Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (2): 211-220.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0522
Previous Articles Next Articles
YANG Dong-ya(), QI Rui-xue LI, Zhao-xuan , LIN Wei, MA Hui, ZHANG Xue-yan()
Received:
2022-04-27
Online:
2023-02-26
Published:
2023-03-07
YANG Dong-ya, QI Rui-xue LI, Zhao-xuan , LIN Wei, MA Hui, ZHANG Xue-yan. Screening, Identification and Growth-promoting Effect of Antagonistic Bacillus spp. Against Cucumber Fusarium solani[J]. Biotechnology Bulletin, 2023, 39(2): 211-220.
抑菌率Inhibition rate/% | 菌株数目Number of strains |
---|---|
60-70 | 5 |
50-60 | 59 |
40-50 | 36 |
30-40 | 51 |
30以下 | 192 |
Table 1 Bacteriostasis of isolated strains against Fusarium solani of cucumber
抑菌率Inhibition rate/% | 菌株数目Number of strains |
---|---|
60-70 | 5 |
50-60 | 59 |
40-50 | 36 |
30-40 | 51 |
30以下 | 192 |
菌株Strain | 菌落直径Colony diameter/mm | 抑菌率Inhibition rate/% |
---|---|---|
XY-1 | 24.67±0.17b | 65.90±0.23a |
XY-13 | 24.50±0.29b | 66.13±0.40a |
XY-53 | 28.33±0.17a | 60.83±0.23b |
Table 2 Inhibition rate of bacterial culture supernatant against Fusarium solani of cucumber
菌株Strain | 菌落直径Colony diameter/mm | 抑菌率Inhibition rate/% |
---|---|---|
XY-1 | 24.67±0.17b | 65.90±0.23a |
XY-13 | 24.50±0.29b | 66.13±0.40a |
XY-53 | 28.33±0.17a | 60.83±0.23b |
菌株 Strain | 颜色 Color | 菌落形状 Colony shape | 边缘 Edge | 表面光滑凸起与否 Surface is smooth and bump or not | 表面干湿 Surface is dry or wet | 色素产生 Pigment |
---|---|---|---|---|---|---|
XY-1 | 白色 | 圆形 | 光滑 | 表面粗糙不规则,隆起有褶皱 | 干燥 | 无色素产生 |
XY-13 | 白色 | 圆形 | 光滑 | 表面隆起有褶皱 | 湿润 | 无色素产生 |
XY-53 | 乳白色 | 圆形 | 光滑 | 表面凸起 | 湿润 | 无色素产生 |
Table 3 Morphology and characteristics of antagonistic bacteria
菌株 Strain | 颜色 Color | 菌落形状 Colony shape | 边缘 Edge | 表面光滑凸起与否 Surface is smooth and bump or not | 表面干湿 Surface is dry or wet | 色素产生 Pigment |
---|---|---|---|---|---|---|
XY-1 | 白色 | 圆形 | 光滑 | 表面粗糙不规则,隆起有褶皱 | 干燥 | 无色素产生 |
XY-13 | 白色 | 圆形 | 光滑 | 表面隆起有褶皱 | 湿润 | 无色素产生 |
XY-53 | 乳白色 | 圆形 | 光滑 | 表面凸起 | 湿润 | 无色素产生 |
试验项目Test project | 结果 Result | ||||
---|---|---|---|---|---|
XY-1 | XY-13 | XY-53 | |||
生理生化特征 Physiological and biochemical characteristics | 甲基红 Methyl red | - | - | - | |
接触酶 Catalase | + | + | + | ||
氧化酶Oxidase | + | + | + | ||
淀粉水解 Amylum hydrolysis | + | + | - | ||
明胶液化Gelatin experiment | + | + | + | ||
乙酰甲基甲醇(V-P)Voges-Proskauer | + | + | + | ||
葡萄糖氧化发酵Oxidation-fermentation of glucose | + | + | + | ||
抗病促生特性 Antagonistic growth-promoting characteristics | 溶磷能力 Ability of releasing phosphorus | + | + | + | |
固氮能力 Nitrogen-fixing ability | + | + | + | ||
ACC脱氨酶活性 ACC deaminase activity | + | + | + | ||
解钾能力Ability of releasing potassium | - | - | - | ||
