[1]石娟, 朱葆华, 潘克厚. 转基因植物生产超长链多不饱和脂肪酸研究进展[J]. 植物学通报, 2007, 24(5):659-666. [2] Salas JJ, Martínez Force E, Garcés R. Very long chain fatty acid syn-thesis in sunflower kernels[J]. J Agric Food Chem, 2005, 53(7):2710-2716. [3] Kramer, JKG, Sauer FD, et al. Results obtained with feeding low erucic acid rapeseed oils and other vegetable oils to rats and other species[M]// Kramer JKG, Sauer FD, Pigden WJ, et al. High and Low Erucic Acid Rapeseed Oils. Production, Usage, Chemistry, and Toxicological Examination. Toronto, Canada:Academic Press, 1983:413-474. . [4] Erucic acid in food:A Toxicological Review and Risk Assessment[S]. Food Standards Australia New Zealand, 2003. [5] Yuan C, Liu J, Fan Y, et al. Mychonastes afer HSO-3-1 as a potential new source of biodiesel[J]. Biotechnol Biofuels, 2011, 4(1):47. [6] 王性炎, 樊金栓, 王姝清. 中国含神经酸植物开发利用研究[J]. 中国油脂, 2006, 31(3):69-71. [7]Yamazaki Y, Kondo K, Maeba R, et al. The proportion of nervonic acid in serum lipids is associated with serum plasmalogen levels and metabolic syndrome[J]. J Oleo Sci, 2014, 63(5):527-537. [8]朱东升, 何国庆. 神经酸的研究进展[J]. 粮油加工, 2008;8:65-67. [9]Kasai N, Mizushina Y, Sugawara F. Three dimensional structural model analysis of the binding site of an inhibitor, nervonic acid, of both DNA polymerase B and HIV-1 reverse transcriptase[J]. J Biochem, 2002, 132(5):819-828. [10]陈文杰, 赵兴中, 王灏, 等. 不同甘蓝型油菜高含油量种质资源的脂肪酸成分分析[J]. 现代生物医学进展, 2009, 1(4):46-49. [11] 王幼平, 罗鹏, 李旭峰, 等. 海甘蓝种子成分分析及其利用[J]. 天然产物研究与开发, 1994, 3:55-58. [12] Guo Y, Mietkiewska E, Francis T. Increase in nervonic acid content in transformed yeast and transgenic plants by introduction of a Lunaria annua L. 3-ketoacyl-CoA synthase(KCS)gene[J]. Plant Mol Biol, 2009, 69(5):565-575. [13]马柏林. 含神经酸植物的研究[J]. 西北植物研究, 2004, 24(13):2362-2365. [14]Katherine MS, John BO. Lipid metabolism in plants[M]// Vance DE, Vance JE. Biochemistry of lipid. the4th Edn. USA:Elsevier Science BV. 2002. [15]Ohlrogge J, Browse J. Lipid biosynthesis[J]. Plant Cell, 1995, 7:957-970. [16]Shimakata T, Stumpf PK. Isolation and function of spinach leaf 3-ketoacyl-[acyl-carrier-protein]synthases[J]. Proc Natl Acad Sci USA, 1982, 79(19):5808-5812. [17]Konrad B. Enzymatic Synthesis of Monounsaturated Fatty Acids[J]. Accounts of Chemical Research, 1969, 2(7):193-202. [18]Jenni S, Leibundgut M, Boehringer D. Structure of fungal fatty acid synthase and implications for iterative substrate shutting[J]. Science, 2007, 316(5822):254-261. [19]Cassagne C, Lessire R. Biosynthesis of saturated very long chain fatty acids by puried membrane fractions from leek epidermal cells[J]. Arch Biochem Biophys, 1978, 191(1):146-152. [20]Agrawal VP, Lessire R, Stumpf PK. Biosynthesis of very long chain fatty acid in micosomes from epidermal cells[J]. Arch Biochem Biophys, 1984, 230(2):580-589. [21]Naoki M, Nobuhiro O, Masaru G. Nature of the reaction product f[1-14C]stearoyl-CoA elongation by etiolated leek seedling microsomes[J]. Arch Microbiol, 1992, 157:223-228. [22] Kihara A, Sakuraba H, Ikeda M, et al. Membrane topology and essential amino acid residues of Phs1, a 3-hydroxyacyl-CoA dehydratase involved in very long-chain fatty acid elongation[J]. J Biol Chem, 2008, 283(17):11199-11209. [23]Haslam TM, Kunst L. Extending the story of very-long-chain fatty acid elongation[J]. Plant Sci, 2013, 210:93-107. [24]Paul S, Gable K, Beaudoin F, Cahoon E. Members of the Arabidopsis FAE1-like 3-Ketoacyl-CoA synthase gene family substitute for the Elop proteins of Saccharomyces cerevisiae[J]. J Biol Chem, 2006, 281(14):9018-9029. [25]James DW, Lim E, Keller J, et al. Direct tagging of the Arabidopsis FATTY ACID ELONGATION1(FAE1)gene with the maize transposon Activator[J]. Plant Cell, 1995, 7(3):309-319. [26]Millar AA, Clemens S, Zachgo S. CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme[J]. Plant Cell, 1999, 11:825-838. [27]Wang Q, Jianga Q, Lian JP, et al. Functional identification of ELO-like genes involved in very long chain fatty acid synthesis in Arabidopsis thaliana[J]. Russian