生物技术通报 ›› 2021, Vol. 37 ›› Issue (10): 234-244.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0116
收稿日期:
2021-01-28
出版日期:
2021-10-26
发布日期:
2021-11-12
作者简介:
胡芳,女,博士,教授,研究方向:生物质资源利用;E-mail: 基金资助:
HU Fang1,2(), DONG Xu1, SHI Chang-wei1, WU Xue-dong1
Received:
2021-01-28
Published:
2021-10-26
Online:
2021-11-12
摘要:
超声波处理强化木质纤维素生物质酶解过程,可提高酶解速率和可发酵糖以及生物乙醇产量。综述了木质纤维素酶解过程和限制酶解的因素,以及超声波强化在酶-底物预处理、糖化、同步糖化发酵工艺、产酶过程中的应用进展。超声波以多种方式促进木质纤维素的生物转化,对酶促反应提供明显的强化效果。对超声波强化酶解的机理进行了分析,超声波促进非均相系统的扩散和传质,同时增大酶/底物的亲和力、提高酶/底物复合物转化为产物的速度,酶分子构象发生柔性变化,易于定位于底物,破坏酶分子聚集体,使得酶活性位点更易于进行反应;增加纤维素底物的可及性;改变酶蛋白空间结构,在不改变酶的结构完整性的情况下使蛋白质分子发生有利的构象变化,使酶的活性部位暴露得更加充分,提高酶活性。对超声波处理是否会导致纤维素酶活性下降,超声波反应器的类型、参数设置对研究结果的重要影响,以及超声波强化木质纤维素酶解的经济效益评价进行了讨论。在超声波强化与其他酶解改进措施的协同作用、机理的深入研究和操作参数的综合优化等方面提出了进一步深入研究的方向。
胡芳, 董旭, 史长伟, 吴学栋. 超声波强化木质纤维素酶解的研究进展[J]. 生物技术通报, 2021, 37(10): 234-244.
HU Fang, DONG Xu, SHI Chang-wei, WU Xue-dong. Progress in Ultrasound Intensification for Enzymatic Hydrolysis of Lignocellulose[J]. Biotechnology Bulletin, 2021, 37(10): 234-244.
强化途径 Intensification approch | 原料 Materials | 超声波参数 Ultrasonic parameters | 主要影响 Main effects | 文献Reference |
---|---|---|---|---|
超声波预处理酶-底物 Ultrasound pretreatment of enzyme-substrate | 甘蔗渣 Sugarcane bagasse | 150.7 W/cm2、20 kHz | 还原糖浓度达到对照样的1.9倍 Concentration of reducing sugar was 1.9 times of the control | [1] |
超声波强化糖化 Ultrasound intensification of saccharification | 旧报纸Old newspaper | 60 W、20 kHz、占空比70% 60 W、20 kHz、70% duty cycle | 还原糖浓度达到对照样的2.4倍 Concentration of reducing sugar was 2.4 times of the control | [17] |
花生壳、椰子壳和开心果壳 Groundnut shells, coconut coir and pistachio shells | 80 W、20 kHz、占空比70% 80 W、20kHz、70% duty cycle | 还原糖产量达到对照样的2倍 Concentration of reducing sugar was double of the control | [18] | |
玉米芯Corncob | 280 W和500 W、20 kHz、占空比50%、 280 W and 500 W、20 kHz、50% duty cycle | 葡聚糖消化率分别提高75.6%和58.9% Glucan digestibilities were increased 75.6% and 58.9%, respectively | [19] | |
稻草Rice straw | 300 W、40 kHz | 总还原糖产率增加19.5% Yield of total reducing sugar with ultrasound increased by 19.5% | [20] | |
银胶菊Parthenium hysterophorus | 35 W、35 kHz、占空比10% 35 W、35 kHz、10% duty cycle | 酶解动力学提高6倍,总还原糖产量增加约20% Kinetics of hydrolysis showed a marked 6× increase with sonication, while total reducing sugar yield showed rise of 20% | [21] | |
银胶菊Parthenium hysterophorus | 35 W、35 kHz、占空比50% 35 W、35 kHz、50% duty cycle | 酶解动力学提高18倍,酶解时间从72 h减少到仅4 h 18-fold increase in the kinetics of enzymatic hydrolysis was seen with ultrasound, and the hydrolysis time reduced from 72 h to just 4 h | [22] | |
甜根子草、薇甘菊、马缨丹和凤眼莲 Saccharum spontaneum, Mikania micrantha, Lantana camara and Eichhornia crassipes) | 35 W、35 kHz、占空比为10% 35 W、35 kHz、10% duty cycle | 酶解动力学提高近10倍 Kinetics of enzymatic hydrolysis increased by 10-fold | [23] | |