铁载体 Siderophore | - | - | - | ||
蛋白酶 Protease | + | + | + | ||
几丁质酶 Chitinase | - | - | - | ||
果胶酶 Pectinase | - | - | - | ||
纤维素酶 Cellulase | - | - | - |
Table 4 Test results of physiological and biochemical and antagonistic growth-promoting characteristics of XY-1, XY-13, and XY-53
试验项目Test project | 结果 Result | ||||
---|---|---|---|---|---|
XY-1 | XY-13 | XY-53 | |||
生理生化特征 Physiological and biochemical characteristics | 甲基红 Methyl red | - | - | - | |
接触酶 Catalase | + | + | + | ||
氧化酶Oxidase | + | + | + | ||
淀粉水解 Amylum hydrolysis | + | + | - | ||
明胶液化Gelatin experiment | + | + | + | ||
乙酰甲基甲醇(V-P)Voges-Proskauer | + | + | + | ||
葡萄糖氧化发酵Oxidation-fermentation of glucose | + | + | + | ||
抗病促生特性 Antagonistic growth-promoting characteristics | 溶磷能力 Ability of releasing phosphorus | + | + | + | |
固氮能力 Nitrogen-fixing ability | + | + | + | ||
ACC脱氨酶活性 ACC deaminase activity | + | + | + | ||
解钾能力Ability of releasing potassium | - | - | - | ||
铁载体 Siderophore | - | - | - | ||
蛋白酶 Protease | + | + | + | ||
几丁质酶 Chitinase | - | - | - | ||
果胶酶 Pectinase | - | - | - | ||
纤维素酶 Cellulase | - | - | - |
Fig. 2 Phylogenetic tree of strain XY-1, XY-13 and XY-53 and PCR electropherogram with specific primer A: Construction of phylogenetic tree of XY-1, XY-13 and XY-53 strains based on 16S rDNA gene sequences; B: gel electrophoresis of ropA and gyrA gene sequences of XY-1, XY-13 and XY-53 strains; C: construction of phylogenetic tree of XY-1 strain based on gyrA gene sequence; D: construction of phylogenetic tree of XY-13 and XY-53 strains based on ropA gene sequence
处理 Treatment | 株高 Stem length/cm | 茎粗 Stem diameter/mm | 叶绿素含量Chlorophyll content | 鲜重Fresh weight/g | 干重Dry weight/g | ||||
---|---|---|---|---|---|---|---|---|---|
地上部 Above ground | 地下部 Below ground | 地上部 Above ground | 地下部 Below ground | ||||||
CK1 | 5.38±0.22b | 4.07±0.09b | 37.3±1.33c | 2.007±0.060c | 0.664±0.028a | 0.154±0.014b | 0.061±0.002 7b | ||
XY-1 | 7.38±0.23a | 4.34±0.07a | 49.00±1.11b | 2.670±0.114b | 0.767±0.026a | 0.198±0.012ab | 0.069±0.002 7b | ||
XY-13 | 6.84±0.17a | 4.26±0.08ab | 52.4±1.33ab | 2.786±0.048b | 0.782±0.049a | 0.199±0.018ab | 0.075±0.006 2ab | ||
XY-53 | 7.26±0.14a | 4.39±0.07a | 53.5±1.53a | 3.041±0.026a | 0.779±0.080a | 0.225±0.021a | 0.084±0.006 5a |
Table 5 Effects of strain XY-1, XY-13 and XY-53 on the growth of cucumber seedlings
处理 Treatment | 株高 Stem length/cm | 茎粗 Stem diameter/mm | 叶绿素含量Chlorophyll content | 鲜重Fresh weight/g | 干重Dry weight/g | ||||
---|---|---|---|---|---|---|---|---|---|
地上部 Above ground | 地下部 Below ground | 地上部 Above ground | 地下部 Below ground | ||||||
CK1 | 5.38±0.22b | 4.07±0.09b | 37.3±1.33c | 2.007±0.060c | 0.664±0.028a | 0.154±0.014b | 0.061±0.002 7b | ||
