生物技术通报 ›› 2022, Vol. 38 ›› Issue (4): 230-241.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0704
收稿日期:
2021-06-02
出版日期:
2022-04-26
发布日期:
2022-05-06
通讯作者:
于存,男,博士,讲师,硕士生导师,研究方向:森林病理;E-mail: chifengyucun@163.com作者简介:
祝静,女,硕士研究生,研究方向:林业资源微生物;E-mail: 1049286259@qq.com
基金资助:
Received:
2021-06-02
Published:
2022-04-26
Online:
2022-05-06
摘要:
为探讨长枝木霉菌肥在玉米栽培上的应用效果及其作用机制。采用盆栽法,设置3个处理:(1)每克土加入0.01 g菌肥(YJ),(2)0.07%化肥(YF),(3)每克土加入0.01 g菌肥基质(YD)。测定不同处理下玉米生长、生理、土壤养分、土壤酶活及根际微生物群落等指标。结果表明,YJ和YF处理对玉米生长具有显著的促进作用,二者与YD处理相比均差异显著(P<0.05),而YJ与YF处理相比,对玉米生长指标影响的差异不显著(P>0.05);其中,与YD处理相比,YJ和YF处理对玉米苗高、根长、地上干重、地下干重、地上鲜重和地下鲜重分别提高了44.65%和39.87%、75.74%和71.25%、83.33%和33.33%、300%和150.00%、101.85%和55.56%、356.67%和130.00%;与YD处理相比,YJ和YF处理均可提高玉米的生理指标,其中YJ处理对玉米生理指标的促进作用更明显(P<0.05);YJ和YF处理均可提升玉米根际土壤养分和土壤酶活性,且YJ处理比YF处理的提升幅度更大;对玉米根际微生物群落的影响结果显示,YJ处理可以增加玉米根际土真菌OTU数量,减少根际土细菌OTU数量(P<0.05);YF处理会增加根际土细菌OTU数量,但会减少真菌OTU数量。综上,长枝木霉菌肥与化肥相比对玉米生长、生理、土壤养分、土壤酶活和土壤微生物群落的积极作用更为明显,有望在未来全部或部分的代替化肥,在促进玉米生长的同时,减少无机化肥的用量。
祝静, 于存. 长枝木霉菌肥对玉米生长、土壤肥力和根际微生物的影响[J]. 生物技术通报, 2022, 38(4): 230-241.
ZHU Jing, YU Cun. Effects of Trichoderma longibrachiatum on Maize Growth,Soil Fertility and Rhizosphere Microorganism[J]. Biotechnology Bulletin, 2022, 38(4): 230-241.
不同处理 Different treatment | 苗高 Height /cm | 根长 Root length/cm | 侧根数 Lateral root number | 干重Dry weight/(g·plant-1) | 鲜重Fresh weight/(g·plant-1) | ||
---|---|---|---|---|---|---|---|
地上Shoot | 地下Root | 地上Shoot | 地下Root | ||||
YJ | 24.20±0.61a | 18.40±0.53a | 8.67±2.08a | 0.11±0.01a | 0.08±0.01a | 1.09±0.40a | 1.37±0.14a |
YF | 23.40±1.73a | 17.93±1.40a | 7.00±2.65a | 0.08±0.03a | 0.05±0.01b | 0.84±0.09a | 0.69±0.33a |
YD | 16.73±1.58b | 10.47±0.15b | 2.67±1.15b | 0.06±0.01b | 0.02±0.01c | 0.54±0.06b | 0.30±0.11b |
表1 长枝木霉菌肥对玉米生长的影响
Table 1 Effect of T. longissima fertilizer on maize growth
不同处理 Different treatment | 苗高 Height /cm | 根长 Root length/cm | 侧根数 Lateral root number | 干重Dry weight/(g·plant-1) | 鲜重Fresh weight/(g·plant-1) | ||
---|---|---|---|---|---|---|---|
地上Shoot | 地下Root | 地上Shoot | 地下Root | ||||
YJ | 24.20±0.61a | 18.40±0.53a | 8.67±2.08a | 0.11±0.01a | 0.08±0.01a | 1.09±0.40a | 1.37±0.14a |
YF | 23.40±1.73a | 17.93±1.40a | 7.00±2.65a | 0.08±0.03a | 0.05±0.01b | 0.84±0.09a | 0.69±0.33a |
YD | 16.73±1.58b | 10.47±0.15b | 2.67±1.15b | 0.06±0.01b | 0.02±0.01c | 0.54±0.06b | 0.30±0.11b |
图2 长枝木霉菌肥对玉米幼苗生理的影响 A:可溶性蛋白;B:可溶性糖;C:叶绿素;D:根系活力;E:CAT;F:SOD;G:POD地上;H:POD地下