玉米秸秆Corn stover | 80 W、20 kHz | 催化效率提高约70% Catalytic efficiency of cellulase increased by 70% | [24] | |
甘蔗渣Sugarcane bagasse | 132 W、40 kHz | 提高葡萄糖产量 Yield of glucose increased | [25] | |
甘蔗渣Sugarcane bagasse | 240 W、24 kHz,30 min/30 s超声波处理 240 W、24 kHz, 30 s ultrasound irradiation for every 30 min of incubation | 提高葡萄糖和乙醇产量 Improved the sugars and ethanol yield | [26] | |
甘蔗渣Sugarcane bagasse | 60 W/cm2、24 kHz | 在直接和间接超声作用下,水解产物的最高产率分别为31.3 g/kg和60.6 g/kg Maximum yield of hydrolysis were 31.3 g/kg and 60.6 g/kg respectively under direct and indirect sonication, respectively | [27] | |
木屑Sawdust | 50 W、20 kHz、占空比70% 50 W、20 kHz、70% duty cycle | 1 h 超声波强化酶解,与常规搅拌 3h的还原糖产率相当 Ultrasound intensified enzymatic hydrolysis within 1 h resulted in approximately same yield of reducing sugars within 3 h with conventional stirring | [28] | |
超声波强化SSF Ultrasound intensification of SSF | 甘蔗渣Sugarcane bagasse | 240 W、24 KH、每30 min进行30 s超声波处理 240 W、24 kHz, 30 s ultrasound irradiation for every 30 min of incubation | 提高发酵速率 Increased the rate of fermentation was higher | [26] |
银胶菊 Parthenium hysterophorus | 35 W、35 kHz、占空比为10% 35 W、35 kHz、10% duty cycle | 加速发酵和酶解 Fermentation and enzymatic hydrolysis were enhanced | [29] | |
棕榈叶Oil palm fronds | 200 W、37 kHz | 最大乙醇浓度18.2 g/L,产率57% Maximal bioethanol concentration was 18.2 g/L and yield was 57.0% | [30] | |
超声波强化产酶 Ultrasound intensification of cellulase production | 甘蔗渣Sugarcane bagasse | 240 W、24 kHz,每6 h进行30 s超声波处理 240 W、24 kHz,30 s ultrasound irradiation for every 6 h of incubation | 增加分生孢子数量;蛋白质浓度提高1.4倍 Produced conidia showed higher intensity, the protein concentration increased 1.4 fold | [26] |
表1 超声波强化木质纤维素酶解的应用
Table 1 Applications of ultrasound intensification for enzymatic hydrolysis of lignocellulose
强化途径 Intensification approch | 原料 Materials | 超声波参数 Ultrasonic parameters | 主要影响 Main effects | 文献Reference |
---|---|---|---|---|
超声波预处理酶-底物 Ultrasound pretreatment of enzyme-substrate | 甘蔗渣 Sugarcane bagasse | 150.7 W/cm2、20 kHz | 还原糖浓度达到对照样的1.9倍 Concentration of reducing sugar was 1.9 times of the control | [1] |
超声波强化糖化 Ultrasound intensification of saccharification | 旧报纸Old newspaper | 60 W、20 kHz、占空比70% 60 W、20 kHz、70% duty cycle | 还原糖浓度达到对照样的2.4倍 Concentration of reducing sugar was 2.4 times of the control | [17] |
花生壳、椰子壳和开心果壳 Groundnut shells, coconut coir and pistachio shells | 80 W、20 kHz、占空比70% 80 W、20kHz、70% duty cycle | 还原糖产量达到对照样的2倍 Concentration of reducing sugar was double of the control | [18] | |
玉米芯Corncob | 280 W和500 W、20 kHz、占空比50%、 280 W and 500 W、20 kHz、50% duty cycle | 葡聚糖消化率分别提高75.6%和58.9% Glucan digestibilities were increased 75.6% and 58.9%, respectively | [19] | |
