Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (8): 12-24.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0815
Previous Articles Next Articles
YE Min(), GAO Jiao-qi, ZHOU Yong-jin()
Received:
2021-06-29
Online:
2021-08-26
Published:
2021-09-10
Contact:
ZHOU Yong-jin
E-mail:yemin18@dicp.ac.cn;zhouyongjin@dicp.ac.cn
YE Min, GAO Jiao-qi, ZHOU Yong-jin. Engineering Non-conventional Yeast Cell Factory for the Biosynthesis of Natural Products[J]. Biotechnology Bulletin, 2021, 37(8): 12-24.
产物 Products | 菌株 Strains | 产量 Productions | 发酵条件 Conditions | 培养基 Culture medium | 参考文献 Reference |
---|---|---|---|---|---|
柠檬烯 | 酿酒酵母 | 2.6 g/L | 摇瓶,半连续发酵 | YNB+糖 | [ |
大肠杆菌 | 3.6 g/L | 3.1 L发酵罐 | 基本培养基/甘油 | [ | |
解脂耶氏酵母 | 165 mg/L | 1.5 L发酵罐 | YP+甘油+柠檬酸 | [ | |
芳樟醇 | 大肠杆菌 | 1.0 g/L | 1.3 L发酵罐 | 基本培养基 | [ |
解脂耶氏酵母 | 7 mg/L | 摇瓶 | YPD | [ | |
α-法尼烯 | 酿酒酵母 | 130 g/L | 工业发酵罐 | 基本培养基 | [ |
解脂耶氏酵母 | 25.6 g/L | 1.5L发酵罐 | YPD | [ | |
毕赤酵母 | 2.56 g/L | 摇瓶 | 丰富培养基+复合碳源 | [ | |
α-檀香烯 | 解脂耶氏酵母 | 27.9 mg/L | 5 L发酵罐 | YPD | [ |
紫穗槐二烯 | 酿酒酵母 | 41 g/L | 3.1 L发酵罐 | 基本培养基 | [ |
大肠杆菌 | 30 g/L | 摇瓶,半连续发酵 | 丰富培养基+甘油 | [ | |
解脂耶氏酵母 | 171 mg/L | 摇瓶 | YPD | [ | |
诺卡酮 | 酿酒酵母 | 59.78 ug/L | 摇瓶 | YPD | [ |
毕赤酵母 | 208 mg/L | 1 L发酵罐 | 基本培养基 | [ | |
解脂耶氏酵母 | 978 μg/L | 摇瓶 | YPD | [ | |
番茄红素 | 酿酒酵母 | 3.3 g/L | 7 L发酵罐 | 基本培养基 | [ |
毕赤酵母 | 0.7 g/L | 3 L发酵罐 | 基本培养基+甘油 | [ | |
解脂耶氏酵母 | 4.2 g/L | 3 L发酵罐 | 丰富培养基+异戊烯醇 | [ | |
假丝酵母 | 7.8 mg/g DCW | 摇瓶 | YPD | [ | |
β-胡萝卜素 | 大肠杆菌 | 2.6 g/L | 5 L发酵罐 | 丰富培养基 | [ |
解脂耶氏酵母 | 6.5 g/L | 5 L发酵罐 | YPD | [ | |
β-紫罗兰酮 | 酿酒酵母 | 33 mg/L | 摇瓶 | YPD | [ |
解脂耶氏酵母 | 0.98 g/L | 3 L发酵罐 | YPD | [ | |
虾青素 | 酿酒酵母 | 217.9 mg/L | 5 L发酵罐 | YPD | [ |
大肠杆菌 | 1.2 g/L | 5 L发酵罐 | 酵母提取物+甘油+柠檬酸复合培养基 | [ | |
解脂耶氏酵母 | 285 mg/L | 1 L发酵罐 | YPD | [ | |
克鲁维酵母 | 10 mg/g DCW | 5 L发酵罐 | YP+半乳糖 | [ | |
红发夫酵母 | 27.8 mg/L | 7.5 L发酵罐 | 基本培养基 | [ |
Table 1 Terpenoids biosynthesis by model microorganisms and non-conventional yeasts(Bold ones are non-conventional yeasts)
产物 Products | 菌株 Strains | 产量 Productions | 发酵条件 Conditions | 培养基 Culture medium | 参考文献 Reference |
---|---|---|---|---|---|
柠檬烯 | 酿酒酵母 | 2.6 g/L | 摇瓶,半连续发酵 | YNB+糖 | [ |
大肠杆菌 | 3.6 g/L | 3.1 L发酵罐 | 基本培养基/甘油 | [ | |
解脂耶氏酵母 | 165 mg/L | 1.5 L发酵罐 | YP+甘油+柠檬酸 | [ | |
芳樟醇 | 大肠杆菌 | 1.0 g/L | 1.3 L发酵罐 | 基本培养基 | [ |
解脂耶氏酵母 | 7 mg/L | 摇瓶 | YPD | [ | |
α-法尼烯 | 酿酒酵母 | 130 g/L | 工业发酵罐 | 基本培养基 | [ |
解脂耶氏酵母 | 25.6 g/L | 1.5L发酵罐 | YPD | [ | |
毕赤酵母 | 2.56 g/L | 摇瓶 | 丰富培养基+复合碳源 | [ | |
α-檀香烯 | 解脂耶氏酵母 | 27.9 mg/L | 5 L发酵罐 | YPD | [ |
紫穗槐二烯 | 酿酒酵母 | 41 g/L | 3.1 L发酵罐 | 基本培养基 | [ |
大肠杆菌 | 30 g/L | 摇瓶,半连续发酵 | 丰富培养基+甘油 | [ | |
