生物技术通报 ›› 2024, Vol. 40 ›› Issue (12): 93-101.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0465
李白雪1(), 李金玲1, 陈春林1, 杜清洁1, 李猛1, 王吉庆1, 马勇斌2, 肖怀娟1(
)
收稿日期:
2024-05-17
出版日期:
2024-12-26
发布日期:
2025-01-15
通讯作者:
肖怀娟,女,博士,副教授,研究方向:设施蔬菜逆境分子生物学;E-mail: xhj234@126.com作者简介:
李白雪,女,硕士,研究方向:设施蔬菜逆境生理与分子生物学;E-mail: libaixue0311@sina.com
基金资助:
LI Bai-xue1(), LI Jin-ling1, CHEN Chun-lin1, DU Qing-jie1, LI Meng1, WANG Ji-qing1, MA Yong-bin2, XIAO Huai-juan1(
)
Received:
2024-05-17
Published:
2024-12-26
Online:
2025-01-15
摘要:
【目的】探究辣椒bZIP基因在响应非生物胁迫应答过程中的作用,为提高辣椒抗逆性提供基因资源。【方法】以辣椒‘G7’为材料,基于前期转录组测序得到一个候选基因CabZIP42,并对其进行克隆,通过生物信息学的方法对其编码蛋白的分子特征进行分析,并利用RT-qPCR技术分析其在不同组织、不同胁迫处理下的表达模式。【结果】CabZIP42编码区全长1 233 bp,编码410个氨基酸,预测分子量为44.85 kD,理论等电点为9.47;属于亲水蛋白,脂肪族氨基酸指数为61.88,热稳定性较高。CabZIP42蛋白中包含2个保守结构域,碱性氨基酸区域N-x9-R和亮氨酸拉链区x6-L-x6-L-x6-L。该蛋白二级结构以无规则卷曲为主,还含有少量的α-螺旋。系统进化分析显示,CabZIP42与番茄、马铃薯的蛋白进化关系最近。启动子预测分析表明,CabZIP42启动子上存在多种激素和胁迫相关的顺式作用元件。【结论】CabZIP42在辣椒叶片中的表达量最高,并且参与ABA信号转导,响应干旱、高温与高盐胁迫。
李白雪, 李金玲, 陈春林, 杜清洁, 李猛, 王吉庆, 马勇斌, 肖怀娟. 辣椒CabZIP42的克隆及表达分析[J]. 生物技术通报, 2024, 40(12): 93-101.
LI Bai-xue, LI Jin-ling, CHEN Chun-lin, DU Qing-jie, LI Meng, WANG Ji-qing, MA Yong-bin, XIAO Huai-juan. Cloning and Expression Analysis of CabZIP42 Gene in Pepper[J]. Biotechnology Bulletin, 2024, 40(12): 93-101.