Fig.2 Effects of T. longibrachiatum fertilizer on physiology of maize seedlings A:Soluble protein. B:Soluble sugar. C:Chlorophyll. D:Root activity. E:CAT. F:SOD. G:POD shoot. H:POD root
不同处理 Different treatment | 全磷Total phosphorus/(g·kg-1) | 有效磷Available pho-sphorus /(mg·kg-1) | 全钾Total potas-sium/(g·kg-1) | 速效钾Available Pota-ssium/(mg·kg-1) | 全氮Total nitro- gen /(g·kg-1) | 水解氮Hydrolyzed nitrogen /(mg·kg-1) |
---|---|---|---|---|---|---|
YJ | 2.25±0.10a | 44.94±4.67a | 2.70±0.35a | 4.18±0.29a | 14.33±2.65a | 57.87±6.47a |
YF | 2.07±0.18a | 43.62±4.09a | 2.47±0.12ab | 3.98±0.25a | 12.88±1.48a | 54.60±7.89a |
YD | 1.63±1.58b | 29.45±3.84b | 2.08±0.56b | 3.66±0.72b | 7.37±0.58b | 46.67±4.28b |
表2 长枝木霉菌肥对玉米根际土壤养分的影响
Table 2 Effects of T. longibrachiatum fertilizer on soil nutrients in the rhizosphere of maize
不同处理 Different treatment | 全磷Total phosphorus/(g·kg-1) | 有效磷Available pho-sphorus /(mg·kg-1) | 全钾Total potas-sium/(g·kg-1) | 速效钾Available Pota-ssium/(mg·kg-1) | 全氮Total nitro- gen /(g·kg-1) | 水解氮Hydrolyzed nitrogen /(mg·kg-1) |
---|---|---|---|---|---|---|
YJ | 2.25±0.10a | 44.94±4.67a | 2.70±0.35a | 4.18±0.29a | 14.33±2.65a | 57.87±6.47a |
YF | 2.07±0.18a | 43.62±4.09a | 2.47±0.12ab | 3.98±0.25a | 12.88±1.48a | 54.60±7.89a |
YD | 1.63±1.58b | 29.45±3.84b | 2.08±0.56b | 3.66±0.72b | 7.37±0.58b | 46.67±4.28b |
不同处理Different treatment | 脲酶Urease/(mg·g-1·d-1) | 蔗糖酶Sucrase/(mg·g-1·d-1) | 磷酸酶Phosphatase/(mg·g-1·d-1) |
---|---|---|---|
YJ | 128.00±2.88a | 19.60±1.09a | 2.45±0.30a |
YF | 99.06±4.99b | 16.09±8.57a | 2.43±0.21a |
YD | 93.40±5.44b | 3.18±0.37b | 2.05±0.66a |
表3 长枝木霉菌肥对玉米根际土壤酶活性的影响
Table 3 Effects of T. longibrachiatum fertilizer on enzyme activities in maize rhizosphere soil
不同处理Different treatment | 脲酶Urease/(mg·g-1·d-1) | 蔗糖酶Sucrase/(mg·g-1·d-1) | 磷酸酶Phosphatase/(mg·g-1·d-1) |
---|---|---|---|
YJ | 128.00±2.88a | 19.60±1.09a | 2.45±0.30a |
YF | 99.06±4.99b | 16.09±8.57a | 2.43±0.21a |
YD | 93.40±5.44b | 3.18±0.37b | 2.05±0.66a |
处理 Treatment | 细菌Bacteria | 真菌Fungi | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
ACE | Chao1 | Simpson | Shannon | ACE | Chao1 | Simpson | Shannon | |||
YJ | 1015.42±82.20b | 1009.43±80.19a | 0.992±0.001a | 8.40±0.15a | 134.14±23.22a | 133.19±22.43a | 0.80±0.12a | 3.46±0.84a | ||
YF | 1317.34±214.63a | 1315.24±224.24a | 0.988±0.010a | 8.58±0.46a | 105.54±26.19a | 104.96±26.27a | 0.76±0.49a | 3.27±0.21a | ||
