[1] Van DBL.Genetic rodent models of amyotrophic lateral sclerosis[J]. J Biomed Biotechnol, 2011, 2011(6):348765. [2] Hoke A, Ray M.Rodent models of chemotherapy-induced peripheral neuropathy[J]. ILAR J, 2014, 54(3):273-281. [3] Yan G, Zhang G, Fang X, et al.Genome sequencing and comparison of two nonhuman primate animal models, the cynomolgus and Chinese rhesus macaques[J]. Nat Biotechnol, 2011, 29(11):1019-1023. [4] Gibbs RA, Rogers J, Katze MG, et al.Evolutionary and biomedical insights from the rhesus macaque genome[J]. Science, 2007, 316(5822):222-234. [5] Chan AW, Chong KY, Martinovich C, et al.Transgenic monkeys produced by retroviral gene transfer into mature oocytes[J]. Science, 2001, 291(5502):309-312. [6] Yang SH, Cheng PH, Banta H, et al.Towards a transgenic model of Huntington’s disease in a non-human primate[J]. Nature, 2008, 453(7197):921-924. [7] Niu Y, Guo X, Chen Y, et al.Early Parkinson's disease symptoms in α-synuclein transgenic monkeys[J]. Hum Mol Genet, 2015, 24(8):2308-2317. [8] Liu Z, Li X, Zhang JT, et al.Autism-like behaviours and germline transmission in transgenic monkeys overexpressing MeCP2[J]. Nature, 2016, 530(7588):98-102. [9] Sasaki E, Suemizu H, Shimada A, et al.Generation of transgenic non-human primates with germline transmission[J]. Nature, 2009, 459(7246):523-527. [10] Niu Y, Yu Y, Bernat A, et al.Transgenic rhesus monkeys produced by gene transfer into early-cleavage-stage embryos using a simian immunodeficiency virus-based vector[J]. Proc Natl Acad Sci U S A, 2010, 107(41):17663-17667. [11] Carroll D, Wahl LM.Genome engineering with zinc-finger nucleases[J]. Genetics, 2011, 188(4):773-782. [12] Cermak T, Doyle EL, Christian M, et al.Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting[J]. Nucleic Acids Res, 2011, 39(12):e82. [13] Liu H, Chen Y, Niu Y, et al.TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys[J]. Cell Stem Cell, 2014, 14(3):323-328. [14] Chen Y, Yu J, Niu Y, et al.Modeling rett syndrome using TALEN-edited MECP2 mutant cynomolgus monkeys[J]. Cell, 2017, 169(5):945-955. [15] Ke Q, Li W, Lai X, et al.TALEN-based generation of a cynomolgus monkey disease model for human microcephaly[J]. Cell Res, 2016, 26(9):1048-1061. [16] Horvath P and Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea[J]. Science, 2010, 327(5962):167-170. [17] Makarova KS, Wolf YI, Alkhnbashi OS, et al.An updated evolutionary classification of CRISPR-Cas systems[J]. Nat Rev Microbiol, 2015, 13(11):722-736. [18] Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science, 2016, 353(6299):aaf5573. [19] Zetsche B, Gootenberg JS, Abudayyeh OO, et al.Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3):759-771. [20] Fonfara I, Richter H, Bratovic M, et al.The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA[J]. Nature, 2016, 532(7600):517-521. [21] Liu L, Li X, Wang J, et al.Two distant catalytic sites are responsible for C2c2 RNase activities[J]. Cell, 2017, 168(1-2):121-134. [22] Cong L, Ran FA, Cox D, et al.Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121):819-823. [23] Mali P, Yang L, Esvelt KM, et al.RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121):823-826. [24] Nishimasu H, Ran FA, Hsu PD, et al.Crystal structure of Cas9 in complex with guide RNA and target DNA[J]. Cell, 2014, 156(5):935-949. [25] Niu Y, Shen B, Cui Y, et al.Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos[J]. Cell, 2014, 156(4):836-843. [26] Chen Y, Cui Y, Shen B, et al.Germline acquisition of Cas9/RNA-mediated gene modifications in monkeys[J]. Cell Res, 2015, 25(2):262-265. [27] Chen Y, Zheng Y, Kang Y, et al.Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9[J]. Hum Mol Genet, 2015, 24(13):3764-3774. [28] Kang Y, Zheng B, Shen B, et al.CRISPR/Cas9-mediated Dax1 knockout in the monkey recapitulates human AHC-HH[J]. Hum Mol Genet, 2015, 24(25):7255-7264. [29] Wan H, Feng C, Teng F, et al.One-step generation of p53 gene biallelic mutant Cynomolgus monkey via the CRISPR/Cas system[J]. Cell Res, 2015, 25(2):258-261. [30] Midic U, Hung PH, Vincent KA, et al.Quantitative assessment of timing, efficiency, specificity and genetic mosaicism of CRISPR/Cas9-mediated gene editing of hemoglobin beta gene in rhesus monkey embryos[J]. Hum Mol Genet, 2017, 26(14):2678-2689. [31] Rusk N.CRISPRs and epigenome editing[J]. Nat Methods, 2014, 11(1):28. [32] Fu Y, Foden JA, Khayter C, et al.High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells[J]. Nat Biotechnol, 2013, 31(9):822-826. [33] Mali P, Aach J, Stranges PB, et al.CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome take engineering[J]. Nat Biotechnol, 2013, 31(9):833-838. [34] Pattanayak V, Lin S, Guilinger JP, et al.High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity[J]. Nat Biotechnol, 2013, 31(9):839-843. [35] Liang P, Xu Y, Zhang X, et al.CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes[J]. Protein Cell, 2015, 6(5):363-372. [36] Ran FA, Hsu PD, Lin CY, et al.Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity[J]. Cell, 2013, 154(6):1380-1389. [37] Guilinger JP, Thompson DB and Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification[J]. Nat Biotechnol, 2014, 32(6):577-582. [38] Shengdar QT, Nicolas W, Cyd K, et al.Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing[J]. Nat Biotechnol, 2014, 32(6):569-576. [39] Slaymaker IM, Gao L, Zetsche B, et al.Rationally engineered Cas9 nucleases with improved specificity[J]. Science, 2016, 351(6268):84-88. [40] Kleinstiver BP, Pattanayak V, Prew MS, et al.High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects[J]. Nature, 2016, 529(7587):490-495. [41] Liu KI, Ramli MN, Woo CW, et al.A chemical-inducible CRISPR-Cas9 system for rapid control of genome editing[J]. Nat Chem Biol, 2016, 12(11):980-987. [42] Nihongaki Y, Kawano F, Nakajima TP, et al.Photoactivatable CRISPR-Cas9 for optogenetic genome editing[J]. Nat Biotechnol, 2015, 33(7):755-760. [43] Rauch BJ, Silvis MR, Hultquist JF, et al.Inhibition of CRISPR-Cas9 with Bacteriophage Proteins[J]. Cell, 2017, 168(1-2):150-158. [44] Lee CM, Cradick TJ, Fine EJ, et al.Nuclease target site selection for maximizing on-target activity and minimizing off-target effects in genome editing[J]. Mol Ther, 2016, 24(3):475-487. [45] Rastogi A, Murik O, Bowler C, et al.PhytoCRISP-Ex:a web-based and stand-alone application to find specific target sequences for CRISPR/CAS editing[J]. BMC Bioinformatics, 2016, 17(1):261. [46] Hsu PD, Scott DA, Weinstein JA, et al.DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nat Biotechnol, 2013, 31(9):827-832. [47] Seung WC, Sojung K, Yongsub K, et al.Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases[J]. Genome Res, 2014, 24(1):132-141. [48] Fu Y, Sander JD, Reyon D, et al.Improving CRISPR-Cas nuclease specificity using truncated guide RNAs[J]. Nat Biotechnol, 2014, 32(3):279-284. [49] Wyvekens N, Topkar VV, Khayter C, et al.Dimeric CRISPR RNA-guided FokI-dCas9 nucleases directed by truncated gRNAs for highly specific genome editing[J]. Hum Gene Ther, 2015, 26(7):425-431. [50] Tu Z, Yang W, Yan S, et al.Promoting Cas9 degradation reduces mosaic mutations in non-human primate embryos[J]. Sci Rep, 2017, 7(1):42081. [51] Hashimoto M, Yamashita Y, Takemoto T.Electroporation of Cas9 protein/sgRNA into early pronuclear zygotes generates non-mosaic mutants in the mouse[J]. Dev Biol, 2016, 418(1):1-9. [52] Platt RJ, Chen S, Zhou Y, et al.CRISPR-Cas9 knockin mice for genome editing and cancer modeling[J]. Cell, 2014, 159(2):440-455. [53] Sakurai T, Watanabe S, Kamiyoshi A, et al.A single blastocyst assay optimized for detecting CRISPR/Cas9 system-induced indel mutations in mice[J]. BMC Biotechnol, 2014, 14(1):69. [54] Tsai SQ, Zheng Z, Nguyen NT, et al.GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases[J]. Nat Biotechnol, 2015, 33(2):187-197. [55] Kim D, Bae S, Park J, et al.Digenome-seq:genome-wide profiling of CRISPR-Cas9 off-target effects in human cells[J]. Nat Methods, 2015, 12(3):237-243. [56] Maruyama T, Dougan SK, Truttmann MC, et al.Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining[J]. Nat Biotechnol, 2015, 33(5):538-542. [57] Aida T, Chiyo K, Usami T, et al.Cloning-free CRISPR/Cas system facilitates functional cassette knock-in in mice[J]. Genome Biol, 2015, 16(1):87. [58] David Cyranoski.CRISPR gene-editing tested in a person for the first time[J]. Nature, 2016, 539(7630):479. [59] Ma H, Marti-Gutierrez N, Park SW, et al.Correction of a pathogenic gene mutation in human embryos[J]. Nature, 2017, 548(7668):413-419. [60] Wu Y, Liang D, Wang Y, et al.Correction of a genetic disease in mouse via use of CRISPR-Cas9[J]. Cell Stem Cell, 2013, 13(6):659-662. [61] Liu Y, Qi X, Zeng Z, et al.CRISPR/Cas9-mediated p53 and pten dual mutation accelerates he patocarcinogenesis in adult hepatitis B virus transgenic mice[J]. Sci Rep, 2017, 7(1):2796. [62] Reardon S. Leukaemia success heralds wave of gene-editing therapies[J]. Nature, 2015, 12;527(7577):146-147. [63] Wang Z, Pan Q, Gendron P, et al.CRISPR/Cas9-derived mutations both inhibit HIV-1 replication and accelerate viral escape[J]. Cell Rep, 2016, 15(3):481-489. |