解脂耶氏酵母 | 171 mg/L | 摇瓶 | YPD | [ | |
诺卡酮 | 酿酒酵母 | 59.78 ug/L | 摇瓶 | YPD | [ |
毕赤酵母 | 208 mg/L | 1 L发酵罐 | 基本培养基 | [ | |
解脂耶氏酵母 | 978 μg/L | 摇瓶 | YPD | [ | |
番茄红素 | 酿酒酵母 | 3.3 g/L | 7 L发酵罐 | 基本培养基 | [ |
毕赤酵母 | 0.7 g/L | 3 L发酵罐 | 基本培养基+甘油 | [ | |
解脂耶氏酵母 | 4.2 g/L | 3 L发酵罐 | 丰富培养基+异戊烯醇 | [ | |
假丝酵母 | 7.8 mg/g DCW | 摇瓶 | YPD | [ | |
β-胡萝卜素 | 大肠杆菌 | 2.6 g/L | 5 L发酵罐 | 丰富培养基 | [ |
解脂耶氏酵母 | 6.5 g/L | 5 L发酵罐 | YPD | [ | |
β-紫罗兰酮 | 酿酒酵母 | 33 mg/L | 摇瓶 | YPD | [ |
解脂耶氏酵母 | 0.98 g/L | 3 L发酵罐 | YPD | [ | |
虾青素 | 酿酒酵母 | 217.9 mg/L | 5 L发酵罐 | YPD | [ |
大肠杆菌 | 1.2 g/L | 5 L发酵罐 | 酵母提取物+甘油+柠檬酸复合培养基 | [ | |
解脂耶氏酵母 | 285 mg/L | 1 L发酵罐 | YPD | [ | |
克鲁维酵母 | 10 mg/g DCW | 5 L发酵罐 | YP+半乳糖 | [ | |
红发夫酵母 | 27.8 mg/L | 7.5 L发酵罐 | 基本培养基 | [ |
产物类型 Type | 改造策略 Strategy | 产物 Product | 菌株 Strain | 改造基因 Gene | 效果 Effect | 参考文献 Reference |
---|---|---|---|---|---|---|
萜类化合物 | MVA途径优化 | 柠檬烯 | 解脂耶氏酵母 | 过表达HMGR,ERG12 | 产量提升112倍 | [ |
诺卡酮 | 解脂耶氏酵母 | 过表达tHMGR,ERG20 | 产量提升20.5倍 | [ | ||
加强前体和辅因子供给 | 番茄红素 | 解脂耶氏酵母 | 抑制TCA循环,过表达ACL1/ACL2/AMPD | 产量提升2-3倍 | [ | |
角鲨烯 | 解脂耶氏酵母 | 过表达甘露醇脱氢酶MnMDH2 | 产量提升11% | [ | ||
弱化副反应 | 芳樟醇 | 解脂耶氏酵母 | 过表达ERG20 F88W-N119W突变体 | 产量提升4倍 | [ | |
虾青素 | 解脂耶氏酵母 | ERG9启动子截短 | 产量提升2.5倍 | [ | ||
区室化策略 | 番茄红素 | 毕赤酵母 | 番茄红素合成基因定位至过氧化物酶体 | 比定位至细胞质产量略高 | [ | |
角鲨烯 | 解脂耶氏酵母 | 过表达脂质体合成关键基因 DGA1 | 产量提升2.1倍 | [ | ||
黄酮类化合物 | 莽草酸途径优化 | 柚皮素 | 解脂耶氏酵母 | 过表达ARO1 | 产量提升51% | [ |
白藜芦醇 | 解脂耶氏酵母 | 过表达突变体ARO4K221L,ARO7G141S解除反馈抑制 | 产量提升2.2倍 | [ | ||
加强前体供给 | 柚皮素 | 解脂耶氏酵母 | 过表达ACC1 | 产量提升1.6倍 | [ | |
柚皮素 | 解脂耶氏酵母 | 过表达PEX10促进β-氧化 | 产量略有提升 | [ | ||
外源基因表达水平优化 | 柚皮素 | 解脂耶氏酵母 | 优化外源基因表达配比 | 产量波动1-3.8倍 | [ | |
白藜芦醇 | 解脂耶氏酵母 | 增加外源基因拷贝数 | 产量提高4.8倍 | [ | ||
白藜芦醇 | 解脂耶氏酵母 | 启动子强度调节 | 产量波动较大 | [ |
Table 2 Engineering strategies for biosynthesis of natural products in non-conventional yeasts
产物类型 Type | 改造策略 Strategy | 产物 Product | 菌株 Strain | 改造基因 Gene | 效果 Effect | 参考文献 Reference |
---|---|---|---|---|---|---|
萜类化合物 | MVA途径优化 | 柠檬烯 | 解脂耶氏酵母 | 过表达HMGR,ERG12 | 产量提升112倍 | [ |
诺卡酮 | 解脂耶氏酵母 | 过表达tHMGR,ERG20 | 产量提升20.5倍 | [ | ||
加强前体和辅因子供给 | 番茄红素 | 解脂耶氏酵母 | 抑制TCA循环,过表达ACL1/ACL2/AMPD | 产量提升2-3倍 | [ | |
角鲨烯 | 解脂耶氏酵母 | 过表达甘露醇脱氢酶MnMDH2 | 产量提升11% | [ | ||
弱化副反应 | 芳樟醇 | 解脂耶氏酵母 | 过表达ERG20 F88W-N119W突变体 | 产量提升4倍 | [ | |
虾青素 | 解脂耶氏酵母 | ERG9启动子截短 | 产量提升2.5倍 | [ | ||
区室化策略 | 番茄红素 | 毕赤酵母 | 番茄红素合成基因定位至过氧化物酶体 | 比定位至细胞质产量略高 | [ | |
角鲨烯 | 解脂耶氏酵母 | 过表达脂质体合成关键基因 DGA1 | 产量提升2.1倍 | [ | ||
黄酮类化合物 | 莽草酸途径优化 | 柚皮素 | 解脂耶氏酵母 | 过表达ARO1 | 产量提升51% | [ |
白藜芦醇 | 解脂耶氏酵母 | 过表达突变体ARO4K221L,ARO7G141S解除反馈抑制 | 产量提升2.2倍 | [ | ||
加强前体供给 | 柚皮素 | 解脂耶氏酵母 | 过表达ACC1 | 产量提升1.6倍 | [ | |
柚皮素 | 解脂耶氏酵母 | 过表达PEX10促进β-氧化 | 产量略有提升 | [ | ||