稻草Rice straw | 300 W、40 kHz | 总还原糖产率增加19.5% Yield of total reducing sugar with ultrasound increased by 19.5% | [20] | |
银胶菊Parthenium hysterophorus | 35 W、35 kHz、占空比10% 35 W、35 kHz、10% duty cycle | 酶解动力学提高6倍,总还原糖产量增加约20% Kinetics of hydrolysis showed a marked 6× increase with sonication, while total reducing sugar yield showed rise of 20% | [21] | |
银胶菊Parthenium hysterophorus | 35 W、35 kHz、占空比50% 35 W、35 kHz、50% duty cycle | 酶解动力学提高18倍,酶解时间从72 h减少到仅4 h 18-fold increase in the kinetics of enzymatic hydrolysis was seen with ultrasound, and the hydrolysis time reduced from 72 h to just 4 h | [22] | |
甜根子草、薇甘菊、马缨丹和凤眼莲 Saccharum spontaneum, Mikania micrantha, Lantana camara and Eichhornia crassipes) | 35 W、35 kHz、占空比为10% 35 W、35 kHz、10% duty cycle | 酶解动力学提高近10倍 Kinetics of enzymatic hydrolysis increased by 10-fold | [23] | |
玉米秸秆Corn stover | 80 W、20 kHz | 催化效率提高约70% Catalytic efficiency of cellulase increased by 70% | [24] | |
甘蔗渣Sugarcane bagasse | 132 W、40 kHz | 提高葡萄糖产量 Yield of glucose increased | [25] | |
甘蔗渣Sugarcane bagasse | 240 W、24 kHz,30 min/30 s超声波处理 240 W、24 kHz, 30 s ultrasound irradiation for every 30 min of incubation | 提高葡萄糖和乙醇产量 Improved the sugars and ethanol yield | [26] | |
甘蔗渣Sugarcane bagasse | 60 W/cm2、24 kHz | 在直接和间接超声作用下,水解产物的最高产率分别为31.3 g/kg和60.6 g/kg Maximum yield of hydrolysis were 31.3 g/kg and 60.6 g/kg respectively under direct and indirect sonication, respectively | [27] | |
木屑Sawdust | 50 W、20 kHz、占空比70% 50 W、20 kHz、70% duty cycle | 1 h 超声波强化酶解,与常规搅拌 3h的还原糖产率相当 Ultrasound intensified enzymatic hydrolysis within 1 h resulted in approximately same yield of reducing sugars within 3 h with conventional stirring | [28] | |
超声波强化SSF Ultrasound intensification of SSF | 甘蔗渣Sugarcane bagasse | 240 W、24 KH、每30 min进行30 s超声波处理 240 W、24 kHz, 30 s ultrasound irradiation for every 30 min of incubation | 提高发酵速率 Increased the rate of fermentation was higher | [26] |
银胶菊 Parthenium hysterophorus | 35 W、35 kHz、占空比为10% 35 W、35 kHz、10% duty cycle | 加速发酵和酶解 Fermentation and enzymatic hydrolysis were enhanced | [29] | |
棕榈叶Oil palm fronds | 200 W、37 kHz | 最大乙醇浓度18.2 g/L,产率57% Maximal bioethanol concentration was 18.2 g/L and yield was 57.0% | [30] | |
超声波强化产酶 Ultrasound intensification of cellulase production | 甘蔗渣Sugarcane bagasse | 240 W、24 kHz,每6 h进行30 s超声波处理 240 W、24 kHz,30 s ultrasound irradiation for every 6 h of incubation | 增加分生孢子数量;蛋白质浓度提高1.4倍 Produced conidia showed higher intensity, the protein concentration increased 1.4 fold | [26] |
[1] |
Silvello MA, Martínez J, Goldbeck R. Increase of reducing sugars release by enzymatic hydrolysis of sugarcane bagasse intensified by ultrasonic treatment[J]. Biomass and Bioenergy, 2019, 122:481-489.
