生物技术通报 ›› 2022, Vol. 38 ›› Issue (11): 32-40.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0335
许机分1,2(), 陈泓妃1,2, 王娜1,2, 刘晶1,2()
收稿日期:
2022-03-16
出版日期:
2022-11-26
发布日期:
2022-12-01
作者简介:
许机分,女,硕士研究生,研究方向:植物病理学;E-mail:基金资助:
XU Ji-fen1,2(), CHEN Hong-fei1,2, WANG Na1,2, LIU Jing1,2()
Received:
2022-03-16
Published:
2022-11-26
Online:
2022-12-01
摘要:
丝裂原活化蛋白激酶(MAPK)信号通路广泛存在于真核细胞并且高度保守,是生物体内非常重要的信号转导系统之一。胞外刺激信号通过细胞膜上的特异性受体传递给胞内MAPK信号通路,该信号通路通过磷酸化下游转录因子、调节各种酶类来调控转录水平及生化反应等,进而使细胞适应外界环境变化。Hog1 MAPK信号通路能够被胞外高渗透压胁迫等刺激激活,对细胞在高渗环境下的存活至关重要。近年来,越来越多的研究发现虽然该信号通路在真核生物中高度保守,但不同物种中的组成仍有差异,且该信号通路的功能也相对多元化。本文综述了Hog1 MAPK信号通路的组成、功能及其与其他信号通路之间的cross-talk,旨在为今后深入研究该信号通路的作用机制及其与其他信号通路间的cross-talk提供参考。
许机分, 陈泓妃, 王娜, 刘晶. 真菌Hog1 MAPK信号通路研究进展[J]. 生物技术通报, 2022, 38(11): 32-40.
XU Ji-fen, CHEN Hong-fei, WANG Na, LIU Jing. Research Advances in Hog1 MAPK Signaling Pathway in Fungi[J]. Biotechnology Bulletin, 2022, 38(11): 32-40.
[1] | Alonso-Monge R, Román E, Arana DM, et al. Fungi sensing environmental stress[J]. Clin Microbiol Infect, 2009, 15(Suppl 1):17-19. |
[2] |
Martín H, Flández M, Nombela C, et al. Protein phosphatases in MAPK signalling:we keep learning from yeast[J]. Mol Microbiol, 2005, 58(1):6-16.
doi: 10.1111/j.1365-2958.2005.04822.x URL |
[3] |
Rispail N, Soanes DM, Ant C, et al. Comparative genomics of MAP kinase and calcium-calcineurin signalling components in plant and human pathogenic fungi[J]. Fungal Genet Biol, 2009, 46(4):287-298.
doi: 10.1016/j.fgb.2009.01.002 pmid: 19570501 |
[4] | Chen RE, Thorner J. Function and regulation in MAPK signaling pathways:lessons learned from the yeast Saccharomyces cerevisiae[J]. Biochim Biophys Acta, 2007, 1773(8):1311-1340. |
[5] |
Jiang M, Zhang YZ, Li P, et al. Mitogen-activated protein kinase and substrate identification in plant growth and development[J]. Int J Mol Sci, 2022, 23(5):2744.
doi: 10.3390/ijms23052744 URL |
[6] |
Kaur P, Goyal N. Pathogenic role of mitogen activated protein kinases in protozoan parasites[J]. Biochimie, 2022, 193:78-89.
doi: 10.1016/j.biochi.2021.10.012 URL |
[7] |
Whitaker RH, Cook JG. Stress relief techniques:p38 MAPK determines the balance of cell cycle and apoptosis pathways[J]. Biomolecules, 2021, 11(10):1444.
doi: 10.3390/biom11101444 URL |
[8] |
Cheetham J, Smith DA, da Silva Dantas A, et al. A single MAPKKK regulates the Hog1 MAPK pathway in the pathogenic fungus Candida albicans[J]. Mol Biol Cell, 2007, 18(11):4603-4614.
doi: 10.1091/mbc.e07-06-0581 pmid: 17804815 |
[9] | 吴雪昌, 胡森杰, 钱凯先. 酵母HOG-MAPK途径[J]. 细胞生物学杂志, 2005, 27(3):247-252. |
Wu XC, Hu SJ, Qian KX. HOG-MAPK pathway in yeast[J]. Chin J Cell Biol, 2005, 27(3):247-252. | |
[10] |
O’Rourke SM, Herskowitz I, O’Shea EK. Yeast go the whole HOG for the hyperosmotic response[J]. Trends Genet, 2002, 18(8):405-412.
pmid: 12142009 |
[11] |
Maeda T, Takekawa M, Saito H. Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor[J]. Science, 1995, 269(5223):554-558.