外源基因表达水平优化 | 柚皮素 | 解脂耶氏酵母 | 优化外源基因表达配比 | 产量波动1-3.8倍 | [ | |
白藜芦醇 | 解脂耶氏酵母 | 增加外源基因拷贝数 | 产量提高4.8倍 | [ | ||
白藜芦醇 | 解脂耶氏酵母 | 启动子强度调节 | 产量波动较大 | [ |
产物 Product | 菌株 Strain | 产量 Production | 发酵条件 Condition | 培养基 Culture medium | 参考文献 Reference |
---|---|---|---|---|---|
白藜芦醇 | 酿酒酵母 | 800 mg/L | 摇瓶 | 基本培养基 | [ |
大肠杆菌 | 2.3 g/L | 摇瓶 | 丰富培养基+对香豆酸 | [ | |
解脂耶氏酵母 | 12.4 g/L | 1 L发酵罐 | 基本培养基 | [ | |
柚皮素 | 酿酒酵母 | 1.1 g/L | 5 L发酵罐 | YPD | [ |
大肠杆菌 | 484 mg/L | 摇瓶 | 基本培养基+酪氨酸 | [ | |
解脂耶氏酵母 | 898 mg/L | 3 L发酵罐 | 基本培养基 | [ | |
黄杉素 | 酿酒酵母 | 3.5 g/L | 5 L发酵罐 | 基本培养基+柚皮素 | [ |
解脂耶氏酵母 | 134 mg/L | 3 L发酵罐 | 基本培养基 | [ | |
圣草酚 | 酿酒酵母 | 3.3 g/L | 5 L发酵罐 | YPD+5 g/L柚皮素 | [ |
大肠杆菌 | 107 mg/L | 摇瓶 | 基本培养基+酪氨酸 | [ | |
解脂耶氏酵母 | 110 mg/L | 3 L发酵罐 | 基本培养基 | [ |
Table 3 Flavonoids biosynthesis by model microorganisms and non-conventional yeasts(Bold ones are non-conventional yeasts)
产物 Product | 菌株 Strain | 产量 Production | 发酵条件 Condition | 培养基 Culture medium | 参考文献 Reference |
---|---|---|---|---|---|
白藜芦醇 | 酿酒酵母 | 800 mg/L | 摇瓶 | 基本培养基 | [ |
大肠杆菌 | 2.3 g/L | 摇瓶 | 丰富培养基+对香豆酸 | [ | |
解脂耶氏酵母 | 12.4 g/L | 1 L发酵罐 | 基本培养基 | [ | |
柚皮素 | 酿酒酵母 | 1.1 g/L | 5 L发酵罐 | YPD | [ |
大肠杆菌 | 484 mg/L | 摇瓶 | 基本培养基+酪氨酸 | [ | |
解脂耶氏酵母 | 898 mg/L | 3 L发酵罐 | 基本培养基 | [ | |
黄杉素 | 酿酒酵母 | 3.5 g/L | 5 L发酵罐 | 基本培养基+柚皮素 | [ |
解脂耶氏酵母 | 134 mg/L | 3 L发酵罐 | 基本培养基 | [ | |
圣草酚 | 酿酒酵母 | 3.3 g/L | 5 L发酵罐 | YPD+5 g/L柚皮素 | [ |
大肠杆菌 | 107 mg/L | 摇瓶 | 基本培养基+酪氨酸 | [ | |
解脂耶氏酵母 | 110 mg/L | 3 L发酵罐 | 基本培养基 | [ |
[1] |
Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019[J]. J Nat Prod, 2020, 83(3):770-803.
doi: 10.1021/acs.jnatprod.9b01285 pmid: 32162523 |
[2] |
Nielsen J. Yeast cell factories on the horizon-Metabolic engineering in yeast gets increasingly more versatile[J]. Science, 2015, 349(6252):1050-1051.
doi: 10.1126/science.aad2081 pmid: 26339012 |
[3] |
Wang C, Pfleger BF, Kim SW. Reassessing Escherichia coli as a cell factory for biofuel production[J]. Curr Opin Biotechnol, 2017, 45:92-103.
doi: 10.1016/j.copbio.2017.02.010 URL |
[4] |
Chen XX, Zhang CQ, Lindley ND. Metabolic engineering strategies for sustainable terpenoid flavor and fragrance synjournal[J]. J Agric Food Chem, 2020, 68(38):10252-10264.
doi: 10.1021/acs.jafc.9b06203 URL |
[5] |
Liu Y, Nielsen J. Recent trends in metabolic engineering of microbial chemical factories[J]. Curr Opin Biotechnol, 2019, 60:188-197.
doi: 10.1016/j.copbio.2019.05.010 URL |
[6] |
Liu ZH, Wang K, Chen Y, et al. Third-generation biorefineries as the means to produce fuels and chemicals from CO2[J]. Nat Catal, 2020, 3(3):274-288.