基因 Gene | 引物序列 Primer sequence(5'-3') | 用途 Purpose |
---|---|---|
CabZIP42 | F: ATGGGATCTTACATGAACTTC R: CTACCAAGGCCCTGTCAGT | 克隆 Cloning |
F: CTCGGCCACTTAGGCAGAAA R: CTAACTACCCCGGCCTTCAC | 实时荧光定量 RT-qPCR | |
CaUBI | F: TGTCCATCTGCTCTCTGTTG R: CACCCCAAGCACAATAAGAC | 内参基因 Reference gene |
表1 试验所用引物
Table 1 Primers used in this study
基因 Gene | 引物序列 Primer sequence(5'-3') | 用途 Purpose |
---|---|---|
CabZIP42 | F: ATGGGATCTTACATGAACTTC R: CTACCAAGGCCCTGTCAGT | 克隆 Cloning |
F: CTCGGCCACTTAGGCAGAAA R: CTAACTACCCCGGCCTTCAC | 实时荧光定量 RT-qPCR | |
CaUBI | F: TGTCCATCTGCTCTCTGTTG R: CACCCCAAGCACAATAAGAC | 内参基因 Reference gene |
图2 CabZIP42与其他植物bZIP蛋白序列比对 深蓝色、红色和蓝色分别代表100%、大于75%和大于50%的相似性;Ca:辣椒;Sl:番茄;St:马铃薯;L1:碱性氨基酸区域N-x9-R;L2:亮氨酸拉链区x6-L-x6-L-x6-L
Fig. 2 Multiple sequence alignment of CabZIP42 and bZIP proteins from other plants Dark blue, red, and blue indicate 100%, >75%, and >50% similarity, respectively; Ca: Capsicum annuum L.; Sl: Solanum lycopersicum; St: Solanum tuberosum L.; L1: basic amino acid region N-x9-R; L2: leucine zipper area x6-L-x6-L-x6-L-x6-L
图4 CabZIP42蛋白磷酸化位点(A)及蛋白二级结构(B)、蛋白三级结构(C)的预测
Fig. 4 Prediction of the phosphorylated site(A), secondary structure prediction(B)and three-dimensional structures(C)of CabZIP42 protein
顺式元件类型Cis-acting element | 生物学功能Biological function |
---|---|
STRE | 防御应激与胁迫响应元件Element involved in defensive stress and stress response |
CAAT-box | 启动子和增强子Promoter and enhancer |
AE-box | 光响应Light responsiveness |
BOX 4 | 光响应Light responsiveness |
G-box | 光响应Light responsiveness |
CGTCA-motif | 茉莉酸甲酯响应元件Element involved in MeJA responsiveness |
TGACG-motif | 茉莉酸响应元件Element involved in jasmonic acid responsiveness |
ERE | 乙烯响应元件Element involved in ethylene responsiveness |
TCA | 水杨酸响应元件Element involved in SA responsiveness |
TCA-element | 水杨酸响应元件Element involved in SA responsiveness |
as-1 | 水杨酸响应的顺式作用元件cis-acting element involved in SA responsiveness |
MYB | MYB识别和结合元件MYB identifying and binding elements |
MYC | MYC识别和结合元件MYC identifying and binding elements |
Myb | Myb识别和结合元件MYb identifying and binding elements |
CAT-box | 分生组织表达相关元件Elements related to meristem expression |
F-box | 防御应激与胁迫响应元件Element involved in defense stress and stress response |
LAMP-element | 环境响应元件Element involved in environment responsiveness |
TCT-motif | 光周期响应元件Element involved in photoperiod responsiveness |
TGA-element | 植物生长激素响应元件Element involved in plant growth hormone responsiveness |
circadian | 昼夜节律响应元件Element involved in circadian responsiveness |
AAGAA-motif | 脱落酸响应元件ABA-responsive element |
ABRE | 脱落酸响应元件ABA-responsive elements |
GATA-motif | 光响应Light responsiveness |
GT1-motif | 光响应Light responsiveness |
TC-rich repeats | 防御应激与胁迫响应元件Element involved in defensive stress and stress response |
TATA-box | 转录起始-30左右的核心启动子元件Core promoter element around -30 of transcription start |
表2 CabZIP42顺式作用元件统计
Table 2 Statistics of cis-acting elements of CabZIP42
顺式元件类型Cis-acting element | 生物学功能Biological function |
---|---|
