Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (1): 269-277.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0419
Previous Articles Next Articles
GAO Qi-yu1,2(), XU Guang-cui3, CUI Cai-xia1, ZHANG Wen-bo1
Received:
2021-04-01
Online:
2022-01-26
Published:
2022-02-22
GAO Qi-yu, XU Guang-cui, CUI Cai-xia, ZHANG Wen-bo. Research Progress in Microbial Ferritin[J]. Biotechnology Bulletin, 2022, 38(1): 269-277.
[1] |
Sugio T, Kuwano H, Hamago Y, et al. Existence of a tungsten-binding protein in Acidithiobacillus ferrooxidans AP19-3[J]. J Biosci Bioeng, 2004, 97(6):378-382.
doi: 10.1016/S1389-1723(04)70222-4 URL |
[2] |
Bradley JM, Le Brun NE, Moore GR. Ferritins:furnishing proteins with iron[J]. J Biol Inorg Chem, 2016, 21(1):13-28.
doi: 10.1007/s00775-016-1336-0 pmid: 26825805 |
[3] | Laufberge V. Sur la cristallisation dela ferritin[J]. Bulletin de la Société de Chimie Biologique, 1937, 19:1575-1582. |
[4] | 陈静, 赵永亮, 王丹. 铁蛋白研究现状[J]. 河南师范大学学报:自然科学版, 2010, 38(1):152-155. |
Chen J, Zhao YL, Wang D. Present research situation of ferritin[J]. J Henan Norm Univ:Nat Sci, 2010, 38(1):152-155. | |
[5] | 王玲, 吴洋, 张盛, 等. 铁蛋白的生物工程应用[J]. 中国生物工程杂志, 2018, 38(6):77-85. |
Wang L, Wu Y, Zhang S, et al. Bioengineering application of ferritin[J]. China Biotechnol, 2018, 38(6):77-85. | |
[6] |
Morrissey J, Bowler C. Iron utilization in marine cyanobacteria and eukaryotic algae[J]. Front Microbiol, 2012, 3:43.
doi: 10.3389/fmicb.2012.00043 pmid: 22408637 |
[7] |
de Alcântara NR, de Oliveira FM, Garcia W, et al. Dps protein is related to resistance of Mycobacterium abscessus subsp. massiliense against stressful conditions[J]. Appl Microbiol Biotechnol, 2020, 104(11):5065-5080.
doi: 10.1007/s00253-020-10586-z URL |
[8] |
Rahmanpour R, Bugg TD. Characterisation of Dyp-type peroxidases from Pseudomonas fluorescens Pf-5:Oxidation of Mn(II)and polymeric lignin by Dyp1B[J]. Arch Biochem Biophys, 2015, 574:93-98.
doi: 10.1016/j.abb.2014.12.022 pmid: 25558792 |
[9] |
Gabashvili AN, Chmelyuk NS, Efremova MV, et al. Encapsulins—bacterial protein nanocompartments:structure, properties, and application[J]. Biomolecules, 2020, 10(6):966.
doi: 10.3390/biom10060966 URL |
[10] |
Zeth K, Hoiczyk E, Okuda M. Ferroxidase-mediated iron oxide biomineralization:novel pathways to multifunctional nanoparticles[J]. Trends Biochem Sci, 2016, 41(2):190-203.
doi: 10.1016/j.tibs.2015.11.011 URL |
[11] |
Chiou B, Connor J. Emerging and dynamic biomedical uses of ferritin[J]. Pharmaceuticals, 2018, 11(4):124.
doi: 10.3390/ph11040124 URL |
[12] | 孙雪松, 何庆瑜. 含铁蛋白介导的铁转运分子机制[J]. 化学进展, 2007, 19(12):1986-1990. |
Sun XS, He QY. Molecular mechanism of iron transport mediated by iron-containing proteins[J]. Prog Chem, 2007, 19(12):1986-1990. | |
[13] |
Pulliainen AT, Kauko A, Haataja S, et al. Dps/Dpr ferritin-like protein:insights into the mechanism of iron incorporation and evidence for a central role in cellular iron homeostasis in Streptococcus suis[J]. Mol Microbiol, 2005, 57(4):1086-1100.