doi: 10.1038/s41929-019-0421-5 URL |
[7] |
Park D, Swayambhu G, Pfeifer BA. Heterologous biosynjournal as a platform for producing new generation natural products[J]. Curr Opin Biotechnol, 2020, 66:123-130.
doi: 10.1016/j.copbio.2020.06.014 URL |
[8] |
Li J, Rong L, Zhao Y, et al. Next-generation metabolic engineering of non-conventional microbial cell factories for carboxylic acid platform chemicals[J]. Biotechnol Adv, 2020, 43:107605.
doi: 10.1016/j.biotechadv.2020.107605 URL |
[9] |
Sun L, Alper HS. Non-conventional hosts for the production of fuels and chemicals[J]. Curr Opin Chem Biol, 2020, 59:15-22.
doi: 10.1016/j.cbpa.2020.03.004 URL |
[10] |
Lacerda MP, Oh EJ, Eckert C. The model system Saccharomyces cerevisiae versus emerging non-model yeasts for the production of biofuels[J]. Life, 2020, 10(11):299.
doi: 10.3390/life10110299 URL |
[11] |
Raschmanová H, Weninger A, Glieder A, et al. Implementing CRISPR-Cas technologies in conventional and non-conventional yeasts:Current state and future prospects[J]. Biotechnol Adv, 2018, 36(3):641-665.
doi: S0734-9750(18)30006-5 pmid: 29331410 |
[12] |
Westfall PJ, Pitera DJ, Lenihan JR, et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin[J]. PNAS, 2012, 109(3):E111-E118.
doi: 10.1073/pnas.1110740109 URL |
[13] |
Wang JH, Jiang W, et al. Overproduction of α-farnesene in Saccha-romyces cerevisiae by farnesene synthase screening and metabolic engineering[J]. J Agric Food Chem, 2021, 69(10):3103-3113.
doi: 10.1021/acs.jafc.1c00008 URL |
[14] | Kręgiel D, Pawlikowska E, Antolak H. Non-conventional yeasts in fermentation processes:potentialities and limitations[M]// Lucas C, Pais C. Old Yeasts - New Questions. InTech, 2017. |
[15] |
Luo Z, Liu N, Lazar Z, et al. Enhancing isoprenoid synjournal in Yarrowia lipolytica by expressing the isopentenol utilization pathway and modulating intracellular hydrophobicity[J]. Metab Eng, 2020, 61:344-351.
doi: 10.1016/j.ymben.2020.07.010 URL |
[16] |
Pang Y, Zhao Y, Li S, et al. Engineering the oleaginous yeast Yarrowia lipolytica to produce limonene from waste cooking oil[J]. Biotechnol Biofuels, 2019, 12:241.
doi: 10.1186/s13068-019-1580-y URL |
[17] |
Markham KA, Palmer CM, Chwatko M, et al. Rewiring Yarrowia lipolytica toward triacetic acid lactone for materials generation[J]. PNAS, 2018, 115(9):2096-2101.
doi: 10.1073/pnas.1721203115 pmid: 29440400 |
[18] |
Liu Y, Jiang X, Cui Z, et al. Engineering the oleaginous yeast Yarrowia lipolytica for production of α-farnesene[J]. Biotechnol Biofuels, 2019, 12:296.
doi: 10.1186/s13068-019-1636-z URL |
[19] |
Czajka J, Wang Q, Wang Y, et al. Synthetic biology for manufacturing chemicals:constraints drive the use of non-conventional microbial platforms[J]. Appl Microbiol Biotechnol, 2017, 101(20):7427-7434.
doi: 10.1007/s00253-017-8489-9 URL |
[20] |
Peña DA, Gasser B, Zanghellini J, et al. Metabolic engineering of Pichia pastoris[J]. Metab Eng, 2018, 50:2-15.
doi: 10.1016/j.ymben.2018.04.017 URL |
[21] | 高琳惠, 蔡鹏, 周雍进. 甲醇酵母代谢工程研究进展[J]. 生物工程学报, 2021, 37(3):966-979. |
Gao LH, Cai P, Zhou YJ. Advances in metabolic engineering of methylotrophic yeasts[J]. Chin J Biotechnol, 2021, 37(3):966-979. | |
[22] |
Karbalaei M, Rezaee SA, Farsiani H. Pichia pastoris:a highly successful expression system for optimal synjournal of heterologous proteins[J]. J Cell Physiol, 2020, 235(9):5867-5881.
doi: 10.1002/jcp.29583 pmid: 32057111 |
[23] |
Duan XP, Gao JQ, Zhou YJ. Advances in engineering methylotrophic yeast for biosynjournal of valuable chemicals from methanol[J]. Chin Chem Lett, 2018, 29(5):681-686.
doi: 10.1016/j.cclet.2017.11.015 URL |
[24] |
Matthäus F, Ketelhot M, Gatter M, et al. Production of lycopene in the non-carotenoid-producing yeast Yarrowia lipolytica[J]. Appl Environ Microbiol, 2014, 80(5):1660-1669.
doi: 10.1128/AEM.03167-13 URL |
[25] |
Zhang XK, Nie MY, Chen J, et al. Multicopy integrants of crt genes and co-expression of AMP deaminase improve lycopene production in Yarrowia lipolytica[J]. J Biotechnol, 2019, 289:46-54.
doi: 10.1016/j.jbiotec.2018.11.009 URL |
[26] |
Marsafari M, Xu P. Debottlenecking mevalonate pathway for antimalarial drug precursor amorphadiene biosynjournal in Yarrowia lipolytica[J]. Metab Eng Commun, 2020, 10:e00121.
doi: 10.1016/j.mec.2019.e00121 URL |
[27] |
Larroude M, Celinska E, Back A, et al. A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of β-carotene[J]. Biotechnol Bioeng, 2018, 115(2):464-472.
