Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (1): 176-185.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0699
Previous Articles Next Articles
XIA Guang-li1,2(), CAO Na1,2, SUN Hui-hui2(), ZHAO Ling2, CAO Rong2,3
Received:
2023-07-19
Online:
2024-01-26
Published:
2024-02-06
Contact:
SUN Hui-hui
E-mail:18765600710@139.com;sunhh@ysfri.ac.cn
XIA Guang-li, CAO Na, SUN Hui-hui, ZHAO Ling, CAO Rong. Advances in the Biological Modification of Galactose Oxidase[J]. Biotechnology Bulletin, 2024, 40(1): 176-185.
Fig. 3 Crystal structure of galactose oxidase(Taken the galactose oxidase from F. graminearum as the template, PDB ID:1GOG) a: Front-view of 1GOG; b: Catalytic active sites of 1GOG
[1] |
Johnson HC, Zhang SG, Fryszkowska A, et al. Biocatalytic oxidation of alcohols using galactose oxidase and a manganese(III)activator for the synthesis of islatravir[J]. Org Biomol Chem, 2021, 19(7): 1620-1625.
doi: 10.1039/D0OB02395G URL |
[2] |
Parodi A, Asteasuain M, Magario I. Kinetic analysis and evaluation of galactose oxidase activation by hematin in the green oxidation of glycerol[J]. Biochem Eng J, 2021, 176: 108203.
doi: 10.1016/j.bej.2021.108203 URL |
[3] |
Yin Z, Zhi JF. A photoelectrochemical biosensor based on the direct electron transfer to galactose oxidase[J]. J Photochem Photobiol A Chem, 2020, 397: 112560.
doi: 10.1016/j.jphotochem.2020.112560 URL |
[4] | 秦琼. 固定半乳糖氧化酶催化氧化HMF的研究[D]. 北京: 北京化工大学, 2019. |
Qin Q. Study on catalytic oxidation of HMF by fixed galactose oxidase[D]. Beijing: Beijing University of Chemical Technology, 2019. | |
[5] | 楚浩. 半乳糖氧化酶/超氧化物歧化酶双酶催化5-羟甲基糠醛的氧化的研究[D]. 北京: 北京化工大学, 2020. |
Chu H. Study on oxidation of 5-hydroxymethylfurfural by galactose oxidase/superoxide dismutase[D]. Beijing: Beijing University of Chemical Technology, 2020. | |
[6] |
Ribeaucourt D, Bissaro B, Guallar V, et al. Comprehensive insights into the production of long chain aliphatic aldehydes using a copper-radical alcohol oxidase as biocatalyst[J]. ACS Sustainable Chem Eng, 2021, 9(12): 4411-4421.
doi: 10.1021/acssuschemeng.0c07406 URL |
[7] |
Huffman MA, Fryszkowska A, Alvizo O, et al. Design of an in vitro biocatalytic cascade for the manufacture of islatravir[J]. Science, 2019, 366(6470): 1255-1259.
doi: 10.1126/science.aay8484 pmid: 31806816 |
[8] |
Cleveland M, Lafond M, Xia FR, et al. Two Fusarium copper radical oxidases with high activity on aryl alcohols[J]. Biotechnol Biofuels, 2021, 14(1): 138.
doi: 10.1186/s13068-021-01984-0 pmid: 34134727 |
[9] |
Birmingham WR, Toftgaard Pedersen A, Dias Gomes M, et al. Toward scalable biocatalytic conversion of 5-hydroxymethylfurfural by galactose oxidase using coordinated reaction and enzyme engineering[J]. Nat Commun, 2021, 12(1): 4946.
doi: 10.1038/s41467-021-25034-3 pmid: 34400632 |
[10] |
Xu SH, Zheng JN, Xiao HP, et al. Simultaneously identifying and distinguishing glycoproteins with O-GlcNAc and O-GalNAc(the tn antigen)in human cancer cells[J]. Anal Chem, 2022, 94(7): 3343-3351.
doi: 10.1021/acs.analchem.1c05438 URL |
[11] |
Fong JK, Brumer H. Copper radical oxidases: galactose oxidase, glyoxal oxidase, and beyond![J]. Essays Biochem, 2023, 67(3): 597-613.
doi: 10.1042/EBC20220124 URL |
[12] |
Cooper JAD, Smith W, Bacila M, et al. Galactose oxidase from Polyporus circinatus, Fr[J]. J Biol Chem, 1959, 234(3): 445-448.