doi: 10.1126/science.7624781 pmid: 7624781 |
[12] |
O’Rourke SM, Herskowitz I. Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis[J]. Mol Biol Cell, 2004, 15(2):532-542.
pmid: 14595107 |
[13] |
O’Rourke SM, Herskowitz I. The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae[J]. Genes Dev, 1998, 12(18):2874-2886.
doi: 10.1101/gad.12.18.2874 URL |
[14] |
Ramezani Rad M, Jansen G, Bühring F, et al. Ste50p is involved in regulating filamentous growth in the yeast Saccharomyces cerevisiae and associates with Ste11p[J]. Mol Gen Genet MGG, 1998, 259(1):29-38.
doi: 10.1007/s004380050785 URL |
[15] |
Wang YQ, Dohlman HG. Pheromone signaling mechanisms in yeast:a prototypical sex machine[J]. Science, 2004, 306(5701):1508-1509.
doi: 10.1126/science.1104568 URL |
[16] |
Warmka J, Hanneman J, Lee J, et al. Ptc1, a type 2C Ser/Thr phosphatase, inactivates the HOG pathway by dephosphorylating the mitogen-activated protein kinase Hog1[J]. Mol Cell Biol, 2001, 21(1):51-60.
pmid: 11113180 |
[17] |
Reiser V, Ruis H, Ammerer G. Kinase activity-dependent nuclear export opposes stress-induced nuclear accumulation and retention of Hog1 mitogen-activated protein kinase in the budding yeast Saccharomyces cerevisiae[J]. Mol Biol Cell, 1999, 10(4):1147-1161.
pmid: 10198063 |
[18] |
Wurgler-Murphy SM, Maeda T, Witten EA, et al. Regulation of the Saccharomyces cerevisiae HOG1 mitogen-activated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatases[J]. Mol Cell Biol, 1997, 17(3):1289-1297.
doi: 10.1128/MCB.17.3.1289 pmid: 9032256 |
[19] |
Winkler A, Arkind C, Mattison CP, et al. Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress[J]. Eukaryot Cell, 2002, 1(2):163-173.
doi: 10.1128/EC.1.2.163-173.2002 pmid: 12455951 |
[20] |
Du C, Sarfati J, Latge JP, et al. The role of the sakA(Hog1)and tcsB(sln1)genes in the oxidant adaptation of Aspergillus fumigatus[J]. Med Mycol, 2006, 44(3):211-218.
doi: 10.1080/13693780500338886 URL |
[21] |
Furukawa K, Hoshi Y, Maeda T, et al. Aspergillus nidulans HOG pathway is activated only by two-component signalling pathway in response to osmotic stress[J]. Mol Microbiol, 2005, 56(5):1246-1261.
pmid: 15882418 |
[22] |
Liu J, Wang ZK, Sun HH, et al. Characterization of the Hog1 MAPK pathway in the entomopathogenic fungus Beauveria bassiana[J]. Environ Microbiol, 2017, 19(5):1808-1821.
doi: 10.1111/1462-2920.13671 URL |
[23] | 吴雪兰, 郝海波, 黄建春, 等. CWI和HOG信号通路基因在斑玉蕈不同发育阶段的表达模式[J]. 菌物学报, 2021, 40(6):1388-1399. |
Wu XL, Hao HB, Huang JC, et al. The expression pattern of CWI and HOG signal pathway genes during the growth and development of Hypsizygus marmoreus[J]. Mycosystema, 2021, 40(6):1388-1399. | |
[24] | 王调兰. Hog1、Slt2-MAP激酶对梨果蜡质及疏水性诱导Alternaria alternata侵染结构分化的调控作用[D]. 兰州: 甘肃农业大学, 2020. |
Wang TL. Regulation role of Hog1 and Slt2 MAP kinases on infection structural differentiation of Alternaria alternata induced by pear cuticular wax and hydrophobicity[D]. Lanzhou: Gansu Agricultural University, 2020. | |
[25] |
Su C, Lu Y, Liu HP. Reduced TOR signaling sustains hyphal development in Candida albicans by lowering Hog1 basal activity[J]. Mol Biol Cell, 2013, 24(3):385-397.
doi: 10.1091/mbc.e12-06-0477 URL |
[26] |
Morales-Menchén A, Navarro-García F, Guirao-Abad JP, et al. Non-canonical activities of Hog1 control sensitivity of Candida albicans to killer toxins from Debaryomyces hansenii[J]. Front Cell Infect Microbiol, 2018, 8:135.
