生物技术通报 ›› 2021, Vol. 37 ›› Issue (11): 4-13.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1055
• 食用菌生物技术专题(专题主编: 黄晨阳) • 上一篇 下一篇
收稿日期:
2021-08-18
出版日期:
2021-11-26
发布日期:
2021-12-03
作者简介:
刘笑天,男,硕士研究生,研究方向:食药用真菌遗传育种;E-mail: 基金资助:
LIU Xiao-tian(), QIU Hao, TIAN Li, REN Ang, ZHAO Ming-wen()
Received:
2021-08-18
Published:
2021-11-26
Online:
2021-12-03
摘要:
CRISPR/Cas9是目前最成功的基因组精准编辑技术。迄今为止至少在9种食药用真菌中已有相关的应用报道,包括刺芹侧耳(杏鲍菇)、糙皮侧耳(平菇)、双孢蘑菇、灵芝、裂褶菌、灰盖鬼伞、金针菇、蛹虫草和竹黄菌。本文综述了CRISPR/Cas9系统的工作原理及递送策略,针对在食药用真菌中应用存在的一些问题进行分析,并提出优化方案。最后借鉴目前CRISPR技术发展的前沿方向,如多基因编辑、碱基编辑、引导编辑、转录调控等,对未来在食药用真菌领域的应用前景进行了展望。
刘笑天, 仇昊, 田莉, 任昂, 赵明文. CRISPR/Cas9基因编辑系统在食药用真菌中的研究进展[J]. 生物技术通报, 2021, 37(11): 4-13.
LIU Xiao-tian, QIU Hao, TIAN Li, REN Ang, ZHAO Ming-wen. Research Progress in CRISPR/Cas9 Genome Editing System in Edible and Medicinal Fungi[J]. Biotechnology Bulletin, 2021, 37(11): 4-13.
分类 Classifications | 物种 Species | Cas9的表达 Expression of Cas9 | gRNA的表达 Expression of gRNA | 转化材料及递送方式 Materials and delivery methods | 编辑模式 Editing methods | 靶向基因和筛选标记 Target sites and marker | 参考文献 References |
---|---|---|---|---|---|---|---|
担子菌 Basidiomycota | 刺芹侧耳 P. eryngii | 内源gpd启动子表达密码子优化的Cas9 | 内源U6启动子 | 原生质体,PMT | NHEJ/HDR | pyrG,cbxr | 2021[ |
糙皮侧耳 P. ostreatus | 体外合成 | 体外合成 | 原生质体,PMT | NHEJ/HDR | pyrG,hygr | 2021[ | |
糙皮侧耳 P. ostreatus | 来自Coprinopsis cinerea的内源ef3启动子表达密码子优化的Cas9 | 内源U6启动子 | 原生质体,PMT | NHEJ/HDR | fcy1/pyrG,hygr | 2021[ | |
糙皮侧耳 P. ostreatus | 来自Coprinopsis cinerea的内源ef3启动子表达密码子优化的Cas9 | 内源U6启动子 | 原生质体,PMT | NHEJ | pcc1/clp1,hygr | 2021[ | |
双孢蘑菇 A. bisporus | 内源gpd启动子表达Cas9 | 内源U6启动子 | 菌丝体,ATMT | NHEJ | ppo4,hygr | 2020[ | |
灵芝 G. lucidum | 内源gpd启动子表达密码子优化的Cas9 | T7体外转录 | 原生质体,PMT | NHEJ | ura3/GL17624,barr | 2020[ | |
灵芝 G. lucidum | 内源gpd启动子表达密码子优化的Cas9 | 内源U6启动子 | 原生质体,PMT | NHEJ/HDR | ura3/cyp515018 /cyp505d13,cbxr | 2020[ | |
灵芝 G. lucidum | 内源gpd启动子表达密码子优化的Cas9 | T7体外转录 | 原生质体,PMT | NHEJ | ura3,cbxr | 2017[ | |
裂褶菌 S. commune | 外源表达 | 体外转录 | 原生质体,PMT | HDR | hom2,nourr | 2019[ | |
灰盖鬼伞 C. cinerea | 内源CcDED1启动子表达密码子优化的Cas9 | 内源U6启动子 | 原生质体,PMT | NHEJ | gfp,hygr | 2017[ | |
金针菇 F. velutipes | 内源gpd启动子表达密码子优化的Cas9 | 无 | 菌丝体,ATMT | 未编辑 | hygr | 2017[ | |
金针菇 F. velutipes | 内源gpd启动子表达Cas9 | 内源gpd启动子 | 菌丝体,ATMT | 未编辑 | Fvgpcr1/Fvgpcr2,hygr | 2019[ | |