XY-1 | 7.38±0.23a | 4.34±0.07a | 49.00±1.11b | 2.670±0.114b | 0.767±0.026a | 0.198±0.012ab | 0.069±0.002 7b | ||
XY-13 | 6.84±0.17a | 4.26±0.08ab | 52.4±1.33ab | 2.786±0.048b | 0.782±0.049a | 0.199±0.018ab | 0.075±0.006 2ab | ||
XY-53 | 7.26±0.14a | 4.39±0.07a | 53.5±1.53a | 3.041±0.026a | 0.779±0.080a | 0.225±0.021a | 0.084±0.006 5a |
处理 Treatment | XY-1 | XY-13 | XY-53 | ||||||
---|---|---|---|---|---|---|---|---|---|
病情指数 Disease index | 防病效果 Control efficacy/% | 病情指数 Disease index | 防病效果 Control efficieny/% | 病情指数 Disease index | 防病效果 Control efficieny/% | ||||
CK2 | 95.96±1.36a | - | 95.96±1.36a | - | 95.96±1.36a | - | |||
T1 | 33.33±2.55c | 65.12±2.65a | 26.67±0.96c | 72.09±1.00a | 13.33±2.55d | 82.86±2.66a | |||
T2 | 43.33±3.33c | 54.66±3.47a | 70.00±5.36b | 26.75±5.58b | 56.67±2.89c | 40.70±3.01b | |||
T3 | 60.00±4.41b | 37.21±4.59b | 66.67±2.89b | 30.23±3.01b | 83.33±3.47b | 12.80±3.62c |
Table 6 Control efficiency of strain XY-1, XY-13, and XY-53 on cucumber root rot
处理 Treatment | XY-1 | XY-13 | XY-53 | ||||||
---|---|---|---|---|---|---|---|---|---|
病情指数 Disease index | 防病效果 Control efficacy/% | 病情指数 Disease index | 防病效果 Control efficieny/% | 病情指数 Disease index | 防病效果 Control efficieny/% | ||||
CK2 | 95.96±1.36a | - | 95.96±1.36a | - | 95.96±1.36a | - | |||
T1 | 33.33±2.55c | 65.12±2.65a | 26.67±0.96c | 72.09±1.00a | 13.33±2.55d | 82.86±2.66a | |||
T2 | 43.33±3.33c | 54.66±3.47a | 70.00±5.36b | 26.75±5.58b | 56.67±2.89c | 40.70±3.01b | |||
T3 | 60.00±4.41b | 37.21±4.59b | 66.67±2.89b | 30.23±3.01b | 83.33±3.47b | 12.80±3.62c |
处理 Treatment | 株高 Stem length/cm | 茎粗 Stem diameter/mm | 叶绿素含量 Chlorophyll content | 鲜重 Fresh weight/g | 干重 Dry weight/g | ||||
---|---|---|---|---|---|---|---|---|---|
地上部 Above ground | 地下部 Below ground | 地上部 Above ground | 地下部 Below ground | ||||||
CK2 | 3.85±0.13b | 3.42±0.11b | 33.80±1.15b | 1.68±0.09b | 0.66±0.05a | 0.148±0.01a | 0.024±0.003b | ||
T1 | 5.37±0.23a | 4.01±0.16a | 40.57±1.67a | 1.93±0.06ab | 0.89±0.16a | 0.177±0.01a | 0.026±0.002b | ||
T2 | 5.58±0.26a | 3.81±0.22ab | 41.68±1.18a | 1.91±0.06ab | 0.66±0.09a | 0.155±0.01a | 0.079±0.032a | ||
T3 | 5.77±0.28a | 3.94±0.13a | 39.52±1.76a | 1.98±0.12a | 0.68±0.11a | 0.156±0.02a | 0.028±0.002b |
Table 7 Growth-promoting effects of strain XY-1, XY-13 and XY-53 on cucumber
处理 Treatment | 株高 Stem length/cm | 茎粗 Stem diameter/mm | 叶绿素含量 Chlorophyll content | 鲜重 Fresh weight/g | 干重 Dry weight/g | ||||
---|---|---|---|---|---|---|---|---|---|
地上部 Above ground | 地下部 Below ground | 地上部 Above ground | 地下部 Below ground | ||||||
CK2 | 3.85±0.13b | 3.42±0.11b | 33.80±1.15b | 1.68±0.09b | 0.66±0.05a | 0.148±0.01a | 0.024±0.003b | ||