pmid: 16091046 |
[14] |
Arosio P, Elia L, Poli M. Ferritin, cellular iron storage and regulation[J]. IUBMB Life, 2017, 69(6):414-422.
doi: 10.1002/iub.1621 pmid: 28349628 |
[15] |
Zeth K, Hoiczyk E, Okuda M. Ferroxidase-mediated iron oxide biomineralization:novel pathways to multifunctional nanoparticles[J]. Trends Biochem Sci, 2016, 41(2):190-203.
doi: 10.1016/j.tibs.2015.11.011 URL |
[16] |
Pfaffen S, Bradley JM, Abdulqadir R, et al. A diatom ferritin optimized for iron oxidation but not iron storage[J]. J Biol Chem, 2015, 290(47):28416-28427.
doi: 10.1074/jbc.M115.669713 URL |
[17] |
Zhang Y, Orner BP. Self-assembly in the ferritin nano-cage protein superfamily[J]. Int J Mol Sci, 2011, 12(8):5406-5421.
doi: 10.3390/ijms12085406 pmid: 21954367 |
[18] |
Stillman TJ, Connolly PP, Latimer CL, et al. Insights into the effects on metal binding of the systematic substitution of five key glutamate ligands in the ferritin of Escherichia coli[J]. J Biol Chem, 2003, 278(28):26275-26286.
pmid: 12730190 |
[19] |
Bou-Abdallah F, Paliakkara J, Melman G, et al. Reductive mobilization of iron from intact ferritin:mechanisms and physiological implication[J]. Pharmaceuticals, 2018, 11(4):120.
doi: 10.3390/ph11040120 URL |
[20] |
Granick S, Michaelis L. Ferritin[J]. J Biol Chem, 1943, 147(1):91-97.
doi: 10.1016/S0021-9258(18)72416-2 URL |
[21] |
Honarmand Ebrahimi K, Bill E, Hagedoorn PL, et al. The catalytic center of ferritin regulates iron storage via Fe(II)-Fe(III)displacement[J]. Nat Chem Biol, 2012, 8(11):941-948.
doi: 10.1038/nchembio.1071 pmid: 23001032 |
[22] |
Gao QY, Tang DP, Song P, et al. Bio-adsorption and Bio-transformation of arsenic by Acidithiobacillus ferrooxidans BY3[J]. Int Microbiol, 2018, 21(4):207-214.
doi: 10.1007/s10123-018-0017-y URL |
[23] |
Honarmand Ebrahimi K, Hagedoorn PL, Hagen WR. Unity in the biochemistry of the iron-storage proteins ferritin and bacterioferritin[J]. Chem Rev, 2015, 115(1):295-326.
doi: 10.1021/cr5004908 pmid: 25418839 |
[24] | Le Brun NE, Crow A, Murphy ME, et al. Iron core mineralisation in prokaryotic ferritins[J]. Biochim Biophys Acta, 2010, 1800(8):732-744. |
[25] |
Linder MC. Mobilization of stored iron in mammals:a review[J]. Nutrients, 2013, 5(10):4022-4050.
doi: 10.3390/nu5104022 pmid: 24152745 |
[26] | 黄河清, 张凤章, 陈灿和, 等. 细菌铁蛋白释放铁的动力学研究[J]. 生物物理学报, 1996, 12(1):33-38. |
Huang HQ, Zhang FZ, Chen CH, et al. Studies on kinetics of iron releasing from bacterial ferritin[J]. Acta Biophys Sin, 1996, 12(1):33-38 | |
[27] |
La A, Nguyen T, Tran K, et al. Mobilization of iron from ferritin:new steps and details[J]. Metallomics, 2018, 10(1):154-168.
doi: 10.1039/c7mt00284j pmid: 29260183 |
[28] |
Sakurai K, Nabeyama A, Fujimoto Y. Ascorbate-mediated iron release from ferritin in the presence of alloxan[J]. Biometals, 2006, 19(3):323-333.
