microbiology Letters, 2015,362(19):165. |
[29] | Peng Q, Wu J, Chen X, et al. Disruption of two-component system LytSR affects forespore engulfment in Bacillus thuringiensis[J]. Frontiers in Cellular and Infection Microbiology, 2017,7(468):1-11. |
[30] |
Singh AK, Dutta D, Singh V, et al. Characterization of Mycobacterium smegmatis sigF mutant and its regulon:overexpression of SigF antagonist(MSMEG_1803)in M. smegmatis mimics sigF mutant phenotype, loss of pigmentation, and sensitivity to oxidative stress[J]. Microbiology Open, 2015,4(6):896-916.
URL pmid: 26434659 |
[31] | Sambrook J, Russell DW. Molecular cloning. laboratory manual[M]. Third Edition ed. New York: Cold Spring Harbor Laboratory Press, 2001. |
[32] | 叶棋浓. 现代分子生物学技术及实验技巧[M]. 北京: 化学工业出版社, 2015. |
Ye QN. Current molecular biology technologies and tips[M]. Beijing: Chemical Industry Press, 2015. | |
[33] |
Zhou C, Liu H, Yuan F, et al. Development and application of a CRISPR/Cas9 system for Bacillus licheniformis genome editing[J]. International Journal of Biological Macromolecules, 2019,122:329-337.
doi: 10.1016/j.ijbiomac.2018.10.170 URL pmid: 30401651 |
[34] | 张伟. 解淀粉芽胞杆菌LL3中无痕基因敲除方法的建立及其应用研究[D]. 天津:南开大学, 2015. |
Zhang W. Development of a markerless gene replacment method and its applications in Bacillus amyloliquefaciens LL3[D]. Tianjin:Nankai University, 2015. | |
[35] | 李海娟. 双交换同源重组法构建Thermus thermophilus基因无痕敲除突变体[J]. 湖南农业大学学报:自然科学版, 2019,45(2):143-148. |
Li HJ. Construction of gene clean deletion mutants in Thermus thermophilus by the method of double-crossover homologous recombination[J]. Journal of Hunan Agricultural University:Natural Sciences, 2019,45(2):143-148. | |
[36] | 国家标准化管理委员会. GB 4789. 35-2016, 食品微生物学检验乳酸菌检验[S]. 2016-12-23. |
Standardization Administration of the People’s Republic of China. GB 4789. 35-2016, Food microbiology inspection lactic acid bacteria test[S]. 2016-12-23. | |
[37] | 国家标准化管理委员会. GB/T 24401-2009, α-淀粉酶制剂[S]. 2009-09-30. |
Standardization Administration of the People’s Republic of China. GB/T 24401-2009, Alpha-amylase preparations[S]. 2009-09-30. | |
[38] | 国家标准化管理委员会. GB/T 23527-2009, 蛋白酶制剂[S]. 2009-04-27. |
Standardization Administration of the People’s Republic of China. GB/T 23527-2009, Protease preparations[S]. 2009-04-27. | |
[39] |
Chary VK, Xenopoulos P, Eldar A, et al. Loss of compartmentalization of σE activity need not prevent formation of spores by Bacillus subtilis[J]. Journal of Bacteriology, 2010,192(21):5616-5624.