金针菇 F. velutipes | 内源gpd启动子表达Cas9 | 内源H1启动子 | 原生质体,PMT | 未编辑 | hk1/hk2,hygr | 2018[ | |
子囊菌 Ascomycota | 蛹虫草 C. militaris | 内源gpd启动子表达密码子优化的Cas9 | T7体外转录 | 分生孢子,ATMT; 原生质体,PMT | NHEJ | ura3,blpRr | 2018[ |
竹黄菌 S. bambusicola | 内源ef1α启动子表达Cas9 | 人内源U6启动子 | 原生质体,PMT | HDR | SbaPKS,hygr | 2017[ |
表1 CRISPR/Cas9在食药用真菌中的应用
Table 1 Application of CRISPR/Cas9 in edible and medicinal fungi
分类 Classifications | 物种 Species | Cas9的表达 Expression of Cas9 | gRNA的表达 Expression of gRNA | 转化材料及递送方式 Materials and delivery methods | 编辑模式 Editing methods | 靶向基因和筛选标记 Target sites and marker | 参考文献 References |
---|---|---|---|---|---|---|---|
担子菌 Basidiomycota | 刺芹侧耳 P. eryngii | 内源gpd启动子表达密码子优化的Cas9 | 内源U6启动子 | 原生质体,PMT | NHEJ/HDR | pyrG,cbxr | 2021[ |
糙皮侧耳 P. ostreatus | 体外合成 | 体外合成 | 原生质体,PMT | NHEJ/HDR | pyrG,hygr | 2021[ | |
糙皮侧耳 P. ostreatus | 来自Coprinopsis cinerea的内源ef3启动子表达密码子优化的Cas9 | 内源U6启动子 | 原生质体,PMT | NHEJ/HDR | fcy1/pyrG,hygr | 2021[ | |
糙皮侧耳 P. ostreatus | 来自Coprinopsis cinerea的内源ef3启动子表达密码子优化的Cas9 | 内源U6启动子 | 原生质体,PMT | NHEJ | pcc1/clp1,hygr | 2021[ | |
双孢蘑菇 A. bisporus | 内源gpd启动子表达Cas9 | 内源U6启动子 | 菌丝体,ATMT | NHEJ | ppo4,hygr | 2020[ | |
灵芝 G. lucidum | 内源gpd启动子表达密码子优化的Cas9 | T7体外转录 | 原生质体,PMT | NHEJ | ura3/GL17624,barr | 2020[ | |
灵芝 G. lucidum | 内源gpd启动子表达密码子优化的Cas9 | 内源U6启动子 | 原生质体,PMT | NHEJ/HDR | ura3/cyp515018 /cyp505d13,cbxr | 2020[ | |
灵芝 G. lucidum | 内源gpd启动子表达密码子优化的Cas9 | T7体外转录 | 原生质体,PMT | NHEJ | ura3,cbxr | 2017[ | |
裂褶菌 S. commune | 外源表达 | 体外转录 | 原生质体,PMT | HDR | hom2,nourr | 2019[ | |
灰盖鬼伞 C. cinerea | 内源CcDED1启动子表达密码子优化的Cas9 | 内源U6启动子 | 原生质体,PMT | NHEJ | gfp,hygr | 2017[ | |
金针菇 F. velutipes | 内源gpd启动子表达密码子优化的Cas9 | 无 | 菌丝体,ATMT | 未编辑 | hygr | 2017[ | |
金针菇 F. velutipes | 内源gpd启动子表达Cas9 | 内源gpd启动子 | 菌丝体,ATMT | 未编辑 | Fvgpcr1/Fvgpcr2,hygr | 2019[ | |
金针菇 F. velutipes | 内源gpd启动子表达Cas9 | 内源H1启动子 | 原生质体,PMT | 未编辑 | hk1/hk2,hygr | 2018[ | |
子囊菌 Ascomycota | 蛹虫草 C. militaris | 内源gpd启动子表达密码子优化的Cas9 | T7体外转录 | 分生孢子,ATMT; 原生质体,PMT | NHEJ | ura3,blpRr | 2018[ |
竹黄菌 S. bambusicola | 内源ef1α启动子表达Cas9 | 人内源U6启动子 | 原生质体,PMT | HDR | SbaPKS,hygr | 2017[ |
[1] |
Liu YN, Lu XX, Chen D, et al. Phospholipase D and phosphatidic acid mediate heat stress induced secondary metabolism in Ganoderma lucidum[J]. Environ Microbiol, 2017, 19(11): 4657-4669.