doi: 10.1016/S0021-9258(18)70223-8 URL |
[13] |
McPherson MJ, Ogel ZB, Stevens C, et al. Galactose oxidase of Dactylium dendroides gene cloning and sequence analysis[J]. J Biol Chem, 1992, 267(12): 8146-8152.
pmid: 1569070 |
[14] |
Faria CB, de Castro FF, Martim DB, et al. Production of galactose oxidase inside the Fusarium fujikuroi species complex and recombinant expression and characterization of the galactose oxidase GaoA protein from Fusarium subglutinans[J]. Mol Biotechnol, 2019, 61(9): 633-649.
doi: 10.1007/s12033-019-00190-6 |
[15] |
Mathieu Y, Cleveland ME, Brumer H. Active-site engineering switches carbohydrate regiospecificity in a fungal copper radical oxidase[J]. ACS Catal, 2022, 12(16): 10264-10275.
doi: 10.1021/acscatal.2c01956 pmid: 36033369 |
[16] |
Cao N, Xia GL, Sun HH, et al. Characterization of a galactose oxidase from Fusarium odoratissimum and its application in the modification of agarose[J]. Foods, 2023, 12(3): 603.
doi: 10.3390/foods12030603 URL |
[17] |
Dean RA, Talbot NJ, Ebbole DJ, et al. The genome sequence of the rice blast fungus Magnaporthe grisea[J]. Nature, 2005, 434(7036): 980-986.
doi: 10.1038/nature03449 |
[18] |
Ellison CE, Stajich JE, Jacobson DJ, et al. Massive changes in genome architecture accompany the transition to self-fertility in the filamentous fungus Neurospora tetrasperma[J]. Genetics, 2011, 189(1): 55-69.
doi: 10.1534/genetics.111.130690 URL |
[19] |
Mathieu Y, Offen WA, Forget SM, et al. Discovery of a fungal copper radical oxidase with high catalytic efficiency toward 5-hydroxymethylfurfural and benzyl alcohols for bioprocessing[J]. ACS Catal, 2020, 10(5): 3042-3058.
doi: 10.1021/acscatal.9b04727 URL |
[20] |
Whittaker JW. Free radical catalysis by galactose oxidase[J]. Chem Rev, 2003, 103(6): 2347-2363.
doi: 10.1021/cr020425z pmid: 12797833 |
[21] |
Whittaker MM, Whittaker JW. Streptomyces coelicolor oxidase(SCO2837p): a new free radical metalloenzyme secreted by Streptomyces coelicolor A3(2)[J]. Arch Biochem Biophys, 2006, 452(2): 108-118.
pmid: 16884677 |
[22] |
Ito N, Knowles PF, Phillips SE. X-ray crystallographic studies of cofactors in galactose oxidase[J]. Methods Enzymol, 1995, 258: 235-262.
pmid: 8524154 |
[23] |
Ito N, Phillips SE, Yadav KD, et al. Crystal structure of a free radical enzyme, galactose oxidase[J]. J Mol Biol, 1994, 238(5): 794-814.
pmid: 8182749 |
[24] |
Ito N, Phillips SEV, Stevens C, et al. Novel thioether bond revealed by a 1.7 Å crystal structure of galactose oxidase[J]. Nature, 1991, 350(6313): 87-90.
doi: 10.1038/350087a0 |
[25] |
Rogers MS, Dooley DM. Posttranslationally modified tyrosines from galactose oxidase and cytochrome C oxidase[J]. Adv Protein Chem, 2001, 58: 387-436.
pmid: 11665492 |
[26] |
Yin DT, Urresti S, Lafond M, et al. Structure-function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family[J]. Nat Commun, 2015, 6: 10197.
doi: 10.1038/ncomms10197 pmid: 26680532 |
[27] | Zhao FY, Brix AC, Lielpetere A, et al. On the mediated electron transfer of immobilized galactose oxidase for biotechnological applications[J]. Chemistry, 2022, 28(30): e202200868. |
[28] | 曲戈, 朱彤, 蒋迎迎, 等. 蛋白质工程:从定向进化到计算设计[J]. 生物工程学报, 2019, 35(10): 1843-1856. |
Qu G, Zhu T, Jiang YY, et al. Protein engineering: from directed evolution to computational design[J]. Chin J Biotechnol, 2019, 35(10): 1843-1856. | |
[29] | 徐鉴. 定向进化调控酶的选择性及催化多功能性[D]. 杭州: 浙江大学, 2019. |
Xu J. Directed evolution of enzymes for the regulation of selectivity and catalytic promiscuity[D]. Hangzhou: Zhejiang University, 2019. | |
[30] |
Song ZD, Zhang QF, Wu WH, et al. Rational design of enzyme activity and enantioselectivity[J]. Front Bioeng Biotechnol, 2023, 11: 1129149.
