生物技术通报 ›› 2020, Vol. 36 ›› Issue (2): 39-48.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0747
王炳, 罗海玲
收稿日期:
2019-08-20
出版日期:
2020-02-26
发布日期:
2020-02-23
作者简介:
王炳,男,博士,讲师,研究方向:反刍动物营养与瘤胃;E-mail:wangb@cau.edu.cn
基金资助:
WANG Bing, LUO Hai-ling
Received:
2019-08-20
Published:
2020-02-26
Online:
2020-02-23
摘要: 瘤胃微生物与宿主间存在互作关系,宿主动物遗传信息影响瘤胃微生物,而瘤胃微生物变化也同样受到日粮原料、营养水平以及外源添加物质的调控。近年来,通过多组学技术分析瘤胃微生物与宿主关系及其内在机制已成为研究热点。综述了瘤胃微生物与宿主关系及受日粮调控作用研究进展,具体介绍了瘤胃微生物与宿主基因组关系,瘤胃微生物与动物生产性能关系,以及在日粮配置、益生菌益生元和植物次生代谢物添加等条件下对瘤胃微生物的影响;并对瘤胃微生物研究的发展趋势和应用前景进行了展望。
王炳, 罗海玲. 瘤胃微生物与宿主互作及其日粮调控研究进展[J]. 生物技术通报, 2020, 36(2): 39-48.
WANG Bing, LUO Hai-ling. Research Progress on Interaction Between Rumen Microorganisms and Host and Its Dietary Regulation[J]. Biotechnology Bulletin, 2020, 36(2): 39-48.
[1] Ripple WJ, Smith P, Haberl H, et al.Ruminants, climate change and climate policy[J]. Pearson Education, 2013, 19(2):2-5. [2] Huws SA, Creevey CJ, Oyama L B, et al.Addressing global ruminant agricultural challenges through understanding the rumen microbiome:past, present, and future[J]. Frontiers in Microbiology, 2018, 9:2161. [3] Jami E, White BA, Mizrahi I.Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency[J]. PLoS One, 2014, 9(1):e85423. [4] Zeineldin M, Barakat R, Elolimy A, et al.Synergetic action between the rumen microbiota and bovine health[J]. Microbial Pathogenesis, 2018, 124:106-115. [5] Morgavi DP, Kelly WJ, Janssen PH, et al.Rumen microbial(meta)genomics and its application to ruminant production[J]. Animal, 2013, 7(S1):184-201. [6] Koike S, Kobayashi Y.Development and use of competitive PCR assays for the rumen cellulolytic bacteria:Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens[J]. FEMS Microbiology Letters, 2001, 204(2):361-366. [7] Fouts DE, Szpakowski S, Purushe J, et al.Next generation sequencing to define prokaryotic and fungal diversity in the bovine rumen[J]. PLoS One, 2012, 7(11):e48289. [8] Mackie RI, Aminov RI, White BA, et al.Molecular ecology and diversity in gut microbial ecosystems[M]// CronjeB. Ruminant Physiology:Digestion, Metabolism, Growth and Reproduction. London:CAB International, 2000. [9] Jewell KA, McCormick CA, Odt CL, et al. Ruminal bacterial community composition in dairy cows is dynamic over the course of two lactations and correlates with feed efficiency[J]. Appl Environ Microbiol, 2015, 81(14):4697-4710. [10] Stewart RD, Auffret MD, Warr A, et al.Compendium of 4, 941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery[J]. Nature Biotechnology, 2019, 37(8):953-961. [11] Choudhury PK, Salem AZM, Jena R, et al.Rumen microbiology:An overview[M]//Rumen microbiology:from evolution to revolution. New Delhi:Springer, 2015:3-16. [12] Newbold CJ, De La Fuente G, Belanche A, et al. The role of ciliate protozoa in the rumen[J]. Frontiers in Microbiology, 2015, 6:1313. [13] Kittelmann S, Janssen PH.Characterization of rumen ciliate community composition in domestic sheep, deer, and cattle, feeding on varying diets, by means of PCR-DGGE and clone libraries[J]. FEMS Microbiology Ecology, 2011, 75(3):468-481. [14] Henderson G, Cox F, Ganesh S, et al.Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range[J]. Scientific Reports, 2015, 5:14567. [15] Medinger R, Nolte V, Pandey RV, et al.Diversity in a hidden world:potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms[J]. Molecular Ecology, 2010, 19:32-40. [16] Ohland CL, Jobin C.Microbial activities and intestinal homeosta-sis:a delicate balance between health and disease[J]. Cellular and Molecular Gastroenterology and Hepatology, 2015, 1(1):28-40. [17] Tan J, Mckenzie C, Potamitis M, et al.The role of short-chain fatty acids in health and disease[J]. Advances in Immunology, 2014, 121:91-119. [18] Jiao J, Zhang X, Wang M, et al.Linkages between epithelial microbiota and host transcriptome in the ileum during high-grain challenges:implications for gut homeostasis in goats[J]. Journal of Agricultural and Food Chemistry, 2018, 67(1):551-561. [19] Patil RD, Ellison MJ, Wolff SM, et al.Poor feed efficiency in sheep is associated with several structural abnormalities in the community metabolic network of their ruminal microbes1[J]. Journal of Animal Science, 2018, 96(6):2113-2124. [20] Shen H, Lu Z, Xu Z, et al.Associations among dietary non-fiber carbohydrate, ruminal microbiota and epithelium G-protein-coupled receptor, and histone deacetylase regulations in goats[J]. Microbiome, 2017, 5(1):123. [21] Lin L, Xie F, Sun D, et al.Ruminal microbiome-host crosstalk stimulates the development of the ruminal epithelium in a lamb model[J]. Microbiome, 2019, 7(1):83. [22] Stevens CE, Hume ID.Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients [J]. Physiological Reviews, 1998, 78(2):393-427. [23] Rius AG, Kittelmann S, Macdonald KA, et al.Nitrogen metabolism and rumen microbial enumeration in lactating cows with divergent residual feed intake fed high-digestibility pasture[J]. Journal of Dairy Science, 2012, 95(9):5024-5034. [24] McCann JC, Wiley LM, Forbes TD, et al. Relationship between the rumen microbiome and residual feed intake-efficiency of Brahman bulls stocked on bermudagrass pastures[J]. PLoS One, 2014, 9(3):e91864. [25] Herrero M, Havlík P, Valin H, et al.Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems[J]. Proceedings of the National Academy of Sciences, 2013, 110(52):20888-20893. [26] Garton GA.Fatty acid metabolism in ruminants. Biochemistry of Lipids II. T. W[M]. Goodwin, ed. Univ. Park Press, Baltimore, 1977:337-370. [27] Kim YJ, Liu RH, Rychlik JL, et al.The enrichment of a ruminal bacterium(Megasphaera elsdenii YJ-4)that produces the trans-10, cis-12 isomer of conjugated linoleic acid[J]. Journal of Applied Microbiology, 2002, 92(5):976-982. [28] Rico DE, Harvatine KJ.Induction of and recovery from milk fat depression occurs progressively in dairy cows switched between diets that differ in fiber and oil concentration[J]. Journal of Dairy science, 2013, 96(10):6621-6630. [29] Pitta DW, Indugu N, Vecchiarelli B, et al.Alterations in ruminal bacterial populations at induction and recovery from diet-induced milk fat depression in dairy cows[J]. Journal of Dairy Science, 2018, 101(1):295-309. [30] Xue MY, Sun HZ, Wu XH, et al.Assessment of rumen bacteria in dairy cows with varied milk protein yield[J]. Journal of Dairy Science, 2019, 102(6):5031-5041. [31] Sun HZ, Plastow G, Guan LL.Invited review:Advances and challenges in application of feedomics to improve dairy cow production and health[J]. Journal of Dairy Science, 2019, 102(7):5853-5870. [32] Pitta DW, Pinchak WE, Dowd SE, et al.Rumen bacterial diversity dynamics associated with changing from bermudagrass hay to grazed winter wheat diets[J]. Microbial Ecology, 2010, 59(3):511-522. [33] Krause DO, Nagaraja TG, Wright ADG, et al.Board-invited review:rumen microbiology:leading the way in microbial ecology[J]. Journal of Animal Science, 2013, 91(1):331-341. [34] Kim M, Morrison M, Yu Z.Status of the phylogenetic diversity census of ruminal microbiomes[J]. FEMS Microbiology Ecology, 2011, 76(1):49-63. [35] Steele MA, Croom J, Kahler M, et al.Bovine rumen epithelium undergoes rapid structural adaptations during grain-induced subacute ruminal acidosis[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2011, 300(6):R1515-R1523. [36] Stevenson DM, Weimer PJ.Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR[J]. Applied Microbiology and Biotechnology, 2007, 75(1):165-174. [37] Loor JJ, Elolimy AA, McCann JC. Dietary impacts on rumen microbiota in beef and dairy production[J]. Animal Frontiers, 2016, 6(3):22-29. [38] Van Gastelen S, Dijkstra J, Bannink A.Are dietary strategies to mitigate enteric methane emission equally effective across dairy cattle, beef cattle, and sheep?[J]. Journal of Dairy Science, 2019, 102(7):6109-6130. [39] Alexander TW, Plaizier JC.From the Editors:The importance of microbiota in ruminant production[J]. Animal Frontiers, 2016, 6(2):4-7. [40] Enjalbert F, Combes S, Zened A, et al.Rumen microbiota and dietary fat:a mutual shaping[J]. Journal of Applied Microbiology, 2017, 123(4):782-797. [41] Ohland CL, Jobin C.Microbial activities and intestinal homeosta-sis:a delicate balance between health and disease[J]. Cellular and Molecular Gastroenterology and Hepatology, 2015, 1(1):28-40. [42] Antonopoulos DA, Huse SM, Morrison HG, et al.Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation[J]. Infection and Immunity, 2009, 77(6):2367-2375. [43] Shen H, Lu Z, Xu Z, et al.Antibiotic pretreatment minimizes dietary effects on reconstructure of rumen fluid and mucosal microbiota in goats[J]. Microbiology Open, 2018, 7(1):e00537. [44] Jernberg C, Löfmark S, Edlund C, et al.Long-term impacts of antibiotic exposure on the human intestinal microbiota[J]. Microbiology, 2010, 156(11):3216-3223. [45] Dethlefsen L, Huse S, Sogin ML, et al.The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing[J]. PLoS Biology, 2008, 6(11):e280. [46] Schären M, Drong C, Kiri K, et al.Differential effects of monensin and a blend of essential oils on rumen microbiota composition of transition dairy cows[J]. Journal of Dairy Science, 2017, 100(4):2765-2783. [47] Gibson GR, Hutkins R, Sanders ME, et al.Expert consensus document:The international scientific association for probiotics and prebiotics(ISAPP)consensus statement on the definition and scope of prebiotics[J]. Nature reviews Gastroenterology & Hepatology, 2017, 14(8):491. [48] Krehbiel CR, Rust SR, Zhang G, et al.Bacterial direct-fed microbials in ruminant diets:Performance response and mode of action[J]. Journal of Animal Science, 2003, 81(S2):E120-E132. [49] Adjei-Fremah S, Ekwemalor K, Asiamah EK, et al.Effect of probiotic supplementation on growth and global gene expression in dairy cows[J]. Journal of Applied Animal Research, 2018, 46(1):257-263. [50] Tao S, Tian P, Luo Y, et al.Microbiome-metabolome responses to a high-grain diet associated with the hind-gut health of goats[J]. Frontiers in Microbiology, 2017, 8:1764. [51] Khafipour E, Li S, Tun HM, et al.Effects of grain feeding on microbiota in the digestive tract of cattle[J]. Animal Frontiers, 2016, 6(2):13-19. [52] Wang Z, He Z, Beauchemin KA, et al.Evaluation of different yeast species for improving in vitro fermentation of cereal straws[J]. Asian-Australasian Journal of Animal Sciences, 2016, 29(2):230. [53] Meissner HH, Henning PH, Horn CH, et al.Ruminal acidosis:A review with detailed reference to the controlling