doi: 10.1016/j.biombioe.2019.01.032 URL |
[2] |
Wang Z, Lin X, Li P, et al. Effects of low intensity ultrasound on cellulase pretreatment[J]. Bioresour Technology, 2012, 117:222-227.
doi: 10.1016/j.biortech.2012.04.015 URL |
[3] |
Nadar S S, Rathod V K. Ultrasound assisted intensification of enzyme activity and its properties:a mini-review[J]. World Journal of Microbiology and Biotechnology, 2017, 33:170-181.
doi: 10.1007/s11274-017-2322-6 URL |
[4] | 张俊, 许超, 张宇, 等. 纤维素酶降解机理的研究进展[J]. 华南理工大学学报, 2019, 47(9):121-130. |
Zhang J, Xu C, Zhang Y, et al. Research progress on cellulase biodegradation mechanism[J]. Journal of South China University of Technology, 2019, 47(9):121-130. | |
[5] | 徐晓, 程驰, 袁凯, 等. 里氏木霉产纤维素酶的研究进展[J]. 中国生物工程杂志, 2021, 41(1):52-61. |
Xu X, Cheng C, Yu K, et al. Research progress of cellulase production in Trichoderma reesei[J]. China Biotechnology, 2021, 41(1):52-61. | |
[6] |
Subhedar PB, Gogate PR. Intensification of enzymatic hydrolysis of lignocellulose using ultrasound for efficientbioethanol production:A review[J]. Industrial & Engineering Chemistry Research, 2013, 52(34):11816-11828.
doi: 10.1021/ie401286z URL |
[7] | 曹长海, 张全, 关浩, 等. 提高木质纤维素酶解糖化效率的研究进展[J]. 中国生物工程杂志, 2015, 35(8):126-136. |
Cao CH, Zhang Q, Guan H, et al. Research progress of enhancing enzymatic saccharification efficiency of lignocellulose[J]. China Biotechnology, 2015, 35(8):126-136. | |
[8] | 沈丽君, 苏瑛杰, 于潇潇, 等. 木质纤维素诱导里氏木霉产纤维素酶及酶解增效作用研究进展[J]. 吉林农业大学学报, 2019, 41(6):681-685. |
Shen LJ, Su YJ, YU XX, et al. Advances in researches on cellulase production by lignocellulose and its synergism with enzymatic hydrolysis of Trichoderma reesei[J]. Journal of Jilin Agricultural University, 2019, 41(6):681-685. | |
[9] |
Adewuyi YG, Deshmane VG. Intensification of enzymatic hydrolysis of cellulose using high-frequency ultrasound:an investigation of the effects of process parameters on glucose yield[J]. Energy Fuels, 2015, 29(8):4998-5006.
doi: 10.1021/acs.energyfuels.5b00661 URL |
[10] |
Sulaiman AZ, Ajit A, Chisti Y. Ultrasound mediated enzymatic hydrolysis of cellulose and carboxymethyl cellulose[J]. Biotechnology Progress, 2013, 29(6):1448-1457.