doi: 10.3389/fbioe.2023.1129149 URL |
[31] |
Escalettes F, Turner NJ. Directed evolution of galactose oxidase: generation of enantioselective secondary alcohol oxidases[J]. Chembiochem, 2008, 9(6): 857-860.
doi: 10.1002/cbic.200700689 pmid: 18330849 |
[32] |
Wilkinson D, Akumanyi N, Hurtado-Guerrero R, et al. Structural and kinetic studies of a series of mutants of galactose oxidase identified by directed evolution[J]. Protein Eng Des Sel, 2004, 17(2): 141-148.
pmid: 15047910 |
[33] |
Delagrave S, Murphy DJ, Pruss JL, et al. Application of a very high-throughput digital imaging screen to evolve the enzyme galactose oxidase[J]. Protein Eng, 2001, 14(4): 261-267.
pmid: 11391018 |
[34] |
Sun L, Petrounia IP, Yagasaki M, et al. Expression and stabilization of galactose oxidase in Escherichia coli by directed evolution[J]. Protein Eng, 2001, 14(9): 699-704.
pmid: 11707617 |
[35] |
Bornscheuer UT, Huisman GW, Kazlauskas RJ, et al. Engineering the third wave of biocatalysis[J]. Nature, 2012, 485(7397): 185-194.
doi: 10.1038/nature11117 |
[36] |
Privett HK, Kiss G, Lee TM, et al. Iterative approach to computational enzyme design[J]. Proc Natl Acad Sci USA, 2012, 109(10): 3790-3795.
doi: 10.1073/pnas.1118082108 pmid: 22357762 |
[37] |
Ovchinnikov S, Park H, Varghese N, et al. Protein structure determination using metagenome sequence data[J]. Science, 2017, 355(6322): 294-298.
doi: 10.1126/science.aah4043 pmid: 28104891 |
[38] |
Baron AJ, Stevens C, Wilmot C, et al. Structure and mechanism of galactose oxidase. The free radical site[J]. J Biol Chem, 1994, 269(40): 25095-25105.
pmid: 7929198 |
[39] | Reynolds MP, Baron AJ, Wilmot CM, et al. Tyrosine 495 is a key residue in the active site of galactose oxidase[J]. Biochem Soc Trans, 1995, 23(4): 510S. |
[40] | Baron AJ, Stevens C, Wilmot CM, et al. Preliminary studies of two active site mutants of galactose oxidase[J]. Biochem Soc Trans, 1993, 21(Pt 3)(3): 319S. |
[41] |
Koncitikova R, Zuily L, Lemarié E, et al. Rational engineering of AA5_2 copper radical oxidases to probe the molecular determinants governing their substrate selectivity[J]. FEBS J, 2023, 290(10): 2658-2672.
doi: 10.1111/febs.v290.10 URL |
[42] | 刘德华. 随机突变结合半理性设计改造脯氨酸氨肽酶及蛋白结晶初探[D]. 无锡: 江南大学, 2020. |
Liu DH. Protein engineering of prolyl aminopeptidase using random mutagenesis combined with semi-rational design and preliminary study of protein crystallization[D]. Wuxi: Jiangnan University, 2020. | |
[43] | 曲戈, 袁波, 孙周通. 工业蛋白质理性设计与应用[J]. 生物工程学报, 2022, 38(11): 4068-4080. |
Qu G, Yuan B, Sun ZT. Rational design and applications of industrial proteins[J]. Chin J Biotechnol, 2022, 38(11): 4068-4080. | |
[44] |
Sun LH, Bulter T, Alcalde M, et al. Modification of galactose oxidase to introduce glucose 6-oxidase activity[J]. Chembiochem, 2002, 3(8): 781-783.
pmid: 12203977 |
[45] |
Deacon SE, McPherson MJ. Enhanced expression and purification of fungal galactose oxidase in Escherichia coli and use for analysis of a saturation mutagenesis library[J]. Chembiochem, 2011, 12(4): 593-601.