STRE | 防御应激与胁迫响应元件Element involved in defensive stress and stress response |
CAAT-box | 启动子和增强子Promoter and enhancer |
AE-box | 光响应Light responsiveness |
BOX 4 | 光响应Light responsiveness |
G-box | 光响应Light responsiveness |
CGTCA-motif | 茉莉酸甲酯响应元件Element involved in MeJA responsiveness |
TGACG-motif | 茉莉酸响应元件Element involved in jasmonic acid responsiveness |
ERE | 乙烯响应元件Element involved in ethylene responsiveness |
TCA | 水杨酸响应元件Element involved in SA responsiveness |
TCA-element | 水杨酸响应元件Element involved in SA responsiveness |
as-1 | 水杨酸响应的顺式作用元件cis-acting element involved in SA responsiveness |
MYB | MYB识别和结合元件MYB identifying and binding elements |
MYC | MYC识别和结合元件MYC identifying and binding elements |
Myb | Myb识别和结合元件MYb identifying and binding elements |
CAT-box | 分生组织表达相关元件Elements related to meristem expression |
F-box | 防御应激与胁迫响应元件Element involved in defense stress and stress response |
LAMP-element | 环境响应元件Element involved in environment responsiveness |
TCT-motif | 光周期响应元件Element involved in photoperiod responsiveness |
TGA-element | 植物生长激素响应元件Element involved in plant growth hormone responsiveness |
circadian | 昼夜节律响应元件Element involved in circadian responsiveness |
AAGAA-motif | 脱落酸响应元件ABA-responsive element |
ABRE | 脱落酸响应元件ABA-responsive elements |
GATA-motif | 光响应Light responsiveness |
GT1-motif | 光响应Light responsiveness |
TC-rich repeats | 防御应激与胁迫响应元件Element involved in defensive stress and stress response |
TATA-box | 转录起始-30左右的核心启动子元件Core promoter element around -30 of transcription start |
图5 CabZIP42在不同组织中的特异性表达分析 不同小写字母代表差异显著(P<0.05)。下同
Fig. 5 Specific expression analysis of CabZIP42 gene in different tissues Different lowercase letters indicate statistically significant differences(P<0.05). The same below
[1] | Torres LF, Reichel T, Déchamp E, et al. Expression of DREB-like genes in Coffea canephora and C. arabica subjected to various types of abiotic stress[J]. Trop Plant Biol, 2019, 12(2): 98-116. |
[2] | Bakhshandeh E, Gholamhosseini M, Yaghoubian Y, et al. Plant growth promoting microorganisms can improve germination, seedling growth and potassium uptake of soybean under drought and salt stress[J]. Plant Growth Regul, 2020, 90(1): 123-136. |
[3] | 李影, 赵伟迪, 杨敬华, 等. 碱性亮氨酸拉链转录因子的翻译后修饰在植物响应非生物胁迫中的作用[J]. 生物工程学报, 2024, 40(1): 53-62. |
Li Y, Zhao WD, Yang JH, et al. Role of post-translational modification of basic leucine zipper transcription factors in response to abiotic stresses in plants[J]. Chin J Biotechnol, 2024, 40(1): 53-62. | |
[4] |
Nijhawan A, Jain M, Tyagi AK, et al. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice[J]. Plant Physiol, 2008, 146(2): 333-350.
doi: 10.1104/pp.107.112821 pmid: 18065552 |
[5] |
Jakoby M, Weisshaar B, Dröge-Laser W, et al. bZIP transcription factors in Arabidopsis[J]. Trends Plant Sci, 2002, 7(3): 106-111.
doi: 10.1016/s1360-1385(01)02223-3 pmid: 11906833 |
[6] |
Wei KF, Chen J, Wang YM, et al. Genome-wide analysis of bZIP-encoding genes in maize[J]. DNA Res, 2012, 19(6): 463-476.