doi: 10.3389/fcimb.2018.00135 URL |
[27] | Chi Z, Kong CC, Wang ZZ, et al. The signaling pathways involved in metabolic regulation and stress responses of the yeast-like fungi Aureobasidium spp[J]. Biotechnol Adv, 2022, 55:107898. |
[28] | Li YF, He P, Tian CM, et al. CgHog1 controls the adaptation to both sorbitol and fludioxonil in Colletotrichum gloeosporioides[J]. Fungal Genet Biol, 2020, 135:103289. |
[29] | 李珊. RKHog1基因敲除对红冬孢酵母YM25235低温生长适应性的影响[D]. 昆明: 昆明理工大学, 2019. |
Li S. Effects of RKHog1 gene deletion on the adaptation of Rhodosporidium kratochvilovae YM25235 to low temperature[D]. Kunming: Kunming University of Science and Technology, 2019. | |
[30] | Huang S, Zhang D, Weng FL, et al. Activation of a mitogen-activated protein kinase Hog1 by DNA damaging agent methyl methanesulfonate in yeast[J]. Front Mol Biosci, 2020, 7:581095. |
[31] |
Lee J, Levin DE. Intracellular mechanism by which arsenite activates the yeast stress MAPK Hog1[J]. MBoC, 2018, 29(15):1904-1915.
doi: 10.1091/mbc.E18-03-0185 URL |
[32] |
Mehrabi R, Zwiers LH, de Waard MA, et al. MgHog1 regulates dimorphism and pathogenicity in the fungal wheat pathogen Mycosphaerella graminicola[J]. Mol Plant Microbe Interact, 2006, 19(11):1262-1269.
doi: 10.1094/MPMI-19-1262 URL |
[33] |
Segmüller N, Ellendorf U, Tudzynski B, et al. BcSAK1, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea[J]. Eukaryot Cell, 2007, 6(2):211-221.
pmid: 17189492 |
[34] |
Ochiai N, Tokai T, Nishiuchi T, et al. Involvement of the osmosensor histidine kinase and osmotic stress-activated protein kinases in the regulation of secondary metabolism in Fusarium graminearum[J]. Biochem Biophys Res Commun, 2007, 363(3):639-644.
doi: 10.1016/j.bbrc.2007.09.027 URL |
[35] |
Alonso-Monge R, Navarro-García F, Molero G, et al. Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans[J]. J Bacteriol, 1999, 181(10):3058-3068.
pmid: 10322006 |
[36] | 魏金瑛. SakA基因影响马尔尼菲篮状菌应激反应、抗真菌药物敏感性以及在感染动物模型中的作用机制研究[D]. 南宁: 广西医科大学, 2017. |
Wei JY. SakA gene regulates stress response, drug sensitivity and virulence of Talaromyces marneffei[D]. Nanning: Guangxi Medical University, 2017. | |
[37] | Ownley BH, Gwinn KD, Vega FE. The ecology of fungal entomopathogens[M]. Springer Netherlands, 2010. |
[38] | Jin K, Ming Y, Xia YX. MaHog1, a Hog1-type mitogen-activated protein kinase gene, contributes to stress tolerance and virulence of the entomopathogenic fungus Metarhizium acridum[J]. Microbiology(Reading), 2012, 158(Pt 12):2987-2996. |
[39] |
Zhang YJ, Zhao JH, Fang WG, et al. Mitogen-activated protein kinase hog1 in the entomopathogenic fungus Beauveria bassiana regulates environmental stress responses and virulence to insects[J]. Appl Environ Microbiol, 2009, 75(11):3787-3795.
doi: 10.1128/AEM.01913-08 URL |
[40] |
Chen XX, Xu C, Qian Y, et al. MAPK cascade-mediated regulation of pathogenicity, conidiation and tolerance to abiotic stresses in the entomopathogenic fungus Metarhizium robertsii[J]. Environ Microbiol, 2016, 18(3):1048-1062.
doi: 10.1111/1462-2920.13198 URL |
[41] |
Hohmann S. Osmotic stress signaling and osmoadaptation in yeasts[J]. Microbiol Mol Biol Rev, 2002, 66(2):300-372.
doi: 10.1128/MMBR.66.2.300-372.2002 URL |
[42] |
Escoté X, Zapater M, Clotet J, et al. Hog1 mediates cell-cycle arrest in G1 phase by the dual targeting of Sic1[J]. Nat Cell Biol, 2004, 6(10):997-1002.