T1 | 5.37±0.23a | 4.01±0.16a | 40.57±1.67a | 1.93±0.06ab | 0.89±0.16a | 0.177±0.01a | 0.026±0.002b | ||
T2 | 5.58±0.26a | 3.81±0.22ab | 41.68±1.18a | 1.91±0.06ab | 0.66±0.09a | 0.155±0.01a | 0.079±0.032a | ||
T3 | 5.77±0.28a | 3.94±0.13a | 39.52±1.76a | 1.98±0.12a | 0.68±0.11a | 0.156±0.02a | 0.028±0.002b |
[1] | 朱绍坤, 赵文东, 孙凌俊, 等. 连作障碍及缓解措施研究进展[J]. 北方果树, 2018(4): 1-3, 11. |
Zhu SK, Zhao WD, Sun LJ, et al. Advances in alleviating the replant problem[J]. North Fruits, 2018(4): 1-3, 11. | |
[2] | 王素亭. 设施蔬菜栽培中连作障碍及防治措施[J]. 吉林蔬菜, 2014(8): 29-30. |
Wang ST. Continuous cropping obstacles and prevention measures in the cultivation of protected vegetables[J]. Jilin Vegetable, 2014(8): 29-30. | |
[3] | 史宣杰, 程俊跃, 刘杰, 等. 温室黄瓜根腐病的发生与综合防治[J]. 河南农业科学, 2010, 39(3): 69-70. |
Shi XJ, Cheng JY, Liu J, et al. Occurrence and integrated control of cucumber root rot in greenhouse[J]. J Henan Agric Sci, 2010, 39(3): 69-70. | |
[4] | 刘心刚, 杨成德, 王振. 西藏设施西(黄)瓜根腐病的分离与鉴定[J]. 甘肃农业大学学报, 2018, 53(2): 80-85. |
Liu XG, Yang CD, Wang Z. Isolation and identification of root rot pathogens on protected cultivation watermelons and cucumbers in Tibet[J]. J Gansu Agric Univ, 2018, 53(2): 80-85. | |
[5] | 刘洋. 茄病镰刀菌瓜类专化型的鉴定及其侵染途径研究[D]. 北京: 中国农业科学院, 2010. |
Liu Y. Studies on identification and infection routes of Fusarium solani f. sp. cucurbitae[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. | |
[6] |
Sallam NA, Riad SN, Mohamed MS, et al. Formulations of Bacillus spp. and Pseudomonas fluorescens for biocontrol of cantaloupe root rot caused by Fusarium solani[J]. J Plant Prot Res, 2013, 53(3): 295-300.
doi: 10.2478/jppr-2013-0044 URL |
[7] |
Agarwal M, Dheeman S, Dubey RC, et al. Differential antagonistic responses of Bacillus pumilus MSUA3 against Rhizoctonia solani and Fusarium oxysporum causing fungal diseases in Fagopyrum escul Moench[J]. Microbiol Res, 2017, 205: 40-47.
doi: S0944-5013(17)30534-7 pmid: 28942843 |
[8] | 程园园. 苜蓿根际芽孢杆菌的分离鉴定及特性分析[D]. 哈尔滨: 哈尔滨师范大学, 2015. |
Cheng YY. Isolation, identification and characteristics of Bacillus spp. from rhizosphere of alfalfa[D]. Harbin: Harbin Normal University, 2015. | |
[9] |
Kim YG, Kang HK, Kwon KD, et al. Antagonistic activities of novel peptides from Bacillus amyloliquefaciens PT14 against Fusarium solani and Fusarium oxysporum[J]. J Agric Food Chem, 2015, 63(48): 10380-10387.
doi: 10.1021/acs.jafc.5b04068 URL |
[10] |
Mnif I, Hammami I, Triki MA, et al. Antifungal efficiency of a lipopeptide biosurfactant derived from Bacillus subtilis SPB1 versus the phytopathogenic fungus, Fusarium solani[J]. Environ Sci Pollut Res Int, 2015, 22(22): 18137-18147.