pmid: 16799870 |
[29] |
Koochana PK, Mohanty A, Subhadarshanee B, et al. Phenothiazines and phenoxazines:as electron transfer mediators for ferritin iron release[J]. Dalton Trans, 2019, 48(10):3314-3326.
doi: 10.1039/C8DT04383C URL |
[30] |
Sankari S, O’Brian MR. A bacterial iron exporter for maintenance of iron homeostasis[J]. J Biol Chem, 2014, 289(23):16498-16507.
doi: 10.1074/jbc.M114.571562 pmid: 24782310 |
[31] |
Guan G, Pinochet-Barros A, Gaballa A, et al. PfeT, a P1B4 -type ATPase, effluxes ferrous iron and protects Bacillus subtilis against iron intoxication[J]. Mol Microbiol, 2015, 98(4):787-803.
doi: 10.1111/mmi.2015.98.issue-4 URL |
[32] |
Kim S, Lee JH, Seok JH, et al. Structural basis of novel iron-uptake route and reaction intermediates in ferritins from gram-negative bacteria[J]. J Mol Biol, 2016, 428(24 pt b):5007-5018.
doi: 10.1016/j.jmb.2016.10.022 URL |
[33] |
Zhao G, Bou-Abdallah F, Arosio P, et al. Multiple pathways for mineral core formation in mammalian apoferritin. The role of hydrogen peroxide[J]. Biochemistry, 2003, 42(10):3142-3150.
doi: 10.1021/bi027357v URL |
[34] | 胡菊, 邓建军, 李朝睿, 等. 铁蛋白铁氧化沉淀机理的研究进展[J]. 食品工业科技, 2009, 30(12):436-439. |
Hu J, Deng JJ, Li CR, et al. Research progress in mechanism of iron oxidative deposition in ferritin[J]. Sci Technol Food Ind, 2009, 30(12):436-439. | |
[35] |
Khare G, Nangpal P, Tyagi AK. Differential roles of iron storage proteins in maintaining the iron homeostasis in Mycobacterium tuberculosis[J]. PLoS One, 2017, 12(1):e0169545.
doi: 10.1371/journal.pone.0169545 URL |
[36] |
Rivera M. Bacterioferritin:structure, dynamics, and protein-protein interactions at play in iron storage and mobilization[J]. Acc Chem Res, 2017, 50(2):331-340.
doi: 10.1021/acs.accounts.6b00514 URL |
[37] |
Andrews SC. Iron storage in bacteria[J]. Adv Microb Physiol, 1998, 40:281-351.
pmid: 9889981 |
[38] | 谭潇, 李冉辉, 游晓星, 等. 鲍曼不动杆菌铁蛋白的抗氧化功能研究[J]. 微生物学通报, 2014, 41(12):2474-2480. |
Tan X, Li RH, You XX, et al. The anti-oxidative activity of Acinetobacter baumannii ferritin protein[J]. Microbiol China, 2014, 41(12):2474-2480. | |
[39] |
McHugh CA, Fontana J, Nemecek D, et al. A virus capsid-like nanocompartment that stores iron and protects bacteria from oxidative stress[J]. EMBO J, 2014, 33(17):1896-1911.
doi: 10.15252/embj.201488566 URL |
[40] |
He DD, Hughes S, Vanden-Hehir S, et al. Structural characterization of encapsulated ferritin provides insight into iron storage in bacterial nanocompartments[J]. eLife, 2016, 5:e18972.
doi: 10.7554/eLife.18972 URL |
[41] |
Stupka I, Heddle JG. Artificial protein cages - inspiration, construction, and observation[J]. Curr Opin Struct Biol, 2020, 64:66-73.
doi: 10.1016/j.sbi.2020.05.014 URL |
[42] | 范克龙, 周萌, 阎锡蕴. 细菌生产人铁蛋白的新功能及应用[J]. 微生物学通报, 2014, 41(3):520-538. |
Fan KL, Zhou M, Yan XY. Novel properties and applications of human ferritin expressed by Escherichia coli[J]. Microbiol China, 2014, 41(3):520-538. | |
[43] |
Panahandeh S, Li SY, Zandi R. The equilibrium structure of self-assembled protein nano-cages[J]. Nanoscale, 2018, 10(48):22802-22809.