pmid: 15448699 |
[43] | Correia I, Alonso-Monge R, Pla J. The Hog1 MAP kinase promotes the recovery from cell cycle arrest induced by hydrogen peroxide in Candida albicans[J]. Front Microbiol, 2017, 7:2133. |
[44] |
González-Novo A, Jiménez J, Clotet J, et al. Hog1 targets Whi5 and Msa1 transcription factors to downregulate cyclin expression upon stress[J]. Mol Cell Biol, 2015, 35(9):1606-1618.
doi: 10.1128/MCB.01279-14 pmid: 25733686 |
[45] |
Yaakov G, Duch A, García-Rubio M, et al. The stress-activated protein kinase Hog1 mediates S phase delay in response to osmostress[J]. Mol Biol Cell, 2009, 20(15):3572-3582.
doi: 10.1091/mbc.E09-02-0129 pmid: 19477922 |
[46] |
Alcasabas AA, Osborn AJ, Bachant J, et al. Mrc1 transduces signals of DNA replication stress to activate Rad53[J]. Nat Cell Biol, 2001, 3(11):958-965.
doi: 10.1038/ncb1101-958 pmid: 11715016 |
[47] |
Duch A, Felipe-Abrio I, Barroso S, et al. Coordinated control of replication and transcription by a SAPK protects genomic integrity[J]. Nature, 2013, 493(7430):116-119.
doi: 10.1038/nature11675 URL |
[48] |
Alexander MR, Tyers M, Perret M, et al. Regulation of cell cycle progression by Swe1p and Hog1p following hypertonic stress[J]. Mol Biol Cell, 2001, 12(1):53-62.
pmid: 11160822 |
[49] | Clotet J, Posas F. Control of cell cycle in response to osmostress:lessons from yeast[J]. Methods Enzymol, 2007, 428:63-76. |
[50] |
Clotet J, Escoté X, Adrover MA, et al. Phosphorylation of Hsl1 by Hog1 leads to a G2 arrest essential for cell survival at high osmolarity[J]. EMBO J, 2006, 25(11):2338-2346.
doi: 10.1038/sj.emboj.7601095 pmid: 16688223 |
[51] |
Tognetti S, Jiménez J, Viganò M, et al. Hog1 activation delays mitotic exit via phosphorylation of Net1[J]. Proc Natl Acad Sci USA, 2020, 117(16):8924-8933.
doi: 10.1073/pnas.1918308117 URL |
[52] |
Rodríguez-Peña JM, García R, Nombela C, et al. The high-osmolarity glycerol(HOG)and cell wall integrity(CWI)signalling pathways interplay:a yeast dialogue between MAPK routes[J]. Yeast, 2010, 27(8):495-502.
doi: 10.1002/yea.1792 URL |
[53] | Chen Y, Zhu J, Ying SH, et al. Three mitogen-activated protein kinases required for cell wall integrity contribute greatly to biocontrol potential of a fungal entomopathogen[J]. PLoS One, 2014, 9(2):e87948. |
[54] |
Jiang B, Ram AFJ, Sheraton J, et al. Regulation of cell wall β-glucan assembly:PTC1 Negatively affects PBS2 Action in a pathway that includes modulation of EXG1 transcription[J]. Mol Gen Genet MGG, 1995, 248(3):260-269.
doi: 10.1007/BF02191592 URL |
[55] |
Lai MH, Silverman SJ, Gaughran JP, et al. Multiple copies of PBS2, MHP1 or LRE1 produce glucanase resistance and other cell wall effects in Saccharomyces cerevisiae[J]. Yeast, 1997, 13(3):199-213.
pmid: 9090049 |
[56] |
Reynolds TB, Hopkins BD, Lyons MR, et al. The high osmolarity glycerol response(HOG)MAP kinase pathway controls localization of a yeast Golgi glycosyltransferase[J]. J Cell Biol, 1998, 143(4):935-946.
doi: 10.1083/jcb.143.4.935 pmid: 9817752 |
[57] |
Westfall PJ, Thorner J. Analysis of mitogen-activated protein kinase signaling specificity in response to hyperosmotic stress:use of an analog-sensitive HOG1 allele[J]. Eukaryot Cell, 2006, 5(8):1215-1228.
pmid: 16896207 |
[58] |
Hao N, Zeng YX, Elston TC, et al. Control of MAPK specificity by feedback phosphorylation of shared adaptor protein Ste50[J]. J Biol Chem, 2008, 283(49):33798-33802.
doi: 10.1074/jbc.C800179200 pmid: 18854322 |
[59] |
Yamamoto K, Tatebayashi K, Tanaka K, et al. Dynamic control of yeast MAP kinase network by induced association and dissociation between the Ste50 scaffold and the Opy2 membrane anchor[J]. Mol Cell, 2010, 40(1):87-98.