YD | 1292.47±87.36ab | 1293.86±93.79a | 0.991±0.020a | 8.53±0.20a | 111.37±16.12a | 110.87±16.54a | 0.82±0.35a | 3.46±0.48a |
表4 各处理样本的微生物多样性指数
Table 4 Microbial diversity index of each treatment sample
处理 Treatment | 细菌Bacteria | 真菌Fungi | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
ACE | Chao1 | Simpson | Shannon | ACE | Chao1 | Simpson | Shannon | |||
YJ | 1015.42±82.20b | 1009.43±80.19a | 0.992±0.001a | 8.40±0.15a | 134.14±23.22a | 133.19±22.43a | 0.80±0.12a | 3.46±0.84a | ||
YF | 1317.34±214.63a | 1315.24±224.24a | 0.988±0.010a | 8.58±0.46a | 105.54±26.19a | 104.96±26.27a | 0.76±0.49a | 3.27±0.21a | ||
YD | 1292.47±87.36ab | 1293.86±93.79a | 0.991±0.020a | 8.53±0.20a | 111.37±16.12a | 110.87±16.54a | 0.82±0.35a | 3.46±0.48a |
图4 各样本在门水平上的群落结构 A:真菌门水平上的菌落结构柱状图;B:细菌门水平上的菌落结构柱状图;C:真菌门水平上的菌落结构热图;D:细菌门水平上的菌落结构热图
Fig. 4 Community structure of each sample at phylum level A:Histogram of colony structure at the level of Mycota. B:Histogram of colony structure at the level of bacterial phylum. C:Colony structure heat map at the level of Mycota. D:Colony structure heat map at bacterial phylum level
图5 各样本在属水平上的群落结构 A:真菌属水平上的菌落结构柱状图;B:细菌属水平上的菌落结构柱状;C:真菌属水平上的菌落结构热图;D:细菌属水平上的菌落结构热图
Fig. 5 Community structure of each sample at genus level A:Histogram of colony structure at the level of fungi. B:Histogram of colony structure at the bacterial genus level. C:Colony structure heat map at the fungal genus level. D:Colony structure heat map at the bacterial genus level
图7 玉米根际土壤微生物群落与土壤养分的RDA分析 A:真菌;B:细菌。TK:全钾;TN:全氮;TP:全磷;AK:速效钾;AP:有效磷;HN:水解氮
Fig. 7 RDA analysis of soil microbial community and soil nutrients in maize rhizosphere A:Fungus. B:Bacteria. TK:Total potassium. TN:Total nitrogen. TP:Total phosphorus. AK:Available potassium. AP:Available phosphorus. HN:Hydrolyzed nitrogen
[1] | 韩晓亮, 王秀茹, 侯琨, 等. 黑土夏玉米施用生物质炭最佳施用时期和最佳用量[J]. 浙江农林大学学报, 2019, 36(1):96-106. |
Han XL, Wang XR, Hou K, et al. Application period and dosage optimums for biochar additions in black soil with summer maize[J]. J Zhejiang A F Univ, 2019, 36(1):96-106. | |
[2] | 杨雪. 木霉菌肥促春油菜生长及改良土壤效果研究[D]. 哈尔滨:东北林业大学, 2017. |
Yang X. Trichoderma BioFertilizer promote growth of spring rape cultivator and improve its cultivated soil[D]. Harbin:Northeast Forestry University, 2017. | |
[3] | 戴乐天. 真菌溶磷菌肥的研发及其促进玉米生长的效果研究[D]. 南京:南京农业大学, 2016. |
Dai LT. Development of phosphorus-solubilizing biofertilizer and its effect of promoting corn growth[D]. Nanjing:Nanjing Agricultural University, 2016. | |
