[1] Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes:zinc finger fusions to Fok I cleavage domain [J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93:1156-1160. [2] Pabo CO, Peisach E, Grant RA. Design and selection of novel Cys2His2 zinc finger proteins [J]. Annual Review of Biochemistry, 2001, 70:313-340. [3] Ramirez CL, Foley JE, Wright DA, et al. Unexpected failure rates for modular assembly of engineered zinc fingers [J]. Nature Methods, 2008, 5:374-375. [4] Beerli RR, Segal DJ, Dreier B, Barbas CF. Toward controlling gene expression at will:Specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks [J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95:14628-14633. [5] Sander JD, Cade L, Khayter C, et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs [J]. Nature Biotechnology, 2011, 29(8):697-698. [6] Gupta A, Christensen RG, Rayla AL, et al. An optimized two-finger archive for ZFN-mediated gene targeting [J]. Nature Methods, 2012, 9:588-590. [7] Townsend JA, Wright DA, Winfrey RJ, et al. High-frequency modification of plant genes using engineered zinc-finger nucleases [J]. Nature, 2009, 459:442-445. [8] Boch J. TALEs of genome targeting [J]. Nature Biotechnology, 2011, 29:135-136. [9] Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors [J]. Science, 2009, 326:1501. [10] Hockemeyer D, Wang HY, Kiani S, et al. Genetic engineering of human pluripotent cells using TALE nucleases [J]. Nature Biotechnology, 2011, 29:731-734. [11] Mussolino C, Morbitzer R, Lütge F, et al. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity [J]. Nucleic Acids Research, 2011, 39:9283-9293. [12] Zhang F, Cong L, Lodato S, et al. Efficient construction of sequence specific TAL effectors for modulating mammalian transcription [J]. Nature Biotechnology, 2011, 29:149-153. [13] Huang P, Xiao A, Zhou MG, et al. Heritable gene targeting in zebrafish using customized TALENs [J]. Nature Biotechnology, 2011, 29:699-700. [14] Reyon D, Tsai SQ, Khayter C, et al. FLASH assembly of TALENs for high-throughput genome editing [J]. Nature Biotechnology, 2012, 30:460-465. [15] Zu Y, Tong XJ, Wang ZX, et al. TALEN-mediated precise genome modification by homologous recombination in zebrafish [J]. Nature Methods, 2013, 10:329-331. [16] Mahfouz MM, Li LX, Shamimuzzaman M, et al. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108:2623-2628. [17] Cermak T, Doyle EL, Christian M, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting [J]. Nucleic Acids Research, 2011, 39:e82. [18] Tesson L, Usal C, Ménoret S, et al. Knockout rats generated by embryo microinjection of TALENs [J]. Nature Biotechnology, 2011, 29:695-696. [19] Hisano Y, Ota S, Arakawa K, et al. Quantitative assay for TALEN activity at endogenous genomic loci [J]. Biology Open, 2013, 2:363-367. [20] Liu H, Chen Y, Niu Y, et al. TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys [J]. Cell Stem Cell, 2014, 14:323-328. [21] Bacman SR, Williams SL, Pinto M, et al. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs [J]. Nature Medicine, 2013, 19:1111-1113. [22] Wang HY, Hu YC, Markoulaki S, et al. TALEN-mediated editing of the mouse Y chromosome [J]. Nature Biotechnology, 2013, 31:530-532. [23] Hu RZ, Wallace J, Dahlem TJ, et al. Targeting human microRNA genes using engineered Tal-effector nucleases (TALENs) [J]. PLoS One, 2013, 8:e63074. [24] Stoddard BL. Homing endonuclease structure and function [J]. Q Rev Biophys, 2005, 38(11):49-95. [25] Smith J, Grizot S, Arnould S, et al. A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences [J]. Nucleic Acids Research, 2006, 34:e149. [26] Gao H, Smith J, Yang M, et al. Heritable targeted mutagenesis in maize using a designed endonuclease [J]. Plant J, 2010, 61:176-187. [27] Redondo P, Prieto J, Mu?oz IG, et al. Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases [J]. Nature, 2008, 456:107-111. [28] Jinek M, Chylinski K, Ines Fonfara, et al. A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity [J]. Science, 2012, 337:816-821. [29] Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucle-oprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109:E2579-2586. [30] Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems [J]. Science, 2013, 339:819-823. [31] Hwang WY, Fu Y, Reyon D, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system [J]. Nature Biotechnology, 2013, 31:227-229. [32] Yang H, Wang H, Shivalila CS, et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering [J]. Cell, 2013, 154:1370-1379. [33] DiCarlo JE, Norville JE, Mali P, et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems [J]. Nucleic Acids Research, 2013, 41:4336-4343. [34] Cheng AW, Wang HY, Yang H, et al. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system [J]. Cell Research, 2013, 23:1163-1171. [35] Perez-Pinera P, Kocak DD, Vockley CM, Polstein LR, et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors [J]. Nature Methods, 2013, 10:973-976. [36] Nekrasov V, Staskawicz B, Weigel D, et al. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease [J]. Nature Biotechnology, 2013, 31:691-693. [37] Li JF, Norville JE, Aach J, et al. Multiplex and homologous recom-bination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9 [J]. Nature Biotechno-logy, 2013, 31:688-691. [38] Hai T, Teng F, Guo RF, et al. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system [J]. Cell Research, 2014, 24:372-375. [39] Wu Y, Liang D, Wang Y, et al. Correction of a genetic disease in mouse via use of CRISPR-Cas9 [J]. Cell Stem Cell, 2013, 13:659-662. [40] Niu YY, Shen B, Cui YQ, et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos [J]. Cell, 2014, 156:836-843. [41] Koike-Yusa H, Li Y, Tan EP, et al. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library [J]. Nature Biotechnology, 2013, 32:267-273. [42] Wang T, Wei JJ, Sabatini DM, et al. Genetic screens in human cells using the CRISPR-Cas9 system [J]. Science, 2013, 343:80-84. [43] Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPR-Cas9 knockout screening in human Cells [J]. Science, 2013, 343:84-87. [44] Fu YF, Foden JA, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells [J]. Nature Biotechnology, 2013, 31:822-826. [45] Hsu PD, Scott DA, Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases [J]. Nature Biotechnology, 2013, 31:827-832. [46] Pattanayak V, Lin S, Guilinger JP, et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity [J]. Nature Biotechnology, 2013, 31:839-843. [47] Ran FA, Hsu PD, Lin CY, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity [J]. Cell, 2013, 154:1380-1389. [48] Shen B, Zhang WS, Zhang J, et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects [J]. Nature Methods, 2014, 11:399-402. [49] Grobet L, Martin LJ, Poncelet D, et al. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle [J]. Nature Genetics, 1997, 17:71-74. |