doi: 10.1002/btpr.1786 pmid: 23926080 |
[11] |
Yachmenev V, Condon BD, Klasson KT, et al. Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound[J]. Journal of Biobased Materials and Bioenergy, 2009, 3(1):25-31.
doi: 10.1166/jbmb.2009.1002 URL |
[12] | 魏薇, 常福祥, 孙建中, 等. 木质纤维“一锅法”制备生物乙醇的研究进展[J]. 生物质化学工程, 2018, 52(1):53-59. |
Wei W, Chang FX, Sun JZ, et al. Recent advances in “One-pot” bioethanol production from lignocellulose[J]. Biomass Chemical Engineering, 2018, 52(1):53-59. | |
[13] |
Kumar AK, Sharma S. Recent updates on different methods of pretreatment of lignocellulosicfeed stocks:a review[J]. Bioresour. Bioprocess, 2017, 4(1):7-26.
doi: 10.1186/s40643-017-0137-9 URL |
[14] | 曹运齐, 解先利, 郭振强, 等. 木质纤维素预处理技术研究进展[J]. 化工进展, 2020, 39(2):489-495. |
Cao YQ, Xie XL, Guo ZQ, et al. Research progress on lignocellulose pretreatment technology[J]. Chemical Industry and Engineering Progress, 2020, 39(2):489-495. | |
[15] | 王锐, 辛东林, 张军华. 木质素降解产物对纤维素酶和木聚糖酶水解的抑制[J]. 林业工程学报, 2019, 4(4):78-84. |
Wang R, Xin DL, Zhang JH. Inhibitory effects of vanillin, 4-hydroxybenzaldehyde and syringaldehyde on cellulases and xylanases[J]. Journal of Forestry Engineering, 2019, 4(4):78-84.
doi: 10.12737/issue_58f9e10e919fe5.43893047 URL |
|
[16] |
Trache D, Hazwan HM, Mohamad H, et al. Recent progress in cellulose nanocrystals:sources and production[J]. Nanoscale, 2017, 9(5):1763-1786.
doi: 10.1039/C6NR09494E URL |
[17] |
Subhedar PB, Babu NR, Gogate PR. Intensification of enzymatic hydrolysis of waste newspaper using ultrasound for fermentable sugar production[J]. Ultrasonics Sonochemistry, 2015, 22:326-332.
doi: 10.1016/j.ultsonch.2014.07.005 pmid: 25060116 |
[18] |
Subheder PB, Babu NR, Gogate PR. Intensification of delignification and subsequent hydrolysis for the fermentable sugar production from lignocellulosic biomass using ultrasonic irradiation[J]. Ultrasonics Sonochemistry, 2017, 40(Pt B):140-150.
doi: 10.1016/j.ultsonch.2017.01.030 URL |
[19] |
Su RX, Yang RJ, Jifeng Y, et al. Oscillating cellulase adsorption and enhanced lignocellulose hydrolysis upon ultrasound treatment[J]. Transactions of Tianjin University, 2017, 23(1):11-19.
doi: 10.1007/s12209-016-0019-9 URL |
[20] |
Yang CY, Fang TJ. Combination of ultrasonic irradiation with ionic liquid pretreatment for enzymatic hydrolysis of rice straw[J]. Bioresource Technology, 2014, 164:198-202.
doi: 10.1016/j.biortech.2014.05.004 URL |
[21] |
Singh S, Agarwa M, Bhatt A, et al. Ultrasound enhanced enzymatic hydrolysis of Parthenium hysterophorus:A mechanistic investigation[J]. Bioresource Technology, 2015, 192:636-645.
doi: 10.1016/j.biortech.2015.06.031 URL |
[22] |
Bharadwaja STP, Singh S, Moholkar VS. Design and optimization of a sono-hybrid process for bioethanol production from Parthenium hysterophorus[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 51:71-78.