doi: 10.1093/dnares/dss026 pmid: 23103471 |
[7] | 朱芸晔, 薛冰, 王安全, 等. 番茄bZIP转录因子家族的生物信息学分析[J]. 应用与环境生物学报, 2014, 20(5): 767-774. |
Zhu YY, Xue B, Wang AQ, et al. Comprehensive bioinformatic analysis of bZIP transcription factors in Solanum lycopersicum[J]. Chin J Appl Environ Biol, 2014, 20(5): 767-774. | |
[8] | Liu CT, Mao BG, Ou SJ, et al. OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice[J]. Plant Mol Biol, 2014, 84(1/2): 19-36. |
[9] | Liu JX, Srivastava R, Che P, et al. Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling[J]. Plant J, 2007, 51(5): 897-909. |
[10] | Xu YY, Hui QL, Li M, et al. Global analysis of basic leucine zipper transcription factors in trifoliate orange and the function identification of PtbZIP49 in salt tolerance[J]. Hortic Plant J, 2024, 10(1): 115-130. |
[11] | Lim CW, Baek W, Lee SC. Roles of pepper bZIP protein CaDILZ1 and its interacting partner RING-type E3 ligase CaDSR1 in modulation of drought tolerance[J]. Plant J, 2018, 96(2): 452-467. |
[12] | Wang BX, Li LQ, Liu ML, et al. TaFDL2-1A confers drought stress tolerance by promoting ABA biosynthesis, ABA responses, and ROS scavenging in transgenic wheat[J]. Plant J, 2022, 112(3): 722-737. |
[13] |
Liu XY, Bulley SM, Varkonyi-Gasic E, et al. Kiwifruit bZIP transcription factor AcePosF21 elicits ascorbic acid biosynthesis during cold stress[J]. Plant Physiol, 2023, 192(2): 982-999.
doi: 10.1093/plphys/kiad121 pmid: 36823691 |
[14] | Bai HR, Liao XQ, Li X, et al. DgbZIP3 interacts with DgbZIP2 to increase the expression of DgPOD for cold stress tolerance in chrysanthemum[J]. Hortic Res, 2022, 9: uhac105. |
[15] | Li ZY, Fu DY, Wang X, et al. Natural variation in the bZIP68 promoter modulates cold tolerance and was targeted during maize domestication[J]. Plant cell, 2022, 34(8): 2833-2851. |
[16] |
郑佳秋, 万红建, 王薇薇, 等. 辣椒品种耐盐鉴定方法研究及耐盐性比较[J]. 浙江农业科学, 2023, 64(5): 1177-1180.
doi: 10.16178/j.issn.0528-9017.20220774 |
Zheng JQ, Wan HJ, Wang WW, et al. Methodology and comparison of salt tolerance in pepper varieties[J]. J Zhejiang Agric Sci, 2023, 64(5): 1177-1180. | |
[17] | 魏瑞敏, 郑井元, 刘峰, 等. 辣椒bZIP家族基因的鉴定与表达分析[J]. 园艺学报, 2018, 45(8): 1535-1550. |
Wei RM, Zheng JY, Liu F, et al. Genome wide identification and expression analysis of the bZIP gene family in pepper[J]. Acta Hortic Sin, 2018, 45(8): 1535-1550.
doi: 10.16420/j.issn.0513-353x.2018-0033 |
|
[18] | 王珊, 曾娟, 谢瑜, 等. 灰毡毛忍冬bZIP25基因的克隆及其表达模式分析[J]. 中南药学, 2024, 22(2): 335-340. |
Wang S, Zeng J, Xie Y, et al. Cloning and expression pattern of bZIP25 transcription factor from Lonicera macranthoides[J]. Cent South Pharm, 2024, 22(2): 335-340. | |
[19] |
Dröge-Laser W, Snoek BL, Snel B, et al. The Arabidopsis bZIP transcription factor family-an update[J]. Curr Opin Plant Biol, 2018, 45(Pt A): 36-49.