doi: 10.1007/s11356-015-5005-6 URL |
[11] | 杨晓燕, 王钰鑫, 叶伟伟, 等. 枯草芽孢杆菌对几种植物病原真菌的抑菌活性[J]. 工业微生物, 2018, 48(6): 32-38. |
Yang XY, Wang YX, Ye WW, et al. Antifungal activity of Bacillus subtilis strain against several plant pathogenic fungi[J]. Ind Microbiol, 2018, 48(6): 32-38. | |
[12] | Anjum MZ, Ghazanfar MU, Hussain I. Bio-efficacy of Trichoderma isolates and Bacillus subtilis against root rot of muskmelon Cucumis melo L. caused by Phytophthora drechsleri under controlled and field conditions[J]. Pak J Bot, 2019, 51(5): 1877-1882. |
[13] |
Punja ZK, Tirajoh A, Collyer D, et al. Efficacy of Bacillus subtilis strain QST 713(Rhapsody)against four major diseases of greenhouse cucumbers[J]. Crop Prot, 2019, 124: 104845.
doi: 10.1016/j.cropro.2019.104845 URL |
[14] |
Freitas MA, Medeiros FHV, Melo IS, et al. Stem inoculation with bacterial strains Bacillus amyloliquefaciens(GB03)and Microbacterium imperiale(MAIIF2a)mitigates Fusarium root rot in cassava[J]. Phytoparasitica, 2019, 47(1): 135-142.
doi: 10.1007/s12600-018-0706-2 |
[15] | 林壁润, 伍尚忠. 土传病害抑病土研究进展[J]. 生物防治通报, 1992, 8(3): 137-140. |
Lin BR, Wu SZ. A review on research progress of suppressive soil against soil-borne diseases[J]. Chin J Biol Control, 1992, 8(3): 137-140. | |
[16] | 周敬伟. 芽孢杆菌属诱导真菌形成厚垣孢子的环肽抗生素的分离及鉴定[D]. 云南: 云南大学, 2010. |
ZhouJW. Isolation and identification of cyclopeptide antibiotics that induce fungi to form chlamydospores by Bacillus[D]. Yunnan: Yunnan University, 2010. | |
[17] | 杨革. 微生物学实验教程[M]. 2版. 北京: 科学出版社, 2010. |
Yang G. Microbiology experiment[M]. Beijing: Science Press, 2010. | |
[18] | 蒋凯丽, 周新丽, 高海燕. 一株具有拮抗作用的解淀粉芽孢杆菌的筛选、鉴定及生物学特性研究[J]. 工业微生物, 2020, 50(1): 8-13. |
Jiang KL, Zhou XL, Gao HY. Screening, identification and biological characteristics of an antagonistic Bacillus Amyloliquefaciens[J]. Ind Microbiol, 2020, 50(1): 8-13. | |
[19] |
Yu XM, Ai CX, Xin L, et al. The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper[J]. Eur J Soil Biol, 2011, 47(2): 138-145.
doi: 10.1016/j.ejsobi.2010.11.001 URL |
[20] | 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. |
Dong XZ, Cai MY. Common bacterial system identification manual[M]. Beijing: Science Press, 2001. | |
[21] |
Wu X, Xie Y, Qiao J, et al. Rhizobacteria strain from a hypersaline environment promotes plant growth of Kengyilia thoroldiana[J]. Microbiology, 2019, 88(2): 220-231.
doi: 10.1134/S0026261719020127 URL |
[22] |
Nautiyal CS. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms[J]. FEMS Microbiol Lett, 1999, 170(1): 265-270.
doi: 10.1111/j.1574-6968.1999.tb13383.x pmid: 9919677 |
[23] | 韩泽宇. 黄瓜高效耐盐促生菌株筛选鉴定及复合菌剂的制备[D]. 银川: 宁夏大学, 2019. |
Han ZY. The screening and identification of effective salt-tolerant and growth-promoting bacteria strains of cucumber and the preparation of the bacterial compound[D]. Yinchuan: Ningxia University, 2019. | |
[24] |
Milagres AM, Machuca A, Napoleão D. Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S(CAS)agar plate assay[J]. J Microbiol Methods, 1999, 37(1): 1-6.