doi: 10.1016/j.molcel.2010.09.011 pmid: 20932477 |
[60] |
Shitamukai A, Hirata D, Sonobe S, et al. Evidence for antagonistic regulation of cell growth by the calcineurin and high osmolarity glycerol pathways in Saccharomyces cerevisiae[J]. J Biol Chem, 2004, 279(5):3651-3661.
doi: 10.1074/jbc.M306098200 pmid: 14583627 |
[61] | Leech CM, Flynn MJ, Arsenault HE, et al. The coordinate actions of calcineurin and Hog1 mediate the stress response through multiple nodes of the cell cycle network[J]. PLoS Genet, 2020, 16(4):e1008600. |
[62] |
Bahn YS, Kojima K, Cox GM, et al. Specialization of the HOG pathway and its impact on differentiation and virulence of Cryptococcus neoformans[J]. Mol Biol Cell, 2005, 16(5):2285-2300.
doi: 10.1091/mbc.e04-11-0987 URL |
[1] | 赵志祥, 王殿东, 周亚林, 王培, 严婉荣, 严蓓, 罗路云, 张卓. 枯草芽孢杆菌Ya-1对辣椒枯萎病的防治及其对根际真菌群落的影响[J]. 生物技术通报, 2023, 39(9): 213-224. |
[2] | 方澜, 黎妍妍, 江健伟, 成胜, 孙正祥, 周燚. 盘龙参内生真菌胞内细菌7-2H的分离鉴定和促生特性研究[J]. 生物技术通报, 2023, 39(8): 272-282. |
[3] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
[4] | 徐小文, 李金仓, 海都, 查玉平, 宋菲, 王义勋. 核桃炭疽菌携带病毒种类鉴定及多样性分析[J]. 生物技术通报, 2023, 39(3): 278-289. |
[5] | 易希, 廖红东, 郑井元. 植物内生真菌防治根结线虫研究进展[J]. 生物技术通报, 2023, 39(3): 43-51. |
[6] | 王伟宸, 赵进, 黄薇颐, 郭芯竹, 李婉颖, 张卓. 芽胞杆菌代谢产物防治三种常见植物病原真菌的研究进展[J]. 生物技术通报, 2023, 39(3): 59-68. |
[7] | 王凤婷, 王岩, 孙颖, 崔文婧, 乔凯彬, 潘洪玉, 刘金亮. 耐盐碱土曲霉SYAT-1的分离鉴定及抑制植物病原真菌特性研究[J]. 生物技术通报, 2023, 39(2): 203-210. |
[8] | 孙海航, 官会林, 王旭, 王童, 李泓霖, 彭文洁, 刘柏桢, 樊芳玲. 生物炭对三七连作土壤性质及真菌群落的影响[J]. 生物技术通报, 2023, 39(2): 221-231. |
[9] | 刘媛媛, 魏传正, 谢永波, 仝宗军, 韩星, 甘炳成, 谢宝贵, 严俊杰. 金针菇II类过氧化物酶基因在子实体发育与胁迫应答过程的表达特征[J]. 生物技术通报, 2023, 39(11): 340-349. |
[10] | 郭文博, 路杨, 隋丽, 赵宇, 邹晓威, 张正坤, 李启云. 球孢白僵菌真菌病毒BbPmV-4外壳蛋白多克隆抗体制备及应用[J]. 生物技术通报, 2023, 39(10): 58-67. |
[11] | 孙卓, 王妍, 韩忠明, 王云贺, 赵淑杰, 杨利民. 防风根际真菌的分离鉴定及其生防潜力评价[J]. 生物技术通报, 2023, 39(1): 264-273. |
[12] | 李建建, 贺宸靖, 黄小平, 向太和. 植物长链非编码RNA调控发育与胁迫应答的研究进展[J]. 生物技术通报, 2023, 39(1): 48-58. |
[13] | 高小宁, 刘睿, 吴自林, 吴嘉云. 宿根矮化病抗感甘蔗品种茎部内生真菌和细菌群落特征分析[J]. 生物技术通报, 2022, 38(6): 166-173. |
[14] | 陈虎, 杨章旗, 孙爽, 李鹏, 徐慧兰. 马尾松MAPK级联途径应答信号物质基因的表达分析[J]. 生物技术通报, 2022, 38(6): 187-197. |
[15] | 王宇蕴, 赵兵, 马丽婷, 李兰, 邓亚琴, 徐智. 堆肥腐殖化过程及微生物驱动机制[J]. 生物技术通报, 2022, 38(5): 22-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||