doi: S1369-5266(17)30215-7 pmid: 29860175 |
[20] | 吕薇, 徐郅卓, 何杰芳, 等. bZIP转录因子影响植物次生代谢研究进展[J]. 分子植物育种, 2023. |
Lü W, Xu ZZ, He JF, et al. Research advance and role of bZIP in the biosynthesis of plant secondary metabolites[J]. Mol Plant Breed, 2023. | |
[21] | Li HJ, Chen J, Zhao Q, et al. Basic leucine zipper(bZIP)transcription factor genes and their responses to drought stress in ginseng, Panax ginseng C.A. Meyer[J]. BMC Genomics, 2021, 22(1): 316. |
[22] | 徐丽. 转录因子SlbZIP2在番茄高温胁迫中的功能分析[D]. 重庆: 西南大学, 2020. |
Xu L. Functional analysis of transcription factor SlbZIP2 in tomato under heat stress[D]. Chongqing: Southwest University, 2020. | |
[23] | 赵泽玉, 李志远, 孙晋浩, 等. 烟草NtbZIP038的克隆、鉴定及表达模式分析[J]. 中国烟草科学, 2021, 42(2): 71-76, 83. |
Zhao ZY, Li ZY, Sun JH, et al. Cloning, identification and expression pattern analysis of tobacco NtbZIP038[J]. Chin Tob Sci, 2021, 42(2): 71-76, 83. | |
[24] | 孟鑫, 王庆美, 侯夫云, 等. 甘薯IbbZIP22基因克隆与表达分析[J]. 山东农业科学, 2023, 55(1): 1-7. |
Meng X, Wang QM, Hou FY, et al. Cloning and expression analysis of IbbZIP22 gene in sweet potato[J]. Shandong Agric Sci, 2023, 55(1): 1-7. | |
[25] | 张浩, 蔡彩虹, 朱家红, 等. 白木香转录因子AsbZIP59的鉴定和表达分析[J]. 分子植物育种, 2022, 20(23): 7751-7758. |
Zhang H, Cai CH, Zhu JH, et al. Identification and expression analysis of a transcription factor AsbZIP59 in Aquilaria sinensis[J]. Mol Plant Breed, 2022, 20(23): 7751-7758. | |
[26] | Wu XZ, Cheng CH, Ma R, et al. Genome-wide identification, expression analysis, and functional study of the bZIP transcription factor family and its response to hormone treatments in pea(Pisum sativum L.)[J]. BMC Genomics, 2023, 24(1): 705. |
[27] | Sornaraj P, Luang S, Lopato S, et al. Basic leucine zipper(bZIP)transcription factors involved in abiotic stresses: a molecular model of a wheat bZIP factor and implications of its structure in function[J]. Biochim Biophys Acta, 2016, 1860(1): 46-56. |
[28] | 李艳肖, 朱贵爽, 张宏宇, 等. 蓖麻RcbZIP11基因克隆及表达特性[J]. 西北植物学报, 2023, 43(9): 1478-1487. |
Li YX, Zhu GS, Zhang HY, et al. Cloning and expression characteristics of RcbZIP11 gene in Castor[J]. Acta Bot Boreali Occidentalia Sin, 2023, 43(9): 1478-1487. | |
[29] |
Choi H, Hong J, Ha J, et al. ABFs, a family of ABA-responsive element binding factors[J]. J Biol Chem, 2000, 275(3): 1723-1730.
doi: 10.1074/jbc.275.3.1723 pmid: 10636868 |
[30] |
Finkelstein RR, Lynch TJ. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor[J]. Plant Cell, 2000, 12(4): 599-609.
doi: 10.1105/tpc.12.4.599 pmid: 10760247 |
[31] |
Uno Y, Furihata T, Abe H, et al. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions[J]. Proc Natl Acad Sci USA, 2000, 97(21): 11632-11637.
