[1] de Oliveira Dias R, Franco OL. Cysteine-stabilized αβ defensins:From a common fold to antibacterial activity[J]. Peptides, 2015, 72:64-72. [2] Janeway Jr CA, Medzhitov R. Innate immune recognition[J]. Annual Review of Immunology, 2002, 20(1):197-216. [3] 付蓝宝, 于嘉林, 刘伟华. 防御素的生物学特性及其抗病基因工程[J]. 遗传, 2011, 33(5):512-519. [4] Selsted ME, Szklarek D, Lehrer RI. Purification and antibacterial activity of antimicrobial peptides of rabbit granulocytes[J]. Infection and Immunity, 1984, 45(1):150-154. [5] Lehrer RI, Ganz T, Szklarek D, et al. Modulation of the in vitro candidacidal activity of human neutrophil defensins by target cell metabolism and divalent cations[J]. Journal of Clinical Investigation, 1988, 81(6):1829. [6] Selsted ME, Harwig SS, Ganz T, et al. Primary structures of three human neutrophil defensins[J]. Journal of Clinical Investigation, 1985, 76(4):1436. [7] Daher KA, Selsted ME, Lehrer RI. Direct inactivation of viruses by human granulocyte defensins[J]. Journal of Virology, 1986, 60(3):1068-1074. [8] Lehrer RI, Daher K, Ganz T, et al. Direct inactivation of viruses by MCP-1 and MCP-2, natural peptide antibiotics from rabbit leukocytes[J]. Journal of Virology, 1985, 54(2):467-472. [9] Zhang Y, Lewis K. Fabatins:new antimicrobial plant peptides[J]. FEMS Microbiology Letters, 1997, 149(1):59-64. [10] Schibli DJ, Hunter HN, Aseyev V, et al. The solution structure the human beta-defensins lead to a better understanding of the potent bactericidal activity of HBD-3 against Sttaphylococcus aureus[J]. Journal of Biological Chemistry, 2002, 277(10):8279-8289. [11] Circo R, Skerlavaj B, Gennaro R, et al. Structural and functional characterization of hBD-1(Ser35), a peptide deduced from a DFEB1 polymorphism[J]. Biochemical and Biophysical Research Communications, 2002, 293(1):586-592. [12] Gueguen Y, Herpin A, Aumelas A, et al. Characterization of a defensin from the oyster Crassostrea gigas recombinant production, folding, solution structure, antimicrobial activities, and gene expression[J]. Journal of Biological Chemistry, 2006, 281(1):313-323. [13] Smith JG, Nemerow GR. Mechanism of adenovirus neutralization by human α-defensins[J]. Cell Host & Microbe, 2008, 3(1):11-19. [14] 王少然, 杨雅麟, 张军, 等. 防御素构效关系研究进展[J]. 生物技术通报, 2011(4):40-45. [15] Ganz T. Defensins:antimicrobial peptides of innate immunity[J]. Nature Reviews Immunology, 2003, 3(9):710-720. [16] 王少然. 二硫键对菌丝霉素抗菌活性的影响及菌丝霉素多聚体在毕赤酵母中的表达[D]. 北京:中国农业科学院饲料研究所, 2011. [17] 余兴邦, 郭锁链, 乌翠兰, 等. 防御素研究进展[J]. 动物医学进展, 2006, 27(8):47-51. [18] Yamada O, Sakamoto K, Tominaga M, et al. Cloning and heterologous expression of the antibiotic peptide(ABP)genes from Rhizopus oligosporus NBRC 8631[J]. Bioscience, Biotechnology, and Biochemistry, 2005, 69(3):477-482. [19] Ma D, Wang R, Liao W, et al. Identification and characterization of a novel antibacterial peptide, avian beta-defensin 2 from ducks[J]. Journal of Microbiology, 2009, 47(5):610-618. [20] 赵亚华, 徐来祥, 黄蓬亮, 等. 人类防御素的结构与功能研究进展[J]. 