doi: 10.1002/cbic.201000634 pmid: 21264996 |
[46] | 贾峰, 郑连炳, 王志强. 生物酶固定化技术研究现状[J]. 资源节约与环保, 2020(4): 116. |
Jia F, Zheng LB, Wang ZQ. Research status of biological enzyme immobilization technology[J]. Resour Econ Environ Prot, 2020(4): 116. | |
[47] | 余冲, 孙秀丽, 王东旭, 等. 酶固定化载体及固定化方法最新研究进展[J]. 广东化工, 2021, 48(2): 60-62, 78. |
Yu C, Sun XL, Wang DX, et al. The latest research progress of enzyme immobilization carrier and immobilization method[J]. Guangdong Chem Ind, 2021, 48(2): 60-62, 78. | |
[48] |
Caseli L. Enzymes immobilized in Langmuir-Blodgett films: why determining the surface properties in Langmuir monolayer is important?[J]. An Acad Bras Cienc, 2018, 90(1 Suppl 1): 631-644.
doi: S0001-37652018005028103 pmid: 29340479 |
[49] |
de Souza Furtado FA, Caseli L. Enzyme activity preservation for galactose oxidase immobilized in stearic acid Langmuir-Blodgett films[J]. Thin Solid Films, 2020, 709: 138253.
doi: 10.1016/j.tsf.2020.138253 URL |
[50] | 罗艺献, 苏愉, 杨金花, 等. 纳米二氧化硅固定化酶的研究进展[J]. 药物生物技术, 2022, 29(3): 315-319. |
Luo YX, Su Y, Yang JH, et al. Research progress of immobilized enzyme on nano-silica[J]. Pharm Biotechnol, 2022, 29(3): 315-319. | |
[51] | 刘茹, 焦成瑾, 杨玲娟, 等. 酶固定化研究进展[J]. 食品安全质量检测学报, 2021, 12(5): 1861-1869. |
Liu R, Jiao CJ, Yang LJ, et al. Advances of enzyme immobilization[J]. J Food Saf Qual, 2021, 12(5): 1861-1869. | |
[52] |
Akbari Gourdani F, Ghadam P, Heravi MM, et al. Immobilized galactose oxidase in alginate gel(GO-Bead): a versatile and efficient biocatalyst for the regioselective synthesis of 1, 4-disubstitued-1, 2, 3-triazoles: click reaction[J]. J Iran Chem Soc, 2021, 18(6): 1471-1478.
doi: 10.1007/s13738-020-02128-1 |
[53] |
Kaminska A, Hołyst R. Immobilization of galactose oxidase on self-assembled monolayers of thiols on Au and Ag surfaces[J]. J Raman Spectrosc, 2012, 43(7): 959-962.
doi: 10.1002/jrs.v43.7 URL |
[54] | 侯超, 张申平, 马跃龙. 乳糖酶固定化研究进展[J]. 食品安全质量检测学报, 2022, 13(19): 6346-6353. |
Hou C, Zhang SP, Ma YL. Research progress on immobilization of lactase[J]. J Food Saf Qual, 2022, 13(19): 6346-6353. | |
[55] | 张璟譞, 高兵兵, 何冰芳. 生物催化中的酶固定化研究进展[J]. 生物加工过程, 2022, 20(1): 9-19, 40. |
Zhang JX, Gao BB, He BF. Research progress of enzyme immobilized in biocatalysis[J]. Chin J Bioprocess Eng, 2022, 20(1): 9-19, 40. | |
[56] |
Mattey AP, Sangster JJ, Ramsden JI, et al. Natural heterogeneous catalysis with immobilised oxidase biocatalysts[J]. RSC Adv, 2020, 10(33): 19501-19505.
doi: 10.1039/d0ra03618h pmid: 35515476 |
[57] |
Çevik E, Şenel M, Fatih Abasıyanık M. Construction of biosensor for determination of galactose with galactose oxidase immobilized on polymeric mediator contains ferrocene[J]. Curr Appl Phys, 2010, 10(5): 1313-1316.
doi: 10.1016/j.cap.2010.03.014 URL |
[58] |
Kondakova L, Yanishpolskii V, Tertykh V, et al. Galactose oxidase immobilized on silica in an analytical determination of galactose-containing carbohydrates[J]. Anal Sci, 2007, 23(1): 97-101.
pmid: 17213632 |
[59] | 冯慧, 韩娟, 黄文睿, 等. 纳米花型酶-无机杂化固定化酶研究进展[J]. 化学通报, 2021, 84(12): 1263-1273. |
Feng H, Han J, Huang WR, et al. Research progress in nanoflower enzyme-inorganic hybrid immobilized enzyme[J]. Chemistry, 2021, 84(12): 1263-1273. | |
[60] |
Chen Y, Zou JX, Sun J, et al. Immobilization using Cu(II)and Zr(IV): persistent and highly efficient activation of galactose oxidase by in situ generation of hydroxyl radicals in concert with in situ generation of O2[J]. Chem Eng J, 2022, 435: 134819.