[4] | 李娜. 组合溶磷菌肥对土壤磷素有效性和油菜玉米产量的影响[D]. 太谷:山西农业大学, 2016. |
Li N. Effects of different combined phosphate-solubilizing microbial fertilizer on soil phosphorus availability and rapeseed corn yield[D]. Taigu:Shanxi Agricultural University, 2016. | |
[5] | 冯伟, 杨军芳, 周晓芬, 等. 5种解磷溶磷菌肥在冀西山区旱地玉米上的肥效试验[J]. 河北农业科学, 2013, 17(2):38-40, 50. |
Feng W, Yang JF, Zhou XF, et al. Study on 5 kinds of phosphorus dissolving microbial fertilizer efficiency of dryland maize in west mountain regions of Hebei Province[J]. J Hebei Agric Sci, 2013, 17(2):38-40, 50. | |
[6] |
Windham MT. A mechanism for increased plant growth induced byTrichodermaspp[J]. Phytopathology, 1986, 76(5):518.
doi: 10.1094/Phyto-76-518 URL |
[7] | 刘佳, 张悦, 沈志彦, 等. 长枝木霉T6菌株对美洲南瓜枯萎病菌的抑制作用[J]. 西北农业学报, 2020, 29(12):1891-1897. |
Liu J, Zhang Y, Shen ZY, et al. Inhibitory effect of Trichoderma longibrachiatum T6 on pathogen of Fusarium wilt of Cucurbita pepo[J]. Acta Agric Boreali Occidentalis Sin, 2020, 29(12):1891-1897. | |
[8] |
Li JH, Philp J, Li JS, et al. Trichoderma harzianum inoculation reduces the incidence of clubroot disease in Chinese cabbage by regulating the rhizosphere microbial community[J]. Microorganisms, 2020, 8(9):1325.
doi: 10.3390/microorganisms8091325 URL |
[9] | 姚英. 闽楠内生真菌多样性及其促生作用机制研究[D]. 贵阳:贵州大学, 2020. |
Yao Y. Study on the diversity of endophytic fungi and its promoting mechanism in Phoebe bournei[D]. Guiyang:Guizhou University, 2020. | |
[10] | 邹雨婷, 朱铭玮, 李永荣, 等. ‘凤丹’种子发育及其营养物质含量和相关酶活性的动态变化[J]. 南京林业大学学报:自然科学版, 2021, 45(5):62-70. |
Zou YT, Zhu MW, Li YR, et al. Dynamic changes in nutrients content and related enzymes activity during Paeonia ostii ‘Feng Dan’ seeds development[J]. J Nanjing For Univ Nat Sci Ed, 2021, 45(5):62-70. | |
[11] | 周燕, 杨习文, 周苏玫, 等. 小麦根中NADP-脱氢酶系统关键酶活性与根系活力和产量的关系分析[J]. 中国农业科学, 2018, 51(11):2060-2071. |
Zhou Y, Yang XW, Zhou SM, et al. Activities of key enzymes in root NADP-dehydrogenase system and their relationships with root vigor and grain yield formation in wheat[J]. Sci Agric Sin, 2018, 51(11):2060-2071. | |
[12] | 李健, 蒋志荣, 等. 水分胁迫下四种滨藜属植物保护酶活性的变化[J]. 甘肃农业大学学报, 2006, 41(5):76-80. |
Li J, Jiang ZR, et al. Change of protective enzyme activity of the four species in the genus Atriplex under water stress[J]. J Gansu Agric Univ, 2006, 41(5):76-80. | |
[13] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
Bao SD. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: Chinese Agriculture Press, 2000. | |
