[1] AD. Evolutionary significance of phenotypic plasticity in plants[J]. Advances in Genetics, 1965, 13:115-155. [2] WJ, Ham BK, Kim JY. Plasmodesmata-bridging the gap between neighboring plant cells[J]. Trends Cell Biology, 2009, 19(10):495-503. [3] Y, Huang L, Chu H, et al. Analysis of Arabidopsis transcription factor families revealed extensive capacity for cell-to-cell movement as well as discrete trafficking patterns[J]. Molecules and Cells, 2011, 32(6):519-526. [4] WJ, Bouché-Pillon S, Jackson DP, et al. Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata[J].Science, 1995, 270(5244):1980-1983. [5] JY, Colinas J, Wang JY, et al. Transcriptional and posttranscrip-tional regulation of transcription factor expression in Arabidopsis roots[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(15):6055-6060. [6] JY, Yuan Z, Jackson D. Developmental regulation and significance of KNOX protein trafficking in Arabidopsis[J]. Development, 2003, 130(18):4351-4362. [7] T, Mayer KF, Berger J, et al. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis[J]. Development, 1996.122(1):87-96. [8] XY. Delayed Gratification—waiting to terminate stem cell identity[J]. Science, 2014, 343(6170):498-499. [9] Y, Jung J, Chu H, et al. A non-cell-autonomous mechanism for the control of plant architecture and epidermal differentiation involves intercellular trafficking of BREVIPEDICELLUS protein[J]. Func-tional Plant Biology, 2009, 36(3):280-289. [10] L, Vincent C, Jang S, et al. FT protein movement contri-butes to long-distance signaling in floral induction of Arabidopsis[J]. Science, 2007, 316(5827):1030-1033. [11] A, Kobayashi Y, Goto K, et al. TWIN SISTER OF FT(TSF)acts as a floral pathway integrator redundantly with FT[J]. Plant and Cell Physiology, 2005, 46(8):1175-1189. [12] L, Bradley D. TERMINAL FLOWER1 is a mobile signal controlling Arabidopsis architecture[J]. The Plant Cell, 2007, 19(3):767-778. [13] A, Yanofsky MF, Weigel D. Cell-cell signaling and movement by the floral transcription factors LEAFY and APETALA1[J]. Science, 2000, 289(5480):779-781. [14] SL, Martinelli AP, Dinh QD, et al. Intercellular transport of epidermis expressed MADS domain transcription factors and their effect on plant morphology and floral transition[J]. The Plant Journal, 2010, 63(1):60-72. [15] K, Horiguchi G, Usami T, et al. ANGUSTIFOLIA3 signaling coordinates proliferation between clonally distinct cells in leaves[J]. Current Biology, 2013, 23(9):788-792. [16] J, Wang X, Lee JY, et al. Cell-to-cell movement of two interacting AT-hook factors in Arabidopsis root vascular tissue patterning[J]. The Plant Cell, 2013, 25(1):187-201. [17] H, Levesque MP, Vernoux T, et al. An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of end-odermis in plants[J]. Science, 2007, 316(5823):421-425. [18] K, Sena G, Nawy T, et al. Intercellular movement of the putative transcription factor SHR in root patterning[J]. Nature, 2001, 413(6853):307-311. [19] H, Busch W, Benfey PN. Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root[J]. Cell, 2010, 143(4):606-616. [20] A, Moller B, Liu W, et al. MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor[J]. Nature, 2010, 464(7290):913-916. [21] C, Lee MM, Gonzalez A, et al. The bHLH genes GLAB-RA3(GL3)and ENHANCER OF GLABRA3(EGL3)specify epidermal cell fate in the Arabidopsis root[J]. Development, 2003, 130(26):6431-6439. [22] T, Kurata T, Okada K, et al. A genetic regulatory network in the development of trichomes and root hairs[J]. Annual Review of Plant Biology, 2008, 59:365-386. [23] P, Crawford K. Plasmodesmata:gatekeepers for cell-to-cell transport of developmental signals in plants[J]. Annual Review of cell and Developmental Biology, 2000, 16:393-421. [24] 丛悦玺, 苟维超, 等. MYB类转录因子在植物细胞生长发育中的作用及其应用[J].