中国比较医学杂志, 2006, 16(7):436-441. [21] Chandrababu KB, Ho B, Yang D. Structure, dynamics, and activity of an all-cysteine mutated human β defensin-3 peptide analogue[J]. Biochemistry, 2009, 48(26):6052-6061. [22] Hoover DM, Wu Z, Tucker K, et al. Antimicrobial characterization of human β-defensin 3 derivatives[J]. Antimicrobial Agents And Chemotherapy, 2003, 47(9):2804-2809. [23] Landon C, Barbault F, Legrain M, et al. Rational design of peptides active against the gram positive bacteria Staphylococcus aureus[J]. Proteins:Structure, Function, and Bioinformatics, 2008, 72(1):229-239. [24] Varkey J, Singh S, Nagaraj R. Antibacterial activity of linear peptides spanning the carboxy-terminal β-sheet domain of arthropod defensins[J]. Peptides, 2006, 27(11):2614-2623. [25] Raj P, Antonyraj K, Karunakaran T. Large-scale synthesis and functional elements for the antimicrobial activity of defensins[J]. Biochem J, 2000, 347:633-641. [26] Antcheva N, Morgera F, Creatti L, et al. Artificial beta-defensin based on a minimal defensin template[J]. Biochem J, 2009, 421:435-447. [27] Zhang J, Yang Y, Teng D, et al. Expression of plectasin in Pichia pastoris and its characterization as a new antimicrobial peptide against Staphyloccocus and Streptococcus[J]. Protein Expression and Purification, 2011, 78(2):189-196. [28] Zhang Y, Teng D, Mao R, et al. High expression of a plectasin-deri-ved peptide NZ2114 in Pichia pastoris and its pharmacodynamics, postantibiotic and synergy against Staphylococcus aureus[J]. Applied Microbiology and Biotechnology, 2014, 98(2):681-694. [29] Zhang Y, Teng D, Wang X, et al. In vitro and in vivo characteriza-tion of a new recombinant antimicrobial peptide, MP1102, against methicillin-resistant Staphylococcus aureus[J]. Applied Microbiology and Biotechnology, 2015:99(15):6255-6266. [30] Yang Y, Teng D, Zhang J, et al. Characterization of recombinant plectasin:solubility, antimicrobial activity and factors that affect its activity[J]. Process Biochemistry, 2011, 46(5):1050-1055. [31] Cao X, Zhang Y, Mao R, et al. Design and recombination expression of a novel plectasin-derived peptide MP1106 and its properties against Staphylococcus aureus[J]. Applied Microbiology and Biotechnology, 2015, 99(6):2649-2662. [32] Peng Z, Wang A, Feng Q, et al. High-level expression, purification and characterisation of porcine β-defensin 2 in Pichia pastoris and its potential as a cost-efficient growth promoter in porcine feed[J]. Applied Microbiology And Biotechnology, 2014, 98(12):5487-5497. [33] Schroeder BO, Wu Z, Nuding S, et al. Reduction of disulphide bonds unmasks potent antimicrobial activity of human[bgr]-defensin 1[J]. Nature, 2011, 469(7330):419-423. [34] Maemoto A, Qu X, Rosengren KJ, et al. Functional analysis of the α-defensin disulfide array in mouse cryptdin-4[J]. Journal of Biological Chemistry, 2004, 279(42):44188-44196. [35] Wanniarachchi YA, Kaczmarek P, Wan A, et al. Human defensin 5 disulfide array mutants:disulfide bond deletion attenuates antibacterial activity against Staphylococcus aureus[J]. Biochemistry, 2011, 50(37):8005-8017. [36] Haag AF, Kerscher B, Dall’Angelo S, et al. Role of cysteine residues and disulfide bonds in the activity of a legume root nodule-specific, cysteine-rich peptide[J]. Journal of Biological Chemistry, 2012, 287(14):10791-10798. [37] Lee J, Lee D, Choi H, et al. Structure-activity relationships of the intramolecular disulfide bonds in coprisin, a defensin from the dung beetle[J]. BMB Reports, 2014, 47(11):625. [38] Chandrababu KB, Ho B, Yang D. Structure, dynamics, and activity of an all-cysteine mutated human β defensin-3 peptide analogue[J]. Biochemistry, 2009, 48(26):6052-6061. [39] Sharma H, Nagaraj R. Human β-Defensin 4 with non-native disulfide bridges exhibit antimicrobial activity[J]. PLoS One, 2015, 10(3):e0119525. [40] Valore EV, Ganz T. Laboratory production of antimicrobial peptides in native conformation[M]. Antibacterial Peptide Protocols. Humana Press, 1997:115-131. |