doi: 10.1039/c8nr07202g pmid: 30516220 |
[44] | 张瑜, 刘中车, 王丽君, 等. N端延长对大肠杆菌铁蛋白结构稳定性及其自组装的影响[J]. 南京林业大学学报:自然科学版, 2017, 41(1):35-41. |
Zhang Y, Liu ZC, Wang LJ, et al. Effects of N-terminal elongation on the stability and self-assembly of Escherichia coli bacterioferritin[J]. J Nanjing For Univ:Nat Sci Ed, 2017, 41(1):35-41. | |
[45] |
杨彩云, 曹长乾, 蔡垚, 等. 铁蛋白表面修饰及其应用[J]. 化学进展, 2016, 28(1):91-102.
doi: 10.7536/PC150633 |
Yang CY, Cao CQ, Cai Y, et al. The surface modification of ferritin and its applications[J]. Prog Chem, 2016, 28(1):91-102. | |
[46] |
Liu X, Lopez PA, Giessen TW, et al. Engineering genetically-encoded mineralization and magnetism via directed evolution[J]. Sci Rep, 2016, 6:38019.
doi: 10.1038/srep38019 URL |
[47] |
Schoonen L, van Hest JC. Functionalization of protein-based nanocages for drug delivery applications[J]. Nanoscale, 2014, 6(13):7124-7141.
doi: 10.1039/c4nr00915k pmid: 24860847 |
[48] | 季鹏, 王思琦, 陈苡蔚, 等. 铁蛋白纳米笼的研究进展[J]. 中国新药杂志, 2020, 29(2):170-175. |
Ji P, Wang SQ, Chen YW, et al. Research progress of ferritin nanocage[J]. Chin J New Drugs, 2020, 29(2):170-175. | |
[49] |
Okuda M, Suzumoto Y, Yamashita I. Bioinspired synjournal of homogenous cerium oxide nanoparticles and two- or three-dimensional nanoparticle arrays using protein supramolecules[J]. Cryst Growth Des, 2011, 11(6):2540-2545.
doi: 10.1021/cg200299y URL |
[50] |
Jutz G, van Rijn P, Santos Miranda B, et al. Ferritin:a versatile building block for bionanotechnology[J]. Chem Rev, 2015, 115(4):1653-1701.
doi: 10.1021/cr400011b URL |
[51] |
Theil EC. Ferritin protein nanocages use ion channels, catalytic sites, and nucleation channels to manage iron/oxygen chemistry[J]. Curr Opin Chem Biol, 2011, 15(2):304-311.
doi: 10.1016/j.cbpa.2011.01.004 URL |
[52] |
Mazzucchelli S, Truffi M, Baccarini F, et al. H-Ferritin-nanocaged olaparib:a promising choice for both BRCA-mutated and sporadic triple negative breast cancer[J]. Sci Rep, 2017, 7(1):7505.
doi: 10.1038/s41598-017-07617-7 pmid: 28790402 |
[53] |
Liu X, Theil EC. Ferritins:dynamic management of biological iron and oxygen chemistry[J]. Acc Chem Res, 2005, 38(3):167-175.