doi: 10.1111/emi.2017.19.issue-11 URL |
[2] |
Li L, Chang SS, Liu Y. RNA interference pathways in filamentous fungi[J]. Cell Mol Life Sci, 2010, 67(22): 3849-3863.
doi: 10.1007/s00018-010-0471-y URL |
[3] |
Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes[J]. Nat Biotechnol, 2014, 32(4): 347-355.
doi: 10.1038/nbt.2842 URL |
[4] |
Adli M. The CRISPR tool kit for genome editing and beyond[J]. Nat Commun, 2018, 9(1): 1911.
doi: 10.1038/s41467-018-04252-2 URL |
[5] |
Liu R, Chen L, Jiang Y, et al. Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system[J]. Cell Discov, 2015, 1: 15007.
doi: 10.1038/celldisc.2015.7 URL |
[6] |
Kim S, Kim D, Cho SW, et al. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins[J]. Genome Res, 2014, 24(6): 1012-1019.
doi: 10.1101/gr.171322.113 URL |
[7] |
DiCarlo JE, Norville JE, Mali P, et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems[J]. Nucleic Acids Res, 2013, 41(7): 4336-4343.
doi: 10.1093/nar/gkt135 pmid: 23460208 |
[8] |
Zhang C, Meng X, Wei X, et al. Highly efficient CRISPR mutagenesis by microhomology-mediated end joining in Aspergillus fumigatus[J]. Fungal Genet Biol, 2016, 86: 47-57.
doi: S1087-1845(15)30055-4 pmid: 26701308 |
[9] |
Wang T, Yue S, Jin Y, et al. Advances allowing feasible pyrG gene editing by a CRISPR-Cas9 system for the edible mushroom Pleurotus eryngii[J]. Fungal Genet Biol, 2021, 147: 103509.
doi: 10.1016/j.fgb.2020.103509 URL |
[10] |
Boontawon T, Nakazawa T, Xu HB, et al. Gene targeting using pre-assembled Cas9 ribonucleoprotein and split-marker recombination in Pleurotus ostreatus[J]. FEMS Microbiol Lett, 2021, 368(13): fnab080.
doi: 10.1093/femsle/fnab080 URL |
[11] |
Boontawon T, Nakazawa T, Inoue C, et al. Efficient genome editing with CRISPR/Cas9 in Pleurotus ostreatus[J]. AMB Express, 2021, 11(1): 30.
doi: 10.1186/s13568-021-01193-w pmid: 33609205 |
[12] |
Boontawon T, Nakazawa T, Horii M, et al. Functional analyses of Pleurotus ostreatus pcc1 and clp1 using CRISPR/Cas9[J]. Fungal Genet Biol, 2021, 154: 103599.
doi: 10.1016/j.fgb.2021.103599 pmid: 34153439 |
[13] | 吕阳, 贺晓飞, 王佩, 等. 基于CRISPR系统的双孢蘑菇基因编辑体系建立及应用[J]. 食用菌学报, 2020, 27(3): 16-22. |
Lv Y, He XF, Wang P, et al. Establishment of a CRISPR/Cas9 system in Agaricus bisporus[J]. Acta Edulis Fungi, 2020, 27(3): 16-22. | |
[14] |
Liu K, Sun B, You H, et al. Dual sgRNA-directed gene deletion in basidiomycete Ganoderma lucidum using the CRISPR/Cas9 system[J]. Microb Biotechnol, 2020, 13(2): 386-396.
doi: 10.1111/1751-7915.13534 pmid: 31958883 |
[15] |
Wang PA, Xiao H, Zhong JJ. CRISPR-Cas9 assisted functional gene editing in the mushroom Ganoderma lucidum[J]. Appl Microbiol Biotechnol, 2020, 104(4): 1661-1671.