[14] | 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986. |
Guan SY. Soil enzyme and its research method[M]. Beijing: Agriculture Press, 1986. | |
[15] | 王元基. 覆盖模式下黄土高原苹果园土壤质量提升效应的微生物学机制[D]. 杨凌:西北农林科技大学, 2020. |
Wang YJ. The microbiological mechanism of soil quality improvement effect under mulching pattern in apple orchard on loess plateau[D]. Yangling:Northwest A & F University, 2020. | |
[16] |
许来鹏, 万鲜花, 等. 畜禽粪肥和秸秆还田对玉米根际微生物群落结构的影响[J]. 生物技术通报, 2020, 36(9):137-146.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0913 |
Xu LP, Wan XH, et al. Effects of livestock manure and straw returning to field on microbial community structure around maize rhizosphere[J]. Biotechnol Bull, 2020, 36(9):137-146. | |
[17] | 吴云艳. 生物菌肥对玉米根系特性及土壤酶活性的影响[J]. 辽东学院学报:自然科学版, 2020, 27(4):229-233. |
Wu YY. Effect of biological fertilizer on maize root characteristics and soil enzyme activities[J]. J East Liaoning Univ Nat Sci Ed, 2020, 27(4):229-233. | |
[18] | 郭成, 张小杰, 徐生军, 等. 长枝木霉菌株GAAS L3-1-0. 8对玉米形态学指标影响及其生物学特性[J]. 玉米科学, 2018, 26(3):153-159. |
Guo C, Zhang XJ, Xu SJ, et al. Effects of Trichoderma longibrachiatum strain GAAS L3-1-0. 8 on the morphological indices of corn and biological characteristics[J]. J Maize Sci, 2018, 26(3):153-159. | |
[19] | 杨春平, 张晋康, 陈华保, 等. 绿色木霉L24菌株分生孢子可湿性粉剂的研制[J]. 西北农业学报, 2010, 19(9):43-47. |
Yang CP, Zhang JK, Chen HB, et al. Preparation of Trichoderma viride L24 conidia wettable powder[J]. Acta Agric Boreali Occidentalis Sin, 2010, 19(9):43-47. | |
[20] |
武杞蔓, 张金梅, 等. 有益微生物菌肥对农作物的作用机制研究进展[J]. 生物技术通报, 2021, 37(5):221-230.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0846 |
Wu QM, Zhang JM, et al. Recent advances on the mechanism of beneficial microbial fertilizers in crops[J]. Biotechnol Bull, 2021, 37(5):221-230. | |
[21] | 和文祥, 朱铭莪. 陕西土壤脲酶活性与土壤肥力关系分析[J]. 土壤学报, 1997, 34(4):392-398. |
He WX, Zhu ME. Relationship between urease activity and fertility of soils in Shaanxi Province[J]. Acta Pedol Sin, 1997, 34(4):392-398. | |
[22] | 朱书豪. 树脂包膜控释尿素施用对南方稻田土壤的环境效应研究[D]. 北京:中国农业科学院, 2021. |
Zhu SH. Soil environmental effects of resin coated controlled release urea application on paddy field in Southern China[D]. Beijing:Chinese Academy of Agricultural Sciences, 2021. | |
[23] |
Pang G, et al. Trichoderma-enriched organic fertilizer can mitigate microbiome degeneration of monocropped soil to maintain better plant growth[J]. Plant Soil, 2017, 416(1/2):181-192.