doi: 10.1002/bit.26473 URL |
[28] |
Cao X, Wei LJ, Lin JY, et al. Enhancing linalool production by engineering oleaginous yeast Yarrowia lipolytica[J]. Bioresour Technol, 2017, 245(pt b):1641-1644.
doi: 10.1016/j.biortech.2017.06.105 URL |
[29] |
Liu XB, Liu M, Tao XY, et al. Metabolic engineering of Pichia pastoris for the production of dammarenediol-II[J]. J Biotechnol, 2015, 216:47-55.
doi: 10.1016/j.jbiotec.2015.10.005 URL |
[30] |
Wriessnegger T, Augustin P, Engleder M, et al. Production of the sesquiterpenoid(+)-nootkatone by metabolic engineering of Pichia pastoris[J]. Metab Eng, 2014, 24:18-29.
doi: 10.1016/j.ymben.2014.04.001 pmid: 24747046 |
[31] |
Lin YJ, Chang JJ, et al. Metabolic engineering a yeast to produce astaxanthin[J]. Bioresour Technol, 2017, 245:899-905.
doi: 10.1016/j.biortech.2017.07.116 URL |
[32] |
Shimada H, Kondo K, Fraser PD, et al. Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway[J]. Appl Environ Microbiol, 1998, 64(7):2676-2680.
doi: 10.1128/AEM.64.7.2676-2680.1998 URL |
[33] |
Dusséaux S, Wajn WT, Liu Y, et al. Transforming yeast peroxisomes into microfactories for the efficient production of high-value isoprenoids[J]. PNAS, 2020, 117(50):31789-31799.
doi: 10.1073/pnas.2013968117 pmid: 33268495 |
[34] |
Rolf J, Julsing MK, Rosenthal K, et al. A gram-scale limonene production process with engineered Escherichia coli[J]. Molecules, 2020, 25(8):1881.
doi: 10.3390/molecules25081881 URL |
[35] |
Cheng BQ, Wei LJ, et al. Elevating limonene production in oleaginous yeast Yarrowia lipolytica via genetic engineering of limonene biosynjournal pathway and optimization of medium composition[J]. Biotechnol Bioprocess Eng, 2019, 24(3):500-506.
doi: 10.1007/s12257-018-0497-9 URL |
[36] |
Wang X, Wu J, Chen JM, et al. Efficient biosynjournal of R-(-)-linalool through adjusting the expression strategy and increasing GPP supply in Escherichia coli[J]. J Agric Food Chem, 2020, 68(31):8381-8390.
doi: 10.1021/acs.jafc.0c03664 URL |
[37] |
Liu H, Chen SL, Xu JZ, et al. Dual regulation of cytoplasm and peroxisomes for improved Α-farnesene production in recombinant Pichia pastoris[J]. ACS Synth Biol, 2021, 10(6):1563-1573.
doi: 10.1021/acssynbio.1c00186 URL |
[38] |
Jia D, Xu S, Sun J, et al. Yarrowia lipolytica construction for heterologous synjournal of α-santalene and fermentation optimization[J]. Appl Microbiol Biotechnol, 2019, 103(8):3511-3520.
doi: 10.1007/s00253-019-09735-w URL |
[39] |
Shukal S, Chen X, Zhang C. Systematic engineering for high-yield production of viridiflorol and amorphadiene in auxotrophic Escherichia coli[J]. Metab Eng, 2019, 55:170-178.
doi: S1096-7176(19)30215-0 pmid: 31326469 |
[40] |
Meng XF, Liu H, Xu WQ, et al. Metabolic engineering Saccharomyces cerevisiae for de novo production of the sesquiterpenoid(+)-nootkatone[J]. Microb Cell Factories, 2020, 19(1):1-14.
doi: 10.1186/s12934-019-1269-8 URL |
[41] |
Guo XY, Sun J, Li DS, et al. Heterologous biosynjournal of(+)-nootkatone in unconventional yeast Yarrowia lipolytica[J]. Biochem Eng J, 2018, 137:125-131.
doi: 10.1016/j.bej.2018.05.023 URL |
[42] |
Shi B, Ma T, Ye Z, et al. Systematic metabolic engineering of Saccharomyces cerevisiae for lycopene overproduction[J]. J Agric Food Chem, 2019, 67(40):11148-11157.
doi: 10.1021/acs.jafc.9b04519 URL |
[43] |
Bhataya A, Schmidt-Dannert C, Lee PC. Metabolic engineering of Pichia pastoris X-33 for lycopene production[J]. Process Biochem, 2009, 44(10):1095-1102.
doi: 10.1016/j.procbio.2009.05.012 URL |
[44] |
Wu YQ, Yan PP, Li Y, et al. Enhancing β-carotene production in Escherichia coli by perturbing central carbon metabolism and improving the NADPH supply[J]. Front Bioeng Biotechnol, 2020, 8:585. DOI: 10.3389/fbioe.2020.00585.
doi: 10.3389/fbioe.2020.00585 URL |
[45] |
López J, Bustos D, Camilo C, et al. Engineering Saccharomyces cerevisiae for the overproduction of β-ionone and its precursor β-carotene[J]. Front Bioeng Biotechnol, 2020, 8:578793.
doi: 10.3389/fbioe.2020.578793 URL |
[46] |
Lu YP, Yang QY, Lin ZL, et al. A modular pathway engineering strategy for the high-level production of β-ionone in Yarrowia lipolytica[J]. Microb Cell Factories, 2020, 19(1):1-13.
doi: 10.1186/s12934-019-1269-8 URL |
[47] |
Jin J, Wang Y, Yao M, et al. Astaxanthin overproduction in yeast by strain engineering and new gene target uncovering[J]. Biotechnol Biofuels, 2018, 11:230.