doi: 10.1007/s00253-019-10298-z URL |
[16] |
Qin H, Xiao H, Zou G, et al. CRISPR-Cas9 assisted gene disruption in the higher fungus Ganoderma species[J]. Process Biochem, 2017, 56: 57-61.
doi: 10.1016/j.procbio.2017.02.012 URL |
[17] |
Jan Vonk P, Escobar N, Wösten HAB, et al. High-throughput targeted gene deletion in the model mushroom Schizophyllum commune using pre-assembled Cas9 ribonucleoproteins[J]. Sci Rep, 2019, 9(1): 7632.
doi: 10.1038/s41598-019-44133-2 URL |
[18] |
Sugano SS, Suzuki H, Shimokita E, et al. Genome editing in the mushroom-forming basidiomycete Coprinopsis cinerea, optimized by a high-throughput transformation system[J]. Sci Rep, 2017, 7(1): 1260.
doi: 10.1038/s41598-017-00883-5 URL |
[19] | 刘建雨, 刘建辉, 张丹, 等. 农杆菌介导的Cas9基因转化金针菇的研究[J]. 食用菌学报, 2017, 24(3): 25-29. |
Liu JY, Liu JH, Zhang D, et al. Agrobacterium-mediated gene transformation of Cas9 into Flammulina velutipes[J]. Acta Edulis Fungi, 2017, 24(3): 25-29. | |
[20] | 林金德, 杨雪琴, 魏韬, 等. 金针菇G蛋白偶联受体基因的CRISPR/Cas9基因组编辑载体构建及转化研究[J]. 菌物学报, 2019, 38(3): 349-361. |
Lin JD, Yang XQ, Wei T, et al. Construction and transformation of CRISPR/Cas9 genome editing vector of Flammulina filiformis G protein-coupled receptor gene[J]. Mycosystema, 2019, 38(3): 349-361. | |
[21] | 欧阳萍兰, 李琼洁, 郭丽琼, 等. 基于CRISPR/Cas9技术研究金针菇冷诱导结实基因HK1和HK2的编辑转化系统[J]. 食用菌学报, 2018, 25(3): 1-7, 113. |
Ouyang PL, Li QJ, Guo LQ, et al. Establishment of a CRISPR/Cas9 system for editing cold-induced gene HK1/HK2 in Flammulina velutipes[J]. Acta Edulis Fungi, 2018, 25(3): 1-7, 113. | |
[22] |
Chen BX, Wei T, Ye ZW, et al. Efficient CRISPR-Cas9 gene disruption system in edible-medicinal mushroom Cordyceps militaris[J]. Front Microbiol, 2018, 9: 1157.
doi: 10.3389/fmicb.2018.01157 URL |
[23] |
Deng H, Gao R, Liao X, et al. Genome editing in Shiraia bambusicola using CRISPR-Cas9 system[J]. J Biotechnol, 2017, 259: 228-234.
doi: 10.1016/j.jbiotec.2017.06.1204 URL |
[24] |
Waltz E. Gene-edited CRISPR mushroom escapes US regulation[J]. Nature, 2016, 532(7599): 293.
doi: 10.1038/nature.2016.19754 URL |
[25] |
Zou G, Xiao M, Chai S, et al. Efficient genome editing in filamentous fungi via an improved CRISPR-Cas9 ribonucleoprotein method facilitated by chemical reagents[J]. Microb Biotechnol, 2020. DOI: 10.1111/1751-7915.13652.
doi: 10.1111/1751-7915.13652 |
[26] |
Kunitake E, Tanaka T, Ueda H, et al. CRISPR/Cas9-mediated gene replacement in the basidiomycetous yeast Pseudozyma antarctica[J]. Fungal Genet Biol, 2019, 130: 82-90.
doi: S1087-1845(18)30251-2 pmid: 31026589 |
[27] |
Liu W, An C, Shu X, et al. A dual-plasmid CRISPR/cas system for mycotoxin elimination in polykaryotic industrial fungi[J]. ACS Synth Biol, 2020, 9(8): 2087-2095.
doi: 10.1021/acssynbio.0c00178 URL |
[28] |
Li C, Zong Y, Wang Y, et al. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion[J]. Genome Biol, 2018, 19(1): 59.