pmid: 10395458 |
[25] |
要雅倩, 成娜娜, 李培根, 等. 解淀粉芽胞杆菌Bacillus amyloliquefaciens T-6的分离鉴定及抗病促生潜力[J]. 生物技术通报, 2020, 36(9): 202-210.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0847 |
Yao YQ, Cheng NN, Li PG, et al. Isolation and identification of Bacillus amyloliquefaciens T-6 and its potential of resisting disease and promoting growth[J]. Biotechnol Bull, 2020, 36(9): 202-210.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0847 |
|
[26] | Cao FM, Shen DL, Li J, et al. Multiplex-PCR approach to identify Bacillus species applied in microbial fertilizers[J]. Acta Microbiologica Sinica, 2008, 48(5): 651-656. |
[27] |
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mol Biol Evol, 2016, 33(7): 1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904 |
[28] |
Li BJ, Liu Y, Shi YX, et al. First report of crown rot of grafted cucumber caused by Fusarium solani in China[J]. Plant Dis, 2010, 94(11): 1377.
doi: 10.1094/PDIS-03-10-0217 pmid: 30743650 |
[29] | 江欢欢, 程凯, 杨兴明, 等. 辣椒青枯病拮抗菌的筛选及其生物防治效应[J]. 土壤学报, 2010, 47(6): 1225-1231. |
Jiang HH, Cheng K, Yang XM, et al. Isolation and biological effect of capsicum wilt antagonist(a45)[J]. Acta Pedol Sin, 2010, 47(6): 1225-1231. | |
[30] |
Chauhan AK, Maheshwari DK, Kim K, et al. Termitarium-inhabiting Bacillus endophyticus TSH42 and Bacillus cereus TSH77 colonizing Curcuma longa L.: isolation, characterization, and evaluation of their biocontrol and plant-growth-promoting activities[J]. Can J Microbiol, 2016, 62(10): 880-892.
pmid: 27604298 |
[31] | 李姝江, 朱天辉, 谯天敏, 等. 花椒根腐病生防芽孢杆菌的筛选鉴定及定殖和防治效果[J]. 西北农林科技大学学报: 自然科学版, 2016, 44(4): 114-122. |
Li SJ, Zhu TH, Qiao TM, et al. Screening, identification, colonization and control effect of biocontrol Bacillus sp. against root rot of Zanthoxylum bungeanum Maxim[J]. J Northwest A & F Univ Nat Sci Ed, 2016, 44(4): 114-122. | |
[32] |
Chen QQ, Liu B, Wang JP, et al. Antifungal lipopeptides produced by Bacillus sp. FJAT-14262 isolated from rhizosphere soil of the medicinal plant Anoectochilus roxburghii[J]. Appl Biochem Biotechnol, 2017, 182(1): 155-167.
doi: 10.1007/s12010-016-2317-z URL |
[33] | 梁丽琼, 黄少莉, 邵杭, 等. 水稻基腐病菌拮抗菌解淀粉芽孢杆菌E3菌株的鉴定及抑菌活性[J]. 华南农业大学学报, 2021, 42(4): 51-62. |
Liang LQ, Huang SL, Shao H, et al. Identification of an antagonistic strain Bacillus amyloliquefaciens E3 against Dickeya Zeae and its antimicrobial activity[J]. J South China Agric Univ, 2021, 42(4): 51-62. | |
[34] | Parveen Rani R, Anandharaj M, Hema S, et al. Purification of antilisterial peptide(subtilosin A)from novel Bacillus tequilensis FR9 and demonstrate their pathogen invasion protection ability using human carcinoma cell line[J]. Front Microbiol, 2016, 7: 1910. |
[35] | 史一然, 徐伟慧, 吕智航, 等. 解淀粉芽孢杆菌LZN01对西瓜专化型尖孢镰刀菌的抑制效应[J]. 江苏农业科学, 2019, 47(12): 141-145. |
Shi YR, Xu WH, Lv ZH, et al. Inhibiting effects of Bacillus amyloliquefaciens LZN01 on Fusarium oxysporum f. sp. niveum[J]. Jiangsu Agric Sci, 2019, 47(12): 141-145. | |
[36] |
Haas D, Défago G. Biological control of soil-borne pathogens by fluorescent pseudomonads[J]. Nat Rev Microbiol, 2005, 3(4): 307-319.