doi: 10.1128/JB.00572-10 URL pmid: 20802044 |
[40] | 李欣. 枯草芽胞杆菌芽胞形成阻断及碳流调控对乙偶姻合成的影响[D]. 无锡:江南大学, 2017. |
Li X. Effects of nonsporulation and carbon fluxes regulation on on acetoin synthesis in Bacillus subtilis[D]. Wuxi:Jiangnan University, 2017. | |
[41] | 孙娟娟. 普鲁兰酶在解淀粉芽孢杆菌中表达方法的探索[D]. 无锡:江南大学, 2011. |
Sun JJ. Exploration of the methods for expression of pullulanase in Bacillus amyloliquefaciens[D]. Wuxi:Jiangnan University, 2011. | |
[42] | Huang Y, Flint SH, Palmer JS. Bacillus cereus spores and toxins-the potential role of biofilms[J]. Food Microbiolog, 2020,103493(90):1-7. |
[1] | LI Huan-min, GAO Feng-tao, LI Wei-zhong, WANG Jin-qing, FENG Jia-li. Progress in Research and Application of Natural Bio-materials as Immobilized Carriers [J]. Biotechnology Bulletin, 2023, 39(7): 105-112. |
[2] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
[3] | LUO Yi, ZHANG Li-juan, HUANG Wei, WANG Ning, Wuerlika MAITIHASEM, SHI Chong, WANG Wei. Identification of a Uranium-resistant Strain and Its Growth-promoting Properties [J]. Biotechnology Bulletin, 2023, 39(5): 286-296. |
[4] | JIANG Jing-jing, ZHOU Zhao-xu, DU Hui, LYU Zhao-long, WANG Chun-ming, GUO Jian-guo, ZHANG Xin-rui, LI Ji-ping. Isolation and Identification of Apple Brown Rot Pathogen in Parts of Gansu and Screening of Antagonistic Bacteria [J]. Biotechnology Bulletin, 2023, 39(10): 209-218. |
[5] | NIU Xin, ZHANG Ying, WANG Mao-jun, LIU Wen-long, LU Fu-ping, LI Yu. Effects of Different Integration Sites on the Expression of Exogenous Alkaline Protease in Bacillus amyloliquefaciens [J]. Biotechnology Bulletin, 2022, 38(4): 253-260. |
[6] | QIU Yi-bin, MA Yan-qin, SHA Yuan-yuan, ZHU Yi-fan, SU Er-zheng, LEI Peng, LI Sha, XU Hong. Research Progress in Molecular Genetic Manipulation Technology of Bacillus amyloliquefaciens and Its Application [J]. Biotechnology Bulletin, 2022, 38(2): 205-217. |
[7] | YANG Rui-xian, LIU Ping, WANG Zu-hua, RUAN Bao-shuo, WANG Zhi-da. Analysis of Antimicrobial Active Metabolites from Antagonistic Strains Against Fusarium solani [J]. Biotechnology Bulletin, 2022, 38(2): 57-66. |
[8] | CAI Guo-lei, LU Xiao-kai, LOU Shui-zhu, YANG Hai-ying, DU Gang. Classification and Identification of Bacillus LM Based on Whole Genome and Study on Its Antibacterial Principle [J]. Biotechnology Bulletin, 2021, 37(8): 176-185. |
[9] | YUAN Yuan, WANG Lei, SHI Ya-wei. Research Advances in Strategies for Improving the Activity of Microbial-derived Alkaline Proteases [J]. Biotechnology Bulletin, 2021, 37(5): 231-236. |
[10] | ZHAI Xu-hang, LI Xia, YUAN Ying-jin. Research Progress of Lignocellulose Pretreatment and Valorization Method [J]. Biotechnology Bulletin, 2021, 37(3): 162-174. |
[11] | LI Jin, PENG Ke-wei, PAN Qiu-yi, ZHU Zhe-yuan, PENG Di. Isolation and Identification of Bacillus amyloliquefaciens HR-2 and Biological Control of Rice Blast [J]. Biotechnology Bulletin, 2021, 37(3): 27-34. |
[12] | GUO He-bao, WANG Xing, HE Shan-wen, ZHANG Xiao-xia. Phenotypic Characteristics Combined with Genomic Analysis to Identify Different Colony Morphology Bacillus velezensis ACCC 19742 [J]. Biotechnology Bulletin, 2020, 36(2): 142-148. |
[13] | LIANG Xin-xin, TANG Dan, HUO Yi-xin. Green Biotransformation of Protein-derived Biomass [J]. Biotechnology Bulletin, 2020, 36(12): 216-228. |
[14] | WANG Shi-wei, WANG Qing-hui. Research Advances in Functional Mechanisms of Bacillus amyloliquefacien [J]. Biotechnology Bulletin, 2020, 36(1): 150-159. |
[15] | SONG Ben-chao, ZHAO Dong-mei, YANG Zhi-hui, ZHANG Dai, ZHAO Zhi, ZHU Jie-hua. Screening and Identification of an Antagonistic Bacterium Against Rhizoctonia solani and Analysis of Biocontrol Factor [J]. Biotechnology Bulletin, 2019, 35(8): 9-16. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 372
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 456
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||