doi: 10.1186/s13059-018-1443-z URL |
[29] |
Métais JY, Doerfler PA, Mayuranathan T, et al. Genome editing of HBG1 and HBG2 to induce fetal hemoglobin[J]. Blood Adv, 2019, 3(21): 3379-3392.
doi: 10.1182/bloodadvances.2019000820 URL |
[30] |
Gao Y, Zhao Y. Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing[J]. J Integr Plant Biol, 2014, 56(4): 343-349.
doi: 10.1111/jipb.v56.4 URL |
[31] |
He Y, Zhang T, Yang N, et al. Self-cleaving ribozymes enable the production of guide RNAs from unlimited choices of promoters for CRISPR/Cas9 mediated genome editing[J]. J Genet Genomics, 2017, 44(9): 469-472.
doi: 10.1016/j.jgg.2017.08.003 URL |
[32] |
Ishi K, Maruyama J, Juvvadi PR, et al. Visualizing nuclear migration during conidiophore development in Aspergillus nidulans and Aspergillus oryzae:multinucleation of conidia occurs through direct migration of plural nuclei from phialides and confers greater viability and early germination in Aspergillus oryzae[J]. Biosci Biotechnol Biochem, 2005, 69(4): 747-754.
doi: 10.1271/bbb.69.747 URL |
[33] |
Hara S, Jin FJ, Takahashi T, et al. A further study on chromosome minimization by protoplast fusion in Aspergillus oryzae[J]. Mol Genet Genomics, 2012, 287(2): 177-187.
doi: 10.1007/s00438-011-0669-1 URL |
[34] | Chen J, Lai Y, Wang L, et al. CRISPR/Cas9-mediated efficient genome editing via blastospore-based transformation in entomopathogenic fungus Beauveria bassiana[J]. Sci Rep, 2017, 8: 45763. |
[35] |
Broomfield PL, Hargreaves JA. A single amino-acid change in the iron-sulphur protein subunit of succinate dehydrogenase confers resistance to carboxin in Ustilago maydis[J]. Curr Genet, 1992, 22(2): 117-121.
pmid: 1423716 |
[36] |
Irie T, Sato T, Saito K, et al. Construction of a homologous selectable marker gene for Lentinula edodes transformation[J]. Biosci Biotechnol Biochem, 2003, 67(9): 2006-2009.
doi: 10.1271/bbb.67.2006 URL |
[37] |
Li H, Zhong JJ. Role of calcineurin-responsive transcription factor CRZ1 in ganoderic acid biosynjournal by Ganoderma lucidum[J]. Process Biochem, 2020, 95: 166-173.
doi: 10.1016/j.procbio.2020.05.027 URL |
[38] |
Gritz L, Davies J. Plasmid-encoded hygromycin B resistance:the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae[J]. Gene, 1983, 25(2/3): 179-188.
doi: 10.1016/0378-1119(83)90223-8 URL |
[39] |
Hu Y, Xu W, Hu S, et al. In Ganoderma lucidum, Glsnf1 regulates cellulose degradation by inhibiting GlCreA during the utilization of cellulose[J]. Environ Microbiol, 2020, 22(1): 107-121.
doi: 10.1111/emi.v22.1 URL |
[40] |
Thompson CJ, Movva NR, Tizard R, et al. Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus[J]. EMBO J, 1987, 6(9): 2519-2523.
pmid: 16453790 |
[41] |
Miao Y, Xia Y, Kong Y, et al. Overcoming diverse homologous recombinations and single chimeric guide RNA competitive inhibition enhances Cas9-based cyclical multiple genes coediting in filamentous fungi[J]. Environ Microbiol, 2021, 23(6): 2937-2954.
doi: 10.1111/emi.v23.6 URL |
[42] |
Fu Y, Foden JA, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells[J]. Nat Biotechnol, 2013, 31(9): 822-826.
doi: 10.1038/nbt.2623 URL |
[43] |
Hsu PD, Scott DA, Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nat Biotechnol, 2013, 31(9): 827-832.
doi: 10.1038/nbt.2647 URL |
[44] |
Schuster M, Schweizer G, Reissmann S, et al. Genome editing in Ustilago maydis using the CRISPR-Cas system[J]. Fungal Genet Biol, 2016, 89: 3-9.