doi: 10.1038/nrmicro1129 pmid: 15759041 |
[37] | 杨倩, 裴红宾, 高振峰, 等. 芽孢杆菌ZJM-P5与磷肥互作对红小豆根系及产量的影响[J]. 西北植物学报, 2020, 40(7): 1192-1200. |
Yang Q, Pei HB, Gao ZF, et al. Effect of the interaction between Bacillus ZJM-P5 and phosphate fertilizer on root system and yield of adzuki bean[J]. Acta Bot Boreali Occidentalia Sin, 2020, 40(7): 1192-1200. | |
[38] | 王永强. 解淀粉芽孢杆菌SDTB009的分离鉴定及其对番茄枯萎病的防治研究[D]. 泰安: 山东农业大学, 2020. |
Wang YQ. Isolation and identification of Bacillus amyloliquefaciens SDTB009 and its control effect on tomato Fusarium wilt[D]. Tai'an: Shandong Agricultural University, 2020. | |
[39] |
武利勤, 顾海科, 王青, 等. 石斛内生甲基营养芽胞杆菌的拮抗和促生作用研究[J]. 生物技术通报, 2016, 32(8): 200-206.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.08.029 |
Wu LQ, Gu HK, Wang Q, et al. Antagonistic efficacy and growth-promoting effect of Bacillus methylotrophicus isolated from Dendrobium huoshanense[J]. Biotechnol Bull, 2016, 32(8): 200-206. | |
[40] | 张莹, 秦宇轩, 尚庆茂, 等. 解淀粉芽孢杆菌L-H15的促生与抗病特性研究[J]. 农业机械学报, 2017, 48(12): 284-291, 298. |
Zhang Y, Qin YX, Shang QM, et al. Characteristics of growth-promotion and antibiosis by Bacillus amyloliquefaciens L-H15[J]. Trans Chin Soc Agric Mach, 2017, 48(12): 284-291, 298. | |
[41] | 张翠绵, 贾楠, 马佳, 等. 番茄根际多功能益生芽孢杆菌的筛选与鉴定[J]. 河北农业科学, 2019, 23(4): 47-52. |
Zhang CM, Jia N, Ma J, et al. Screening and identification of multifunctional beneficial Bacillus in tomato rhizosphere soil[J]. J Hebei Agric Sci, 2019, 23(4): 47-52. | |
[42] | Agbodjato NA, Noumavo PA, Adjanohoun A, et al. Synergistic effects of plant growth promoting rhizobacteria and chitosan on in vitro seeds germination, greenhouse growth, and nutrient uptake of maize(Zea mays L.)[J]. Biotechnol Res Int, 2016, 2016: 7830182. |
[43] | 王娟娟. 肥效微生物筛选及对小麦促生效果的研究[D]. 杨凌: 西北农林科技大学, 2019. |
Wang JJ. Fertilizer-functional microbes screen and the study of growth-promoting efficacy on wheat[D]. Yangling: Northwest A & F University, 2019. | |
[44] |
王琪媛, 王甲辰, 叶磊, 等. 含ACC脱氨酶的根际细菌提高植物抗盐性的研究进展[J]. 生物技术通报, 2021, 37(2): 174-186.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0831 |
Wang QY, Wang JC, Ye L, et al. Research advances on enhancement of plant resistance to salinity stress by rhizobacteria containing ACC deaminase[J]. Biotechnol Bull, 2021, 37(2): 174-186. |
[1] | ZHAO Guang-xu, YANG He-tong, SHAO Xiao-bo, CUI Zhi-hao, LIU Hong-guang, ZHANG Jie. Phosphate-solubilizing Properties and Optimization of Cultivation Conditions of Penicillium rubens: A Highly Efficient Phosphate Solubilizer [J]. Biotechnology Bulletin, 2023, 39(9): 71-83. |
[2] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[3] | CHU Rui, LI Zhao-xuan, ZHANG Xue-qing, YANG Dong-ya, CAO Hang-hang, ZHANG Xue-yan. Screening and Identification of Antagonistic Bacillus spp. Against Cucumber Fusarium wilt and Its Biocontrol Effect [J]. Biotechnology Bulletin, 2023, 39(8): 262-271. |