doi: 10.1016/j.jtice.2015.01.022 URL |
[23] |
Borah AJ, Agarwal M, Poudyal M, et al. Mechanistic investigation in ultrasound induced enhancement of enzymatic hydrolysis of invasive biomass species[J]. Bioresource Technology, 2016, 213:342-349.
doi: 10.1016/j.biortech.2016.02.024 URL |
[24] |
Zhang YQ, Fu EH, Liang JH, et al. Effect of ultrasonic waves on the saccharification processes of lignocellulose[J]. Chemical Engineering Technology, 2008, 31(10):1510-1515.
doi: 10.1002/ceat.v31:10 URL |
[25] |
Gasparotto JM, Werle LB, Foletto EL. Production of cellulolytic enzymes and application of crude enzymatic extract for saccharification of lignocellulosic biomass[J]. Applied Biochemistry and Biotechnology, 2015, 175(1):560-572.
doi: 10.1007/s12010-014-1297-0 pmid: 25331378 |
[26] |
Velmurugan R, Incharoensakdi A. Proper ultrasound treatment increases ethanol production from simultaneous saccharification and fermentation of sugarcane bagasse[J]. RSC Advance, 2016, 6(94):91409-91419.
doi: 10.1039/C6RA17792A URL |
[27] | Gasparotto JM, Werle LB, Mainardi MA, et al. Ultrasound-assisted hydrolysis of sugarcane bagasse using cellulolytic enzymes by direct and indirect sonication[J]. Process Biochemistry, 2015, 4(4):480-485. |
[28] |
Patil RS, Joshi SM, Gogate PR. Intensification of delignification of sawdust and subsequent enzymatic hydrolysis using ultrasound[J]. Ultrasonics Sonochemistry, 2019, 58:104656-104565.
doi: 10.1016/j.ultsonch.2019.104656 URL |
[29] |
Singh S, Agarwal M, Sarma S, et al. Mechanistic insight into ultrasound induced enhancement of simultaneous saccharification and fermentation of Parthenium hysterophorus for ethanol production[J]. Ultrasonics Sonochemistry, 2015, 26:249-256.
doi: 10.1016/j.ultsonch.2015.02.011 URL |
[30] |
Ofori-Boateng C, Lee KT. Ultrasonic-assisted simultaneous saccharifification and fermentation of pretreated oil palm fronds for sustainable bioethanol production[J]. Fuel, 2014, 119:285-291.
doi: 10.1016/j.fuel.2013.11.064 URL |
[31] | Silvana S, Bruno CA, Eliana AA, et al. Ultrasound-assisted fermentation for production of β-1, 3-glucanase and chitinase by Beauveria bassiana[J]. Journal of Chemical Technology & Biotechnology, 2021, 96(1):88-98. |
[32] |
Shaheen M, Choi M, Ang W, et al. Application of low-intensity pulsed ultrasound to increase bioethanol production[J]. Renewable Energy, 2013, 57:462-468.
doi: 10.1016/j.renene.2013.02.009 URL |
[33] |
Holkar CR, Jadhav AJ, Pinjari DV, et al. Cavitationally driven transformations:a technique of process intensification[J]. Industrial & Engineering Chemistry Research, 2019, 58(15):5797-5819
doi: 10.1021/acs.iecr.8b04524 URL |
[34] |
Easson MW, Condon B, Dien BS, et al. The application of ultrasound in the enzymatic hydrolysis of switchgrass[J]. Applied Biochemistry and Biotechnology, 2011, 165(5-6):1322-1331.
doi: 10.1007/s12010-011-9349-1 URL |
[35] |
Subhedar PB, Gogate PR. Enhancing the activity of cellulase enzyme using ultrasonic irradiations[J]. Journal of Molecular Catalysis B:Enzymatic, 2014, 101:108-114.
doi: 10.1016/j.molcatb.2014.01.002 URL |
[36] |
Silvell MA, Martínez J, Goldbeck R. Low-frequency ultrasound with short application time improves cellulase activity and reducing sugars release[J]. Applied Biochemistry and Biotechnology, 2020, 191:1042-1055.