doi: 10.1073/pnas.190309197 pmid: 11005831 |
[32] | 任文静, 巫涛, 马洲洋, 等. 梭梭bZIP基因HabZIP60克隆及非生物胁迫下的表达分析[J]. 分子植物育种, 2024. |
Ren WJ, Wu T, Ma ZY, et al. Cloning of Haloxylon ammodendron bZIP gene HabZIP60 and its expression analysis under abiotic stresses[J]. BMC Genomics, 2024. | |
[33] | 王清, 武立伟, 范潘慧, 等. 响应ABA的甘草bZIP转录因子的基因表达及调控研究[J]. 中国现代中药, 2023, 25(6): 1207-1217. |
Wang Q, Wu LW, Fan PH, et al. Gene expression and regulation of bZIP transcription factors in response to ABA in Glycyrrhiza uralensis fisch[J]. Mod Chin Med, 2023, 25(6): 1207-1217. |
[1] | 殷缘, 程爽, 刘定豪, 邓晓霞, 李凯月, 王竞红, 蔺吉祥. 外源过氧化氢(H2O2)影响非生物胁迫下植物生长与生理代谢机制的研究进展[J]. 生物技术通报, 2025, 41(1): 1-13. |
[2] | 武志健, 刘广洋, 林志豪, 盛彬, 陈鸽, 许晓敏, 王军伟, 徐东辉. 蔬菜种子萌发的纳米调控及其机制研究进展[J]. 生物技术通报, 2025, 41(1): 14-24. |
[3] | 李禹欣, 李苗, 杜晓芬, 韩康妮, 连世超, 王军. 谷子SiSAP基因家族的鉴定与表达分析[J]. 生物技术通报, 2025, 41(1): 143-156. |
[4] | 孔青洋, 张晓龙, 李娜, 张晨洁, 张雪云, 于超, 张启翔, 罗乐. 单叶蔷薇GRAS转录因子家族鉴定及表达分析[J]. 生物技术通报, 2025, 41(1): 210-220. |
[5] | 刘倩, 马连杰, 张慧, 王冬, 范茂, 廖敦秀, 赵正武, 卢文才. 辣椒炭疽病生防菌株TN2的筛选鉴定与抑菌效果[J]. 生物技术通报, 2025, 41(1): 287-297. |
[6] | 吴慧琴, 王延宏, 刘涵, 司政, 刘雪晴, 王静, 阳宜, 成妍. 辣椒UGT基因家族的鉴定及表达分析[J]. 生物技术通报, 2024, 40(9): 198-211. |
[7] | 满全财, 孟姿诺, 李伟, 蔡心汝, 苏润东, 付长青, 高顺娟, 崔江慧. 马铃薯AQP基因家族鉴定及表达分析[J]. 生物技术通报, 2024, 40(9): 51-63. |
[8] | 乔岩, 杨芳, 任盼荣, 祁伟亮, 安沛沛, 李茜, 李丹, 肖俊飞. 马铃薯野生种烯酰水合酶超家族基因ScDHNS的克隆与功能分析[J]. 生物技术通报, 2024, 40(9): 92-103. |
[9] | 宋兵芳, 柳宁, 程新艳, 徐晓斌, 田文茂, 高悦, 毕阳, 王毅. 马铃薯G6PDH基因家族鉴定及其在损伤块茎的表达分析[J]. 生物技术通报, 2024, 40(9): 104-112. |
[10] | 申鹏, 高雅彬, 丁红. 马铃薯SAT基因家族的鉴定和表达分析[J]. 生物技术通报, 2024, 40(9): 64-73. |
[11] | 李雨晴, 吴楠, 罗建让. 卵叶牡丹花色苷合成相关基因bHLH的克隆与功能分析[J]. 生物技术通报, 2024, 40(8): 174-185. |
[12] | 李亦君, 杨小贝, 夏琳, 罗朝鹏, 徐馨, 杨军, 宁黔冀, 武明珠. 烟草NtPRR37基因克隆及功能分析[J]. 生物技术通报, 2024, 40(8): 221-231. |
[13] | 李勇慧, 鲍星星, 段一珂, 赵运霞, 于相丽, 陈尧, 张延召. 灵宝杜鹃bZIP家族全基因组鉴定及表达特征分析[J]. 生物技术通报, 2024, 40(8): 186-198. |
[14] | 崔原瑗, 王昭懿, 白双宇, 任毓昭, 豆飞飞, 刘彩霞, 刘凤楼, 王掌军, 李清峰. 大麦非特异性磷脂酶C基因家族全基因组鉴定及苗期胁迫表达分析[J]. 生物技术通报, 2024, 40(8): 74-82. |
[15] | 刘丹丹, 王雷刚, 孙明慧, 焦小雨, 吴琼, 王文杰. 茶树海藻糖-6-磷酸合成酶(TPS)基因家族鉴定与表达分析[J]. 生物技术通报, 2024, 40(8): 152-163. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 103
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 131
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||