doi: S1087-1845(15)30025-6 pmid: 26365384 |
[45] |
Slaymaker IM, Gao L, Zetsche B, et al. Rationally engineered Cas9 nucleases with improved specificity[J]. Science, 2016, 351(6268): 84-88.
doi: 10.1126/science.aad5227 pmid: 26628643 |
[46] |
Kleinstiver BP, Pattanayak V, Prew MS, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects[J]. Nature, 2016, 529(7587): 490-495.
doi: 10.1038/nature16526 URL |
[47] |
Tan YY, Chu AHY, Bao SY, et al. Rationally engineered Staphylococcus aureus Cas9 nucleases with high genome-wide specificity[J]. PNAS, 2019, 116(42): 20969-20976.
doi: 10.1073/pnas.1906843116 URL |
[48] |
Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121): 823-826.
doi: 10.1126/science.1232033 URL |
[49] |
Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603): 420-424.
doi: 10.1038/nature17946 URL |
[50] |
Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681): 464-471.
doi: 10.1038/nature24644 URL |
[51] |
Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785): 149-157.
doi: 10.1038/s41586-019-1711-4 URL |
[52] |
Chavez A, Scheiman J, Vora S, et al. Highly efficient Cas9-mediated transcriptional programming[J]. Nat Methods, 2015, 12(4): 326-328.
doi: 10.1038/nmeth.3312 URL |
[53] |
Gilbert LA, Larson MH, Morsut L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes[J]. Cell, 2013, 154(2): 442-451.
doi: 10.1016/j.cell.2013.06.044 pmid: 23849981 |
[54] |
Nishimasu H, Shi X, Ishiguro S, et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space[J]. Science, 2018, 361(6408): 1259-1262.
doi: 10.1126/science.aas9129 pmid: 30166441 |
[55] |
Kleinstiver BP, Prew MS, Tsai SQ, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities[J]. Nature, 2015, 523(7561): 481-485.
doi: 10.1038/nature14592 URL |
[56] |
Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3): 759-771.
doi: 10.1016/j.cell.2015.09.038 pmid: 26422227 |
[57] |
Fagerlund RD, Staals RH, Fineran PC. The Cpf1 CRISPR-Cas protein expands genome-editing tools[J]. Genome Biol, 2015, 16: 251.
doi: 10.1186/s13059-015-0824-9 pmid: 26578176 |
[58] |
Gao Z, Fan M, Das AT, et al. Extinction of all infectious HIV in cell culture by the CRISPR-Cas12a system with only a single crRNA[J]. Nucleic Acids Res, 2020, 48(10): 5527-5539.
doi: 10.1093/nar/gkaa226 URL |
[59] |
Zong Y, Wang YP, Li C, et al. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion[J]. Nat Biotechnol, 2017, 35(5): 438-440.
doi: 10.1038/nbt.3811 URL |
[60] |
Cheng H, Hao M, Ding B, et al. Base editing with high efficiency in allotetraploid oilseed rape by A3A-PBE system[J]. Plant Biotechnol J, 2021, 19(1): 87-97.
doi: 10.1111/pbi.v19.1 URL |
[61] |
Lin QP, Zong Y, Xue CX, et al. Prime genome editing in rice and wheat[J]. Nat Biotechnol, 2020, 38(5): 582-585.
doi: 10.1038/s41587-020-0455-x URL |
[62] |
Lowder LG, Zhang D, Baltes NJ, et al. A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation[J]. Plant Physiol, 2015, 169(2): 971-985.
doi: 10.1104/pp.15.00636 pmid: 26297141 |
[63] |
Moradpour M, Abdulah SNA. CRISPR/dCas9 platforms in plants:strategies and applications beyond genome editing[J]. Plant Biotechnol J, 2020, 18(1): 32-44.
doi: 10.1111/pbi.13232 pmid: 31392820 |
[64] |
Duan K, Cheng Y, Ji J, et al. Large chromosomal segment deletions by CRISPR/LbCpf1-mediated multiplex gene editing in soybean[J]. J Integr Plant Biol, 2021, 63(9): 1620-1631.
doi: 10.1111/jipb.v63.9 URL |
[65] | Huang L, Dong H, Zheng J, et al. Highly efficient single base editing in Aspergillus niger with CRISPR/Cas9 cytidine deaminase fusion[J]. Microbiol Res, 2019, 223/224/225: 44-50. |
[66] |
Mózsik L, Hoekzema M, de Kok NAW, et al. CRISPR-based transcriptional activation tool for silent genes in filamentous fungi[J]. Sci Rep, 2021, 11(1): 1118.