浙江农学学报, 2012, 24(1):174-179. [25] S, Matsuo S, Wong HL, et al. Hd3a protein is a mobile flowering signal in rice[J]. Science, 2007, 316:1033-1036. [26] SC, Chen C, Rojas M, et al. Phloem long-distance delivery of FLOWERING LOCUS T(FT)to the apex[J]. The Plant Journal, 2013, 75:456-468. [27] 刘青林.花序分生组织特性基因TFL1的系统发育及其功能分析[J].中国生物工程杂志, 2008, 28(1):106-112. [28] N, Jamilena M, Zurita S, et al. FALSIFLORA, the tomato orthologue of FLORICAULA and LEAFY, controls flowering time and floral meristem identity[J]. The Plant Journal:for Cell and Molecular Biology, 1999, 20(6):685-693. [29] 马月萍, 陈凡, 戴思兰. 植物LEAFY同源基因的研究进展[J].植物学通报, 2005, 22(5):605-613. [30] JY, Rim Y, Wang J, et al. A novel cell-to-cell trafficking assay indicates that the KNOX homeodomain is necessary and sufficient for intercellular protein and mRNA trafficking[J]. Genes and Development, 2005, 19(7):788-793. [31] JY, Yuan Z, Cilia M, et al. Intercellular trafficking of a KNOT-TED1 green fluorescent protein fusion in the leaf and shoot meristem of Arabidopsis[J]. Proceedings of the National Academy of Scie-nces of the United States of America, 2002, 99(6):4103-4108. [32] T, Kurata T, Tominaga R, et al. Role of a positive regulator of root hair development, CAPRICE, in Arabidopsis root epidermal cell differentiation[J]. Development, 2002, 129(23):5409-5419. [33] Y, Huang L, Chu H, et al. Analysis of Arabidopsis transcription factor families revealed extensive capacity for cell-to-cell movement as well as discrete trafficking patterns[J]. Molecular Cell, 2011, 32(6):519-526. [34] K, Wu S, MacRae-Crerar A, et al. An essential protein that interacts with endosomes and promotes movement of the SHORT-ROOT transcription factor[J]. Current Biology, 2011, 21(18):1559-1564. [35] MC, Haughn G, Saedler H, et al. Non-cell-autonomous fun-ction of the Antirrhinum floral homeotic proteins DEFICIENS and GLOBOSA is exerted by their polar cell-to-cell trafficking[J]. Development, 1996, 122(11):3433-3441. [36] 宋喜娥, 李润植.植物转录因子的胞间运动[J].细胞生物学杂志, 2007, 29:56-60. [37] L, Davies KA, Bergmann DC, et al. Peptide signaling in plant development[J]. Current Biology, 2011, 21(9):R356-364. [38] S, Holt AL, Rubio-Somoza I, et al. A protodermal miR394 signal defines a region of stem cell competence in the Arabidopsis shoot meristem[J]. Developmental Cell, 2013, 24(2):125-132. [39] Sparks E, Wachsman G, Benfey PN. Spatiotemporal signalling in plant development[J]. Nature Reviews Genetics, 2013, 14(9):631-644. [40] J, Xu J, Seifertova D, et al. Polar PIN localization directs auxin flow in plants[J]. Science, 2006, 312(5775):883-883. [41] Y, Wink RH, Ingram GC, et al. A signaling module controlling the stem cell niche in Arabidopsis root meristems[J]. Current Biology, 2009, 19(11):909-914. [42] Y, Grabowski S, Bleckmann A, et al. Moderation of Arabido-psis root stemness by CLAVATA1 and ARABIDOPSIS CRINKLY4 receptor kinase complexes[J]. Current Biology, 2013, 23(5):362-371. [43] W, Wei L, Xu J, et al. Arabidopsis tyrosylprotein sulfotransfe-rase acts in the auxin/PLETHORA pathway in regulating postembr-yonic maintenance of the root stem cell niche[J]. Plant Cell, 2010, 22(11):3692-3709. [44] A, Lee JY, Roberts CJ, et al. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate[J]. Nature, 2010, 465(7296):316-321. [45] S, Koi S, Hashimoto T, et al. Non-cell-autonomous microRNA165 acts in a dose-dependent manner to regulate multiple differentiation status in the Arabidopsis root[J]. Development, 2011, 138(11):2303-2313. [46] H, Hao Y, Kovtun M, et al. Genome-wide direct target analysis reveals a role for SHORT-ROOT in root vascular patterning through cytokinin homeostasis[J]. Plant Physiology, 2011, 157(3):1221-1231. [47] Y, Sakagami Y. Peptide hormones in plants[J]. The Annual Review of Plant Biology, 2006, 57:649-674. [48] 羊杏平, 徐锦华, 等. RNA分子在植物韧皮部长距离运输的研究进展[J].园艺学报, 2013, 40(10):2058-2066. |