doi: 10.1186/s13068-018-1227-4 pmid: 30159030 |
[48] |
Gong Z, Wang H, Tang J, et al. Coordinated expression of astaxanthin biosynjournal genes for improved astaxanthin production in Escherichia coli[J]. J Agric Food Chem, 2020, 68(50):14917-14927.
doi: 10.1021/acs.jafc.0c05379 URL |
[49] |
Tramontin LRR, Kildegaard KR, Sudarsan S, et al. Enhancement of astaxanthin biosynjournal in oleaginous yeast Yarrowia lipolytica via microalgal pathway[J]. Microorganisms, 2019, 7(10):472.
doi: 10.3390/microorganisms7100472 URL |
[50] |
Chi S, He Y, Ren J, et al. Overexpression of a bifunctional enzyme, CrtS, enhances astaxanthin synjournal through two pathways in Phaffia rhodozyma[J]. Microb Cell Fact, 2015, 14:90.
doi: 10.1186/s12934-015-0279-4 URL |
[51] |
Cao X, Lv YB, Chen J, et al. Metabolic engineering of oleaginous yeast Yarrowia lipolytica for limonene overproduction[J]. Biotechnol Biofuels, 2016, 9(1):1-11.
doi: 10.1186/s13068-015-0423-8 URL |
[52] |
Liu H, Wang F, Deng L, et al. Genetic and bioprocess engineering to improve squalene production in Yarrowia lipolytica[J]. Bioresour Technol, 2020, 317:123991.
doi: 10.1016/j.biortech.2020.123991 URL |
[53] | Kildegaard KR, Adiego-Pérez B, Doménech Belda D, et al. Engineering of Yarrowia lipolytica for production of astaxanthin[J]. Synth Syst Biotechnol, 2017, 2(4):287-294. |
[54] |
Tang WY, Wang DP, Tian Y, et al. Metabolic engineering of Yarrowia lipolytica for improving squalene production[J]. Bioresour Technol, 2021, 323:124652.
doi: 10.1016/j.biortech.2020.124652 URL |
[55] |
Lv Y, Marsafari M, Koffas M, et al. Optimizing oleaginous yeast cell factories for flavonoids and hydroxylated flavonoids biosynjournal[J]. ACS Synth Biol, 2019, 8(11):2514-2523.
doi: 10.1021/acssynbio.9b00193 URL |
[56] |
Sáez-Sáez J, Wang G, Marella ER, et al. Engineering the oleaginous yeast Yarrowia lipolytica for high-level resveratrol production[J]. Metab Eng, 2020, 62:51-61.
doi: S1096-7176(20)30129-4 pmid: 32818629 |
[57] |
Palmer CM, Miller KK, et al. Engineering 4-coumaroyl-CoA derived polyketide production in Yarrowia lipolytica through a β-oxidation mediated strategy[J]. Metab Eng, 2020, 57:174-181.
doi: 10.1016/j.ymben.2019.11.006 URL |
[58] |
Polakowski T, Stahl U, Lang C. Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast[J]. Appl Microbiol Biotechnol, 1998, 49(1):66-71.
pmid: 9487712 |
[59] |
Yang X, Nambou K, Wei LJ, et al. Heterologous production of α-farnesene in metabolically engineered strains of Yarrowia lipolytica[J]. Bioresour Technol, 2016, 216:1040-1048.
doi: 10.1016/j.biortech.2016.06.028 URL |
[60] |
Ignea C, Pontini M, et al. Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase[J]. ACS Synth Biol, 2014, 3(5):298-306.
doi: 10.1021/sb400115e URL |
[61] |
Ignea C, Trikka FA, Nikolaidis AK, et al. Efficient diterpene production in yeast by engineering Erg20p into a geranylgeranyl diphosphate synthase[J]. Metab Eng, 2015, 27:65-75.
doi: 10.1016/j.ymben.2014.10.008 URL |
[62] |
Xie W, Ye L, Lv X, et al. Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae[J]. Metab Eng, 2015, 28:8-18.
doi: 10.1016/j.ymben.2014.11.007 URL |
[63] |
Asadollahi MA, Maury J, Møller K, et al. Production of plant sesquiterpenes in Saccharomyces cerevisiae:effect of ERG9 repression on sesquiterpene biosynjournal[J]. Biotechnol Bioeng, 2008, 99(3):666-677.
pmid: 17705244 |
[64] |
Gao S, Tong Y, Zhu L, et al. Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production[J]. Metab Eng, 2017, 41:192-201.
doi: 10.1016/j.ymben.2017.04.004 URL |
[65] |
Liu GS, Li T, Zhou W, et al. The yeast peroxisome:a dynamic storage depot and subcellular factory for squalene overproduction[J]. Metab Eng, 2020, 57:151-161.
doi: 10.1016/j.ymben.2019.11.001 URL |
[66] |
Russo M, Moccia S, et al. Roles of flavonoids against coronavirus infection[J]. Chem Biol Interact, 2020, 328:109211.
doi: 10.1016/j.cbi.2020.109211 URL |
[67] |
Li M, Kildegaard KR, Chen Y, et al. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae[J]. Metab Eng, 2015, 32:1-11.
doi: 10.1016/j.ymben.2015.08.007 URL |
[68] |
Li M, Schneider K, et al. Engineering yeast for high-level production of stilbenoid antioxidants[J]. Sci Rep, 2016, 6:36827.
doi: 10.1038/srep36827 URL |
[69] |
Lim CG, Fowler ZL, Hueller T, et al. High-yield resveratrol production in engineered Escherichia coli[J]. Appl Environ Microbiol, 2011, 77(10):3451-3460.