doi: 10.1007/s12010-019-03148-1 URL |
[37] |
Holtzapple MT, Caram HS, Humphrey AE. The HCH-1 model of enzymatic cellulose hydrolysis[J]. Biotechnology and Bioengineering, 1984, 26(7):775-780.
pmid: 18553446 |
[38] |
Delgado-Povedano M, Luque de Castro MD. A review on enzyme and ultrasound:a controversial but fruitful relationship[J]. Analytica Chimica Acta, 2015, 889:1-21.
doi: 10.1016/j.aca.2015.05.004 pmid: 26343424 |
[39] |
Fan XH, Zhang XY, Zhang QA, et al. Optimization of Ultrasound Parameters and its Effect on the Properties of the Activity of beta-Glucosidase in Apricot Kernels[J]. Ultrasonics Sonochemistry, 2019, 52:468-476.
doi: 10.1016/j.ultsonch.2018.12.027 URL |
[40] |
Ladole MR, Mevada JS, Pandit AB. Ultrasonic hyperactivation of cellulase immobilized on magnetic nanoparticles[J]. Bioresource Technology, 2017, 239:117-126.
doi: 10.1016/j.biortech.2017.04.096 URL |
[41] | Nguyen TTT, Le VVM. Effects of ultrasound on cellulolytic activity of cellulase complex[J]. International Food Research Journal, 2013, 20:557-563. |
[42] | Sun YJ, Zeng L, Xue YZ, et al. Effects of power ultrasound on the activity and structure of β-D-glucosidase with potentially aroma-enhancing capability[J]. Food Science & Nutrition, 2019, 7(3):2043-2049. |
[43] |
Szabó OE, Csiszár E. The effect of low-frequency ultrasound on the activity and efficiency of a commercial cellulase enzyme[J]. Carbohydrate Polymers, 2013, 98(2):1483-1489.
doi: 10.1016/j.carbpol.2013.08.017 URL |
[44] |
Luzzi SC, Artifon W, Piovesan B, et al. Pretreatment of lignocellulosic biomass using ultrasound aiming at obtaining fermentable sugar[J]. Biocatalysis and Biotransformation, 2017, 35(3):1-10.
doi: 10.1080/10242422.2016.1266617 URL |
[45] |
Dalagnol LMG, Silveira VCC, Silva HB, et al. Improvement of pectinase, xylanase and cellulase activities by ultrasound:effects on enzymes and substrates, kinetics and thermodynamic parameters[J]. Process Biochemistry, 2017, 61:80-87.
doi: 10.1016/j.procbio.2017.06.029 URL |
[46] | Silva MBR, Falco HG, Kurozawa LE, et al. ltrasound- and hemicellulase-assisted extraction increase β-glucosidase activity, the content of isoflavone aglycones and antioxidant potential of soymilk[J]. Journal of Food Bioactives, 2019, 6:140-147. |
[47] |
Chen LY, Bi XF, Cao XM, et al. Effects of high power ultrasound on microflora, enzymes and some quality attributes of a strawberry drink[J]. Journal of the Science of Food and Agriculture, 2018, 98(14):5378-5385.