agent Megasphaera elsdenii NCIMB 41125[J]. South African Journal of Animal Science, 2010, 40(2):79. [54] Metzler B, Bauer E, Mosenthin R.Microflora management in the gastrointestinal tract of piglets[J]. Asian-Australasian Journal of Animal Sciences, 2005, 18(9):1353-1362. [55] Bidarkar VK, Swain PS, Ray S, et al.Probiotics:potential alternative to antibiotics in ruminant feeding[J]. Trends Vet Anim Sci, 2014, 1:1-4. [56] Ghazanfar S, Khalid N, Ahmed I, et al.Probiotic yeast:mode of action and its effects on ruminant nutrition[M]//Yeast—Industrial Applications, IntechOpen, 2017:179-202. [57] Stein DR, Allen DT, Perry EB, et al.Effects of feeding propionib-acteria to dairy cows on milk yield, milk components, and reprodu-ction[J]. Journal of Dairy Science, 2006, 89(1):111-125. [58] Arowolo MA, He J.Use of probiotics and botanical extracts to improve ruminant production in the tropics:A review[J]. Animal Nutrition, 2018, 4(3):241-249. [59] Belguesmia Y, Domenger D, Caron J, et al.Novel probiotic evidence of lactobacilli on immunomodulation and regulation of satiety hormones release in intestinal cells[J]. Journal of Functional Foods, 2016, 24:276-286. [60] Agarwal N, Kamra DN, Chaudhary LC, et al.Microbial status and rumen enzyme profile of crossbred calves fed on different microbial feed additives[J]. Letters in Applied Microbiology, 2002, 34(5):329-336. [61] Whitley NC, Cazac D, Rude BJ, et al.Use of a commercial probiotic supplement in meat goats[J]. Journal of Animal Science, 2009, 87(2):723-728. [62] Ruiz O, Castillo Y, Arzola C, et al.Effects of Candida norvegensis live cells on in vitro oat straw rumen fermentation[J]. Asian-Australasian Journal of Animal Sciences, 2016, 29(2):211. [63] Xiao JX, Alugongo GM, Chung R, et al.Effects of Saccharomyces cerevisiae fermentation products on dairy calves:Ruminal fermentation, gastrointestinal morphology, and microbial community[J]. Journal of Dairy Science, 2016, 99(7):5401-5412. [64] Ding G, Chang Y, Zhao L, et al.Effect of Saccharomyces cerevisiae on alfalfa nutrient degradation characteristics and rumen microbial populations of steers fed diets with different concentrate-to-forage ratios[J]. Journal of Animal Science and Biotechnology, 2014, 5(1):24. [65] Tripathi VK, Sehgal JP, Puniya AK, et al.Effect of administration of anaerobic fungi isolated from cattle and wild blue bull(Boselaphus tragocamelus)on growth rate and fibre utilization in buffalo calves[J]. Archives of Animal Nutrition, 2007, 61(5):416-423. [66] Poppy GD, Rabiee AR, Lean IJ, et al.A meta-analysis of the effects of feeding yeast culture produced by anaerobic fermentation of Saccharomyces cerevisiae on milk production of lactating dairy cows[J]. Journal of Dairy Science, 2012, 95(10):6027-6041. [67] Yoon IK, Stern MD.Effects of Saccharomyces cerevisiae and Aspergillus oryzae cultures on ruminal fermentation in dairy cows[J]. Journal of Dairy Science, 1996, 79(3):411-417. [68] Mao H, Mao H, Wang JK, et al.Effects of Saccharomyces cerevisiae fermentation product on in vitro fermentation and microbial communities of low-quality forages and mixed diets[J]. Journal of Animal Science, 2013, 91(7):3291-3298. [69] Lu Q, Wu J, Wang M, et al.Effects of dietary addition of cellulase and a Saccharomyces cerevisiae fermentation product on nutrient digestibility, rumen fermentation and enteric methane emissions in growing goats[J]. Archives of Animal Nutrition, 2016, 70(3):224-238. [70] Li S, Yoon I, Scott M, et al.Impact of Saccharomyces cerevisiae fermentation product and subacute ruminal acidosis on production, inflammation, and fermentation in the rumen and hindgut of dairy cows[J]. Animal Feed Science and Technology, 2016, 211:50-60. [71] Gilani GS, Xiao CW, Cockell KA.Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality[J]. Bri J Nutr, 2012, 108(S2):S315-S332. [72] Wanapat M, Kongmun P, Poungchompu O, et al.Effects of plants containing secondary compounds and plant oils on rumen fermentation and ecology[J]. Tropical Animal Health and Production, 2012, 44(3):399-405. [73] Vasta V, Daghio M, Cappucci A, et al.Invited review:Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission:Experimental evidence and methodological approaches[J]. Journal of Dairy Science, 2019, 102(5):3781-3804. [74] Yusuf AL, Adeyemi KD, Samsudin AA, et al.Effects of dietary supplementation of leaves and whole plant of Andrographis paniculata on rumen fermentation, fatty acid composition and microbiota in goats[J]. BMC Veterinary Research, 2017, 13(1):349. [75] Lei Z, Zhang K, Li C, et al.Ruminal metagenomic analyses of goat data reveals potential functional microbiota by supplementation with essential oil-cobalt complexes[J]. BMC Microbiology, 2019, 19(1):30. [76] Wang B, Ma M, Diao Q, et al.Saponin-induced shifts in the rumen microbiome and metabolome of young cattle[J]. Frontiers in Microbiology, 2019, 10:356. [77] Wang M, Wang R, Zhang XM, et al.Molecular hydrogen generated by elemental magnesium supplementation alters rumen fermentation and microbiota in goats[J]. Bri J Nutr, 2017, 118(6):401-410. [78] Zhao L, Meng Q, Li Y, et al.Nitrate decreases ruminal methane production with slight changes to ruminal methanogen composition of nitrate-adapted steers[J]. BMC Microbiology, 2018, 18(1):21. [79] Mao S, Huo W, Liu J, et al.In vitro effects of sodium bicarbonate buffer on rumen fermentation, levels of lipopolysaccharide and biogenic amine, and composition of rumen microbiota[J]. Journal of the Science of Food and Agriculture, 2017, 97(4):1276-1285. |
[1] | 周璐祺, 崔婷茹, 郝楠, 赵雨薇, 赵斌, 刘颖超. 化学蛋白质组学在天然产物分子靶标鉴定中的应用[J]. 生物技术通报, 2023, 39(9): 12-26. |
[2] | 赵志祥, 王殿东, 周亚林, 王培, 严婉荣, 严蓓, 罗路云, 张卓. 枯草芽孢杆菌Ya-1对辣椒枯萎病的防治及其对根际真菌群落的影响[J]. 生物技术通报, 2023, 39(9): 213-224. |
[3] | 周嫒婷, 彭睿琦, 王芳, 伍建榕, 马焕成. 生防菌株DZY6715在不同生长期的代谢差异分析[J]. 生物技术通报, 2023, 39(9): 225-235. |
[4] | 张蓓, 任福森, 赵洋, 郭志伟, 孙强, 刘贺娟, 甄俊琦, 王童童, 程相杰. 辣椒响应热胁迫机制的研究进展[J]. 生物技术通报, 2023, 39(7): 37-47. |
[5] | 韩华蕊, 杨宇琭, 门艺涵, 韩尚玲, 韩渊怀, 霍轶琼, 侯思宇. 基于代谢组学研究谷子SiYABBYs参与花发育过程中鼠李糖苷的生物合成[J]. 生物技术通报, 2023, 39(6): 189-198. |
[6] | 雷彩荣, 郭晓鹏, 柴冉, 张苗苗, 任军乐, 陆栋. 组学技术在重离子辐射微生物诱变育种中的应用[J]. 生物技术通报, 2023, 39(5): 54-62. |
[7] | 桑田, 王鹏程. 植物SUMO化修饰研究进展[J]. 生物技术通报, 2023, 39(3): 1-12. |
[8] | 王昕璐, 王蒙, 翟文磊. 脂质组学在毒理学研究中的应用[J]. 生物技术通报, 2023, 39(3): 69-80. |
[9] | 徐扬, 丁红, 张冠初, 郭庆, 张智猛, 戴良香. 盐胁迫下花生种子萌发期代谢组学分析[J]. 生物技术通报, 2023, 39(1): 199-213. |
[10] | 张岩峰, 丁燕玲, 马应, 周小南, 杨朝云, 史远刚, 康晓龙. 肉牛剩余采食量相关瘤胃及粪便微生物特征比较分析[J]. 生物技术通报, 2023, 39(1): 295-304. |
[11] | 鲁兆祥, 王夕冉, 连新磊, 廖晓萍, 刘雅红, 孙坚. 基于功能宏基因组学挖掘抗生素耐药基因研究进展[J]. 生物技术通报, 2022, 38(9): 17-27. |
[12] | 赵林艳, 官会林, 王克书, 卢燕磊, 向萍, 魏富刚, 杨绍周, 徐武美. 土壤含水量对三七连作土壤微生物群落的影响[J]. 生物技术通报, 2022, 38(7): 215-223. |
[13] | 古丽加马力·艾萨, 邢军, 李安, 张瑞. 开菲尔粒中微生物对苯并(α)芘的非靶向代谢组学分析[J]. 生物技术通报, 2022, 38(5): 123-135. |
[14] | 杨玉萍, 张霞, 王翀翀, 王晓艳. 不同年龄大鼠尿液代谢组学研究[J]. 生物技术通报, 2022, 38(2): 166-172. |
[15] | 赵林艳, 官会林, 向萍, 李泽诚, 柏雨龙, 宋洪川, 孙世中, 徐武美. 白及根腐病植株根际土壤微生物群落组成特征分析[J]. 生物技术通报, 2022, 38(2): 67-74. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||