doi: 10.1128/AEM.02186-10 URL |
[70] |
Zhang Q, Yu SQ, Lyu YB, et al. Systematically engineered fatty acid catabolite pathway for the production of(2S)-naringenin in Saccharomyces cerevisiae[J]. ACS Synth Biol, 2021, 10(5):1166-1175.
doi: 10.1021/acssynbio.1c00002 pmid: 33877810 |
[71] |
Dunstan MS, Robinson CJ, Jervis AJ, et al. Engineering Escherichia coli towards de novo production of gatekeeper(2S)-flavanones:naringenin, pinocembrin, eriodictyol and homoeriodictyol[J]. Synth Biol, 2020, 5(1). DOI: 10.1093/synbio/ysaa012.
doi: 10.1093/synbio/ysaa012 |
[72] | 高松, 周景文, 陈坚. 水飞蓟来源黄酮3-羟化酶鉴定及黄杉素发酵优化[J]. 生物工程学报, 2020, 36(12):2838-2849. |
Gao S, Zhou JW, Chen J. Identification of flavonoids 3-hydroxylase from[Silybum marianum(L. )Gaertn]and its application in enhanced production of taxifolin[J]. Chin J Biotechnol, 2020, 36(12):2838-2849. | |
[73] |
Gao S, Xu XY, Zeng WZ, et al. Efficient biosynjournal of(2S)-eriodictyol from(2S)-naringenin in Saccharomyces cerevisiae through a combination of promoter adjustment and directed evolution[J]. ACS Synth Biol, 2020, 9(12):3288-3297.
doi: 10.1021/acssynbio.0c00346 URL |
[74] |
Zhu S, Wu J, Du G, et al. Efficient synjournal of eriodictyol from L-tyrosine in Escherichia coli[J]. Appl Environ Microbiol, 2014, 80(10):3072-3080.
doi: 10.1128/AEM.03986-13 URL |
[75] | Shi S, Chen Y, Siewers V, et al. Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1[J]. mBio, 2014, 5(3):e01130-e01114. |
[76] |
Hartmann M, Schneider TR, Pfeil A, et al. Evolution of feedback-inhibited / barrel isoenzymes by gene duplication and a single mutation[J]. PNAS, 2003, 100(3):862-867.
pmid: 12540830 |
[77] |
Wei W, Zhang P, Shang Y, et al. Metabolically engineering of Yarrowia lipolytica for the biosynjournal of naringenin from a mixture of glucose and xylose[J]. Bioresour Technol, 2020, 314:123726.
doi: 10.1016/j.biortech.2020.123726 URL |
[78] |
Dueber JE, Wu GC, Malmirchegini GR, et al. Synthetic protein scaffolds provide modular control over metabolic flux[J]. Nat Biotechnol, 2009, 27(8):753-759.
doi: 10.1038/nbt.1557 pmid: 19648908 |
[79] |
Zhang X, Wang D, Duan Y, et al. Production of lycopene by metabolically engineered Pichia pastoris[J]. Biosci Biotechnol Biochem, 2020, 84(3):463-470.
doi: 10.1080/09168451.2019.1693250 URL |
[80] |
Cai P, Gao J, Zhou Y. CRISPR-mediated genome editing in non-conventional yeasts for biotechnological applications[J]. Microb Cell Fact, 2019, 18(1):63.
doi: 10.1186/s12934-019-1112-2 URL |
[81] |
Daley JM, Palmbos PL, Wu DL, et al. Nonhomologous end joining in yeast[J]. Annu Rev Genet, 2005, 39:431-451.
doi: 10.1146/annurev.genet.39.073003.113340 URL |
[82] |
Sung P. Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase[J]. J Biol Chem, 1997, 272(45):28194-28197.
pmid: 9353267 |
[83] |
Gao J, Gao N, Zhai X, et al. Recombination machinery engineering for precise genome editing in methylotrophic yeast Ogataea polymorpha[J]. iScience, 2021, 24(3):102168.
doi: 10.1016/j.isci.2021.102168 URL |
[84] |
Cai P, Duan X, Wu X, et al. Recombination machinery engineering facilitates metabolic engineering of the industrial yeast Pichia pastoris[J]. Nucleic Acids Res, 2021, 49(13):7791-7805.
doi: 10.1093/nar/gkab535 URL |
[85] |
Schwartz C, Frogue K, Ramesh A, et al. CRISPRi repression of nonhomologous end-joining for enhanced genome engineering via homologous recombination in Yarrowia lipolytica[J]. Biotechnol Bioeng, 2017, 114(12):2896-2906.
doi: 10.1002/bit.26404 pmid: 28832943 |
[86] | Schwartz C, Curtis N, et al. Multiplexed CRISPR activation of cryptic sugar metabolism enables Yarrowia lipolytica growth on cellobiose[J]. Biotechnol J, 2018, 13(9):e1700584. |
[87] |
Yang Y, Liu G, et al. High efficiency CRISPR/Cas9 genome editing system with an eliminable episomal sgRNA plasmid in Pichia pastoris[J]. Enzyme Microb Technol, 2020, 138:109556.
doi: 10.1016/j.enzmictec.2020.109556 URL |
[88] |
Gleizer S, Ben-Nissan R, Bar-On YM, et al. Conversion of Escherichia coli to generate all biomass carbon from CO2[J]. Cell, 2019, 179(6):1255-1263.e12.
doi: S0092-8674(19)31230-9 pmid: 31778652 |
[89] |
Chen FY, Jung HW, Tsuei CY, et al. Converting Escherichia coli to a synthetic methylotroph growing solely on methanol[J]. Cell, 2020, 182(4):933-946.e14.
doi: 10.1016/j.cell.2020.07.010 URL |
[90] |
Xiong X, Chen S. Expanding toolbox for genes expression of Yarrowia lipolytica to include novel inducible, repressible, and hybrid promoters[J]. ACS Synth Biol, 2020, 9(8):2208-2213.