doi: 10.1002/jsfa.2018.98.issue-14 URL |
[48] | 金永灿, 陈慧, 吴文娟, 等. 水溶性木质素对纤维原料酶水解的影响研究进展[J]. 林业工程学报, 2020, 5(4):12-19. |
Jin YC, Chen H, Wu WJ, et al. Investigations of the effect of water- soluble lignin on enzymatic hydrolysis of lignocellulose[J]. Journal of Forestry Engineering, 2020, 5(4):12-19. | |
[49] | 刘南, 祁峰, 李力, 等. 纤维素降解辅助蛋白及其作用机理研究进展[J]. 化工进展, 2018, 37(3):1118-1129. |
Liu N, Qi F, Li L, et al. Auxiliary proteins for boosting enzymatic hydrolysis of cellulose and the action mechanisms[J]. Chemicaal Industry and Engineering Progress, 2018, 37(3):1118-1129. | |
[50] | Luo J, Fang Z, Smith RL. Ultrasound-enhanced conversion of biomass to biofuels[J]. Progress in Energy and Combustion Science, 2014, 40(1):400-421. |
[1] | 徐发迪, 徐康, 孙东明, 李萌蕾, 赵建志, 鲍晓明. 基于杨木(Populus sp.)的二代燃料乙醇技术研究进展[J]. 生物技术通报, 2023, 39(9): 27-39. |
[2] | 饶紫环, 谢志雄. 一株Olivibacter jilunii 纤维素降解菌株的分离鉴定与降解能力分析[J]. 生物技术通报, 2023, 39(8): 283-290. |
[3] | 张晶, 张浩睿, 曹云, 黄红英, 曲萍, 张志萍. 嗜热纤维素降解菌研究进展[J]. 生物技术通报, 2023, 39(6): 73-87. |
[4] | 马玉倩, 孙东辉, 岳浩峰, 辛佳瑜, 刘宁, 曹志艳. 具有辅助降解纤维素功能的大斑刚毛座腔菌糖苷水解酶GH61的鉴定、异源表达及功能分析[J]. 生物技术通报, 2023, 39(4): 124-135. |
[5] | 杨俊钊, 张新蕊, 赵国柱, 郑菲. 新型GH5家族多结构域纤维素酶的结构与功能研究[J]. 生物技术通报, 2023, 39(4): 71-80. |
[6] | 唐瑞琪, 赵心清, 朱笃, 汪涯. 大肠杆菌对木质纤维素水解液抑制物的胁迫耐受性[J]. 生物技术通报, 2023, 39(11): 205-216. |
[7] | 王文韬, 冯颀, 刘晨光, 白凤武, 赵心清. 氧化还原敏感型基因元件增强酵母木质纤维素水解液抑制物胁迫耐受性[J]. 生物技术通报, 2023, 39(11): 360-372. |
[8] | 杨俊钊, 张新蕊, 孙清扬, 郑菲. Loop B3对GH7内切纤维素酶功能的影响机制[J]. 生物技术通报, 2023, 39(10): 281-291. |
[9] | 张开平, 刘燕丽, 涂绵亮, 李继伟, 吴文标. 烟曲霉A-16产纤维素酶工艺优化及酶学特性[J]. 生物技术通报, 2022, 38(9): 215-225. |
[10] | 王新光, 田磊, 王恩泽, 钟成, 田春杰. 玉米秸秆高效降解微生物复合菌系的构建及降解效果评价[J]. 生物技术通报, 2022, 38(4): 217-229. |
[11] | 张功友, 王一涵, 郭敏, 张婷婷, 王兵, 刘红美. 重楼中一株产纤维素酶内生真菌的分离及鉴定[J]. 生物技术通报, 2022, 38(2): 95-104. |
[12] | 唐昊, 孙灿, 李沅秋, 罗朝兵. 纤维素降解菌Raoultella ornithinolytica LL1的筛选及基因组测序[J]. 生物技术通报, 2021, 37(6): 85-96. |
[13] | 翟旭航, 李霞, 元英进. 木质纤维素预处理及高值化技术研究进展[J]. 生物技术通报, 2021, 37(3): 162-174. |
[14] | 顾翰琦, 邵玲智, 刘冉, 刘晓光, 李玲, 刘倩, 李洁, 张雅丽. 酿酒酵母酚类抑制物耐受性脂质组学研究[J]. 生物技术通报, 2021, 37(1): 15-23. |
[15] | 刘登, 刘均洪. 嗜热性木质纤维素酶在纤维素乙醇生产中的研究进展[J]. 生物技术通报, 2020, 36(8): 185-193. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||