[4] | XU Hong-Yun, LV Jun, YU Cun. Growth Promoting of Pinus massoniana Seedlings Regulated by Rhizosphere Phosphate-solubilizing Paraburkholderia spp. [J]. Biotechnology Bulletin, 2023, 39(6): 274-285. |
[5] | ZHANG Le-le, WANG Guan, LIU Feng, HU Han-qiao, REN Lei. Isolation, Identification and Biocontrol Mechanism of an Antagonistic Bacterium Against Anthracnose on Mango Caused by Colletotrichum gloeosporioides [J]. Biotechnology Bulletin, 2023, 39(4): 277-287. |
[6] | YI Xi, LIAO Hong-dong, ZHENG Jing-yuan. Research Progress in Plant Endophytic Fungi for Root-knot Nematode Control [J]. Biotechnology Bulletin, 2023, 39(3): 43-51. |
[7] | WANG Wei-chen, ZHAO Jin, HUANG Wei-yi, GUO Xin-zhu, LI Wan-ying, ZHANG Zhuo. Research Progress in Metabolites Produced by Bacillus Against Three Common Plant Pathogenic Fungi [J]. Biotechnology Bulletin, 2023, 39(3): 59-68. |
[8] | LUO Ning, JIAO Yang, MAO Zhen-chuan, LI Hui-xia, XIE Bing-yan. Advances of Trichoderma in Controlling Root Knot Nematodes and Cyst Nematodes [J]. Biotechnology Bulletin, 2023, 39(2): 35-50. |
[9] | ZOU Lan, WANG Qian, LI Mu-yi, YE Kun-hao, HUANG Jing. Identification, Biocontrol and Plant Growth-promoting Potential of Endophytic Bacterial Strain JY-3-1R from Aconitum carmichaelii Debx. [J]. Biotechnology Bulletin, 2023, 39(10): 246-255. |
[10] | MA Sai-mai, LI Tong-yuan, MA Yan-jun, HAN Fu-jun, PENG Hai, KONG Wei-bao. Research Progress in Chitinase Involving in the Biocontrol of Crop Diseases and Pests [J]. Biotechnology Bulletin, 2023, 39(10): 29-40. |
[11] | SUN Zhuo, WANG Yan, HAN Zhong-ming, WANG Yun-he, ZHAO Shu-jie, YANG Li-min. Isolation, Identification and Biocontrol Potential of Rhizospheric Fungus of Saposhnikovia divaricata [J]. Biotechnology Bulletin, 2023, 39(1): 264-273. |
[12] | ZU Xue, ZHOU Hu, ZHU Hua-jun, REN Zuo-hua, LIU Er-ming. Isolation and Identification of Bacillus subtilis K-268 and Its Biological Control Effect on Rice Blast [J]. Biotechnology Bulletin, 2022, 38(6): 136-146. |
[13] | SHU Jie, ZHANG Ren-jun, LIANG Ying-chong, CHEN Ya-qiong, ZHANG Juan, GUO Jian, CHEN Sui-yun. Control of Root-knot Nematode Disease by Compounding Biological Agents from Plant and Microorganisms [J]. Biotechnology Bulletin, 2021, 37(7): 164-174. |
[14] | ZHANG Jie, XIA Ming-cong, ZHU Wen-qian, LIANG Juan, SUN Run-hong, XU Wen, WU Chao, YANG Li-rong. Screening of Bacillus sp. Against Vegetable Root-knot Nematode and Study on Its Biocontrol Mechanism [J]. Biotechnology Bulletin, 2021, 37(7): 175-182. |
[15] | CHEN Li-jie, YANG Fan, FAN Hai-yan, ZHAO Di, WANG Yuan-yuan, ZHU Xiao-feng, LIU Xiao-yu, DUAN Yu-xi. Advances of Non-coding RNA in Interactions Among Biocontrol Bacteria and Plant Nematodes and Host [J]. Biotechnology Bulletin, 2021, 37(7): 65-70. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||