doi: 10.1016/j.cej.2022.134819 URL |
[1] | LI Huan-min, GAO Feng-tao, LI Wei-zhong, WANG Jin-qing, FENG Jia-li. Progress in Research and Application of Natural Bio-materials as Immobilized Carriers [J]. Biotechnology Bulletin, 2023, 39(7): 105-112. |
[2] | QU Ge, SUN Zhou-tong. Catalytic Promiscuity-driven Redesign of Enzyme Functions [J]. Biotechnology Bulletin, 2023, 39(4): 1-9. |
[3] | WANG Mu-qiang, CHEN Qi, MA Wei, LI Chun-xiu, OUYANG Peng-fei, XU Jian-he. Advances in the Application of Machine Learning Methods for Directed Evolution of Enzymes [J]. Biotechnology Bulletin, 2023, 39(4): 38-48. |
[4] | ZHANG Xue, TAN Yu-meng, JIANG Hai-xia, YANG Guang-yu. Directed Evolution of α-1,2-fucosyltransferase by a Single-cell Ultra-high-throughput Screening Method [J]. Biotechnology Bulletin, 2022, 38(1): 289-298. |
[5] | SUN Bao-ting, QIU Meng-xia, WANG Zi-chen, WANG Zi-yuan, CUI Jian-dong, JIA Shi-ru. Preparation of @ZIF-8 Immobilized Enzyme by Using Cysteine as Auxiliary Reagent and Its Characterization [J]. Biotechnology Bulletin, 2021, 37(8): 221-232. |
[6] | CHEN Chun, SU Ling-qia, XIA Wei, WU Jing. Improved the Thermostability of MTHase from Arthrobacter ramosus by Directed Evolution [J]. Biotechnology Bulletin, 2021, 37(3): 84-91. |
[7] | LU Shang-de, LIU Jing-jing, FENG Yi-ping, ZHAO Peng, XU Yang-cang. Study on Oxygen Release and Photosynthetic Rate of Immobilized Chlorella [J]. Biotechnology Bulletin, 2021, 37(3): 92-98. |
[8] | WANG Hao, TANG Lu-xin, MA Hong-fei, QIAN Kun, SI Jing, CUI Bao-kai. Immobilization of Laccase from Trametes orientalis and Its Application for Decolorization of Multifarious Dyes [J]. Biotechnology Bulletin, 2021, 37(11): 142-157. |
[9] | WANG Hui-lan, WU Jin-yong, CHEN Xiang-song, YUAN Li-xia, ZHU Wei-wei, YAO Jian-ming. Immobilization of N-acetylneuraminic Acid Aldolaseand Properties of the Immobilized Enzyme [J]. Biotechnology Bulletin, 2020, 36(6): 165-173. |
[10] | CAI Yu-zhen, BAI Qiao-yan, SU Min, TANG Liang-hua. Strategies and Advances in the Molecular Modification of Substrate Binding Pocket of Lipase [J]. Biotechnology Bulletin, 2020, 36(11): 173-180. |
[11] | ZHANG Wei-wei, YANG Hui-xia, XUE Ping. A General Overview of Nanomaterials Immobilized Lipases for Biodiesel Production [J]. Biotechnology Bulletin, 2020, 36(1): 160-166. |
[12] | WU Yi, MA Hong-fei, CAO Yong-jia, SI Jing, CUI Bao-kai. Advances on Properties,Production,Purification and Immobilization of Fungal Laccase [J]. Biotechnology Bulletin, 2019, 35(9): 1-10. |
[13] | LIU Chang-rong, ZHANG Feng-li, LI Zhi-yong. Immobilization of Marine Urease and Its Utilization in the Treatment of Urea Wastewater [J]. Biotechnology Bulletin, 2019, 35(9): 75-82. |
[14] | LIN Sheng-hong, PAN Xiao-mei, SHI Xiao-ling, IHSAN Ali, LIU Zhen-fei, YU Shuang, ZHANG Jin-feng, NIU Zhen-feng, TIAN Yong-qiang. Screening and Identification of Soil Mycelial Pellets and Application of Immobilized Mycelium [J]. Biotechnology Bulletin, 2019, 35(1): 76-81. |
[15] | GONG Rui, SUN Kai, XIE Dao-yue. Applications of Fungal Laccase in Green Chemistry [J]. Biotechnology Bulletin, 2018, 34(4): 24-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||