doi: 10.1021/ar0302336 URL |
[54] | Williams SM, Chandran AV, Prakash S, et al. A mutation directs the structural switch of DNA binding proteins under starvation to a ferritin-like protein cage[J]. Structure, 2017, 25(9):1449-1454. e3. |
[55] | Hu QJ, Wang JD, Lu GM. Research progress of ferritin as a new MRI reporter gene in molecular imaging[J]. Chinese Journal of Medical Imaging Technology, 2008, 24(9):1480-1482. |
[1] | LU Xin-hua, SUN De-quan, ZHANG Xiu-mei. Genetic Transformation of Plant Cells Mediated by Mesoporous Silica Nanoparticles [J]. Biotechnology Bulletin, 2022, 38(7): 194-204. |
[2] | SUN De-quan, LU Xin-hua, LI Wei-ming, HU Yu-lin, DUAN Ya-jie, PANG Zhen-cai, HU Hui-gang. Application of Mesoporous Silica Nanoparticles in Agriculture [J]. Biotechnology Bulletin, 2022, 38(5): 228-239. |
[3] | ZHANG Man-man, HE Teng-xia, DING Chen-yu, CHEN Meng-ping, WU Qi-feng. Research Progress of the Toxic Effects and Detoxification Measures of Engineered Nanoparticles in Biological Nitrogen-removing Process [J]. Biotechnology Bulletin, 2022, 38(2): 227-236. |
[4] | QIAO Zi-peng, WANG Qi-zhi, YANG Dao-mao, RUAN Li-ping. Research Progress in Fungi-mediated Biosynthesis of Sliver Nanoparticles [J]. Biotechnology Bulletin, 2021, 37(3): 185-197. |
[5] | WANG Lei-lei, DONG Lian-hua, YANG Jing-ya, WANG Xia. Research Progress of Gene Mutation Detection Methods Based on Nanoparticles [J]. Biotechnology Bulletin, 2021, 37(3): 241-251. |
[6] | ZHANG Wei-ye, SONG Hao-zhi, LIU Xing-jian, LI Yi-nü, ZHANG Zhi-fang. Fusion Expression of Ferritin and Foot-and-Mouth Disease Virus VP1 in Escherichia coli and Self-assembly of Nanoparticles [J]. Biotechnology Bulletin, 2021, 37(2): 96-102. |
[7] | YAO Lin-tong, LIU Ya-ting, LIU Ya-jing, CHEN Zhen-zhen. Research Progress on Mesoporous Silica in Cancer Therapy [J]. Biotechnology Bulletin, 2019, 35(2): 182-191. |
[8] | MA Kun,ZHAO Hong-xin,LI Qian,WANG Jia-rong,SUN Hong-bin. Research Progress on the Function and Application of Membrane Protein Mms6 of Magnetosome [J]. Biotechnology Bulletin, 2017, 33(9): 48-55. |
[9] | WU Xiao-li, LIU Ying-ying, JIANG Shi-jie, CHEN Yun, LIU Xiao-li, WANG Yu-zhou, PING Shu-zhen, WANG Jin. Effect of Ferritin DrfE on Antioxidant Enzyme Activity in Deinococcus radiodurans [J]. Biotechnology Bulletin, 2017, 33(2): 164-171. |
[10] | Xing Zhaohui, Su Yuelong, Zhang Qi, Ruan Xinyi, Lin Yan, Wang Xinze, Kong Hainan. Research Progress on Cellulase Immobilized by Magnetic Nanoparticles as Carriers [J]. Biotechnology Bulletin, 2015, 31(8): 59-65. |
[11] | Li Zhipeng, Liu Qingyou, Shi Deshun. Research Progress on Application of Ferritin Nanoparticles in the Field of Biomedicine [J]. Biotechnology Bulletin, 2015, 31(10): 38-47. |
[12] | Ren Jinggang, Cheng Chao, Zhong Conghao, Zhang li, Li Rongxiu. Fe3O4 Magnetic Dextran Nanoparticles Modified with SPA Ligand for IgG Purification [J]. Biotechnology Bulletin, 2014, 0(7): 201-208. |
[13] | Hu Weilian, Dai Dehui. The Isolation,Screening and Identification of CaCO3 Mineralization Strain from Sand Boon [J]. Biotechnology Bulletin, 2014, 0(2): 171-175. |
[14] | Gao Qiyu, Xu Guangcui, Chen Hongli, Zhou Chenyan. Research Progress of Nanoparticles for Immobilized Enzymes [J]. Biotechnology Bulletin, 2013, 0(6): 20-24. |
[15] | Lu Yanmin. Progress of Using Nanoparticles as Gene Vector [J]. Biotechnology Bulletin, 2013, 0(2): 61-66. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||