doi: 10.1021/acssynbio.0c00243 URL |
[91] |
Shabbir Hussain M, Wheeldon I, Blenner MA. A strong hybrid fatty acid inducible transcriptional sensor built from Yarrowia lipolytica upstream activating and regulatory sequences[J]. Biotechnol J, 2017, 12(10):1700248.
doi: 10.1002/biot.v12.10 URL |
[92] | Zhao YK, Zhu K, et al. High-efficiency production of bisabolene from waste cooking oil by metabolically engineered Yarrowia lipolytica[J]. Microb Biotechnol, 2021: 1751-7915. 13768. |
[93] |
Sandberg TE, Salazar MJ, et al. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology[J]. Metab Eng, 2019, 56:1-16.
doi: S1096-7176(19)30153-3 pmid: 31401242 |
[94] |
Zhu ZW, Hu YT, Teixeira PG, et al. Multidimensional engineering of Saccharomyces cerevisiae for efficient synjournal of medium-chain fatty acids[J]. Nat Catal, 2020, 3(1):64-74.
doi: 10.1038/s41929-019-0409-1 URL |
[1] | CHENG Ting, YUAN Shuai, ZHANG Xiao-yuan, LIN Liang-cai, LI Xin, ZHANG Cui-ying. Research Progress in the Regulation of Isobutanol Synthesis Pathway in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(7): 80-90. |
[2] | ZHANG He-chen, YUAN Xin, GAO Jie, WANG Xiao-chen, WANG Hui-juan, LI Yan-min, WANG Li-min, FU Zhen-zhu, LI Bao-yin. Mechanism of Flower Petal Coloration and Molecular Breeding [J]. Biotechnology Bulletin, 2023, 39(5): 23-31. |
[3] | MA Fang-fang, LIU Guan-wen, PANG Bing, JIANG Chun-mei, SHI Jun-ling. Strategies of Increasing Flavonoid Production in Engineered Bacteria by Intensifying the Efflux of Flavonoid in Cells [J]. Biotechnology Bulletin, 2023, 39(5): 63-76. |
[4] | WANG Xiao-mei, YANG Xiao-wei, LI Hui-shang, HE Wei, XIN Zhu-lin. Development Status of Synthetic Biology in Globe and Its Enlightenment [J]. Biotechnology Bulletin, 2023, 39(2): 292-302. |
[5] | CHEN Xiao-lin, LIU Yang-er, XU Wen-tao, GUO Ming-zhang, LIU Hui-lin. Application of Synthetic Biology Based Whole-cell Biosensor Technology in the Rapid Detection of Food Safety [J]. Biotechnology Bulletin, 2023, 39(1): 137-149. |
[6] | ZHANG Chan, WU You-gen, YU Jing, YANG Dong-mei, YAO Guang-long, YANG Hua-geng, ZHANG Jun-feng, CHEN Ping. Molecular Mechanism of Terpenoids Synthesis Intermediated by Light and Jasmonates Signals [J]. Biotechnology Bulletin, 2022, 38(8): 32-40. |
[7] | ZHOU Lin, LIANG Xuan-ming, ZHAO Lei. Biosynthesis of Natural Carotenoids:Progress and Perspective [J]. Biotechnology Bulletin, 2022, 38(7): 119-127. |
[8] | DUAN Yue-tong, WANG Peng-nian, ZHANG Chun-bao, LIN Chun-jing. Research Progress in Plant Flavanone-3-hydroxylase Gene [J]. Biotechnology Bulletin, 2022, 38(6): 27-33. |
[9] | GUO Xiao-zhen, ZHANG Xue-fu. Analysis of the Development Trend in the Field of Plant Synthetic Biology [J]. Biotechnology Bulletin, 2022, 38(2): 289-296. |
[10] | YAO Yu, GU Jia-jun, SUN Chao, SHEN Guo-an, GUO Bao-lin. Advances in Plant Flavonoids UDP-glycosyltransferase [J]. Biotechnology Bulletin, 2022, 38(12): 47-57. |
[11] | LUO Ya-fang, ZHU Chun-hua, XIAO Yu-ting, LI Fang-quan, ZHANG Jiang, WANG Yu-shu. Screening and Functional Analysis of UGT Genes Involved in the Flavonoid Biosynthesis of Brassica oleracea var. acephala [J]. Biotechnology Bulletin, 2022, 38(11): 194-201. |
[12] | ZHAO Yu-xue, WANG Yun, YU Lu-yao, LIU Jing-jing, SI Jin-ping, ZHANG Xin-feng, ZHANG Lei. Structure and Application of C-glycosyltransferases in Plants [J]. Biotechnology Bulletin, 2022, 38(10): 18-28. |
[13] | ZHANG Chan, YAO Guang-long, ZHANG Jun-feng, YU Jing, YANG Dong-mei, CHEN Ping, WU You-gen. Research Progress on Patchoulol Molecular Regulation and Synthetic Biology in Pogostemon cablin [J]. Biotechnology Bulletin, 2021, 37(8): 55-64. |
[14] | LI Jing, FENG Na, WANG Sheng-yang, LIN Zhan-xi. Research Progress in Chemical Constituents of Taiwanofungus camphoratum and Its Pharmacological Activities [J]. Biotechnology Bulletin, 2021, 37(11): 14-31. |
[15] | XIE Wei, HAO Zhi-peng, GUO Lan-ping, ZHANG Xin, ZHANG Shu-bin, WANG You-shan, CHEN Bao-dong. Research Advances in Terpenoids Synthesis and Accumulation in Plants as Influenced by Arbuscular Mycorrhizal Symbiosis [J]. Biotechnology Bulletin, 2020, 36(9): 49-63. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||