Journal of Plant Physiology, 2014, 61(6):853-861. [28]Quist TM, Sokolchik I, Shi H, et al. HOS3, an ELO-like gene, inhibits effects of ABA and implicates a S-1-P/ceramide control system for abiotic stress responses in Arabidopsis thaliana[J]. Mol Plant, 2009, 2:138-151. [29]Pascal S, Bernard A, Sorel M. The Arabidopsis cer26 mutant, like the cer2 mutant, is specifically affected in the very long chain fatty acid elongation process[J]. Plant J, 2013, 73:733-746. [30]Sun X, Pang H, Li M, et al. Evolutionary Pattern of the FAE1 Gene in Brassicaceae and Its Correlation with the Erucic Acid Trait[J]. PLoS One, 2013, 8(12):e83535. [31]Beaudoin F, Gable K, Sayanova O, et al. A Saccharomyces cerevisiae gene required for heterologous fatty acid elongase activity encodes a microsomal 3-keto-reductase[J]. J Biol Chem, 2002, 277(13):11481-11488. [32]Beaudoin F, Wu X, Li F, et al. Functional characterization of the Arabidopsis 3-ketoacyl-Coenzyme A reductase candidates of the fatty acid elongase[J]. Plant Physiol, 2009, 150(3):1174-1191. [33]Dietrich CR, Perera MA, Yandeau D. Characterization of two GL8 paralogs reveals that the 3-ketoacyl reductase component of fatty acid elongase is essential for maize(Zea mays L.)development[J]. Plant J, 2005, 42(6):844-861. [34]Puyaubert J, Dieryck W, Costaglioli P. Temporal gene expression of 3-ketoacyl-CoA reductase is different in high and in low erucic acid Brassica napus cultivars during seed development[J]. Biochim Biophys Acta, 2005, 1687(1-3):152-163. [35] Guan R. Metabolic Engineering of Crambe abyssinica for producing high erucic acid oil[D]. Swedish:Acta Universitatis Agricultu-rae Sueciae, 2014. [36] Mietkiewska E, Brost JM, Giblin EM, et al. Cloning and functional characterization of the fatty acid elongase 1(FAE1)gene from high erucic Crambe abyssinica cv. Prophet[J]. Plant Biotechnol J, 2007, 5(5):636-645. [37] Rossak M, Smith M, Kunst L. Expression of the FAE1 gene and FAE1 promoter activity in developing seeds of Arabidopsis thaliana[J]. Plant Mol Biol, 2001, 46(6):717-725. [38] Jadhav A, Katavic V, Marillia EF. Increased levels of erucic acid in Brassica carinata by co-suppression and antisense repression of the endogenous FAD2 gene[J]. Metab Eng, 2005, 7(3):215-220. [39]Cao YZ, Oo KC, Huang AH. Lysophosphatidate acyl transferase in the microsomes from maturing seeds of meadowfoam(Limnanthes alba)[J]. Plant Physiol, 1990, 94(3):1199-1206. [40]Barret P, Delourme R, Renard M. The rapeseed FAE1 gene is linked to the E1 locus associated with variation in the content of erucic acid[J]. Theoretical and Applied Genetics, 1998, 96:177-186. [41]Li X, van Loo EN, Gruber J. Development of ultra-high erucic acid oil in the industrial oil crop Crambe abyssinica[J]. Plant Biotechnol J, 2012, 10(7):862-870. [42]Li X, Fan J, Gruber J. Efficient selection and evaluation of transgenic lines of Crambe abyssinica[J]. Front Plant Sci, 2013, 4:162. [43] Li-Beisson Y, Shorrosh B, Beisson F, et al. Acyl-lipid metabolism[J]. Arabidopsis Book, 2010, 8:e0133. [44] Bates PD, Durrett TP, Ohlrogge JB, et al. Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos[J]. Plant Physiol, 2009, 150(1):55-72. [45] Guan R, Lager I, Li XY. Bottlenecks in erucic acid accumulation in genetically engineered ultrahigh erucic acid Crambe abyssinica[J]. Plant Biotechnology Journal, 2014, 12:193-203. [46] Taylor DC, Francis T, Guo Y, et al. Molecular cloning and characterization of a KCS gene from Cardamine graeca and its heterologous expression in Brassica oilseeds to engineer high nervonic acid oils for potential medical and industrial use[J]. Plant Biotechnol J, 2009, 7(9):925-938. [47] Groenewald M, Boekhout T, Neuvéglise C, et al. Yarrowia lipolytica:Safety assessment of an oleaginous yeast with a great industrial potential[J]. Crit Rev Microbiol, 2014, 40(3):187-206. [48] Xue Z, Sharpe PL, Hong SP, et al. Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica[J]. Nat Biotechnol, 2013, 31(8):734-740. |