doi: 10.1038/s41598-020-80864-3 URL |
[67] |
Morio F, Lombardi L, Butler G. The CRISPR toolbox in medical mycology:State of the art and perspectives[J]. PLoS Pathog, 2020, 16(1): e1008201.
doi: 10.1371/journal.ppat.1008201 URL |
[1] | 李雪琪, 张素杰, 于曼, 黄金光, 周焕斌. 基于CRISPR/CasX介导的水稻基因组编辑技术的建立[J]. 生物技术通报, 2023, 39(9): 40-48. |
[2] | 陈小玲, 廖东庆, 黄尚飞, 陈英, 芦志龙, 陈东. 利用CRISPR/Cas9系统改造酿酒酵母的研究进展[J]. 生物技术通报, 2023, 39(8): 148-158. |
[3] | 杨玉梅, 张坤晓. 应用CRISPR/Cas9技术建立ERK激酶相分离荧光探针定点整合的稳定细胞株[J]. 生物技术通报, 2023, 39(8): 159-164. |
[4] | 施炜涛, 姚春鹏, 魏文康, 王蕾, 房元杰, 仝钰洁, 马晓姣, 蒋文, 张晓爱, 邵伟. 利用CRISPR/Cas9技术构建MDH2敲除细胞株及抗呕吐毒素效应研究[J]. 生物技术通报, 2023, 39(7): 307-315. |
[5] | 刘晓燕, 祝振亮, 史广宇, 华梓宇, 杨晨, 张涌, 刘军. 乳腺生物反应器的表达优化策略[J]. 生物技术通报, 2023, 39(5): 77-91. |
[6] | 周晓杰, 杨思琪, 张译文, 徐佳琪, 杨晟. CRISPR相关转座酶及其细菌基因组编辑应用[J]. 生物技术通报, 2023, 39(4): 49-58. |
[7] | 程静雯, 曹磊, 张艳敏, 叶倩, 陈敏, 谭文松, 赵亮. CHO细胞多基因工程改造策略的建立及应用[J]. 生物技术通报, 2023, 39(2): 283-291. |
[8] | 黄文莉, 李香香, 周炆婷, 罗莎, 姚维嘉, 马杰, 张芬, 沈钰森, 顾宏辉, 王建升, 孙勃. 利用CRISPR/Cas9技术靶向编辑青花菜BoZDS[J]. 生物技术通报, 2023, 39(2): 80-87. |
[9] | 王兵, 赵会纳, 余婧, 陈杰, 骆梅, 雷波. 利用CRISPR/Cas9系统研究REVOLUTA参与烟草叶芽发育的调控[J]. 生物技术通报, 2023, 39(10): 197-208. |
[10] | 李双喜, 华进联. 抗猪繁殖与呼吸障碍综合征基因编辑猪研究进展[J]. 生物技术通报, 2023, 39(10): 50-57. |
[11] | 林蓉, 郑月萍, 徐雪珍, 李丹丹, 郑志富. 拟南芥ACOL8基因在乙烯合成与响应中的功能分析[J]. 生物技术通报, 2023, 39(1): 157-165. |
[12] | 高伟欣, 黄火清, 赵晶, 张鑫, 杨宁, 杨浩萌. 应用于基因编辑的核糖核蛋白复合体的构建与活性验证[J]. 生物技术通报, 2022, 38(8): 60-68. |
[13] | 刘静静, 刘晓蕊, 李琳, 王盈, 杨海元, 戴一凡. 利用CRISPR/Cas9技术建立OXTR基因敲除猪胎儿成纤维细胞系[J]. 生物技术通报, 2022, 38(6): 272-278. |
[14] | Olalekan Amoo, 胡利民, 翟云孤, 范楚川, 周永明. 利用基因编辑技术研究BRANCHED1参与油菜分枝过程的调控[J]. 生物技术通报, 2022, 38(4): 97-105. |
[15] | 丁亚群, 丁宁, 谢深民, 黄梦娜, 张昱, 张勤, 姜力. Vps28基因敲除小鼠模型的构建及其对泌乳和免疫性状影响的研究[J]. 生物技术通报, 2022, 38(3): 164-172. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||