doi: 10.1007/s11104-017-3178-0 URL |
[24] | 杨顺, 等. 两株溶磷真菌的筛选、鉴定及溶磷效果的评价[J]. 微生物学报, 2018, 58(2):264-273. |
Yang S, et al. Isolation and evaluation of two phosphate-dissolving fungi[J]. Acta Microbiol Sin, 2018, 58(2):264-273. | |
[25] | 徐全智, 孙牧笛, 李帆, 等. 宁夏枸杞内生真菌的分离及多样性分析[J]. 北方园艺, 2017(10):103-109. |
Xu QZ, Sun MD, Li F, et al. Separation and diversity analysis of endophytic fungi from Lycium barbarum L. in Ningxia[J]. North Hortic, 2017(10):103-109. | |
[26] | 孙倩, 吴宏亮, 等. 宁夏中部干旱带不同作物根际土壤真菌群落多样性及群落结构[J]. 微生物学通报, 2019, 46(11):2963-2972. |
Sun Q, Wu HL, et al. Fungal community diversity and structure in rhizosphere soil of different crops in the arid zone of central Ningxia[J]. Microbiol China, 2019, 46(11):2963-2972. | |
[27] | 张屹, 何英, 肖姬玲, 等. 棘孢木霉M45a的定殖能力及其对水稻促生作用研究[J]. 安徽农业大学学报, 2021, 48(2):261-265. |
Zhang Y, He Y, Xiao JL, et al. Study on growth-promoting effect of Trichoderma asperellum M45a and its colonization in rice[J]. J Anhui Agric Univ, 2021, 48(2):261-265. |
[1] | 王宝宝, 王海洋. 理想株型塑造之于玉米耐密改良[J]. 生物技术通报, 2023, 39(8): 11-30. |
[2] | 张道磊, 甘雨军, 乐亮, 普莉. 玉米产量性状的表观遗传调控机制和育种应用[J]. 生物技术通报, 2023, 39(8): 31-42. |
[3] | 冷燕, 马晓薇, 陈光, 任鹤, 李翔. 玉米高产竞赛助力中国玉米种业振兴[J]. 生物技术通报, 2023, 39(8): 4-10. |
[4] | 王天依, 王荣焕, 王夏青, 张如养, 徐瑞斌, 焦炎炎, 孙轩, 王继东, 宋伟, 赵久然. 玉米矮秆基因与矮秆育种研究[J]. 生物技术通报, 2023, 39(8): 43-51. |
[5] | 刘月娥, 徐田军, 蔡万涛, 吕天放, 张勇, 薛洪贺, 王荣焕, 赵久然. 我国玉米超高产研究现状与展望[J]. 生物技术通报, 2023, 39(8): 52-61. |
[6] | 张勇, 徐田军, 吕天放, 邢锦丰, 刘宏伟, 蔡万涛, 刘月娥, 赵久然, 王荣焕. 种植密度对夏播玉米茎秆质量和根系表型性状的影响[J]. 生物技术通报, 2023, 39(8): 70-79. |
[7] | 朱少喜, 金肇阳, 葛建镕, 王蕊, 王凤格, 路运才. 基于KASP平台的转基因玉米高通量特异性检测方法[J]. 生物技术通报, 2023, 39(6): 133-140. |
[8] | 陈楠楠, 王春来, 蒋振忠, 焦鹏, 关淑艳, 马义勇. 玉米ZmDHN15基因在烟草中的遗传转化及抗冷性分析[J]. 生物技术通报, 2023, 39(4): 259-267. |
[9] | 李圣彦, 李香银, 李鹏程, 张明俊, 张杰, 郎志宏. 转基因玉米2HVB5的性状鉴定及遗传稳定性分析[J]. 生物技术通报, 2023, 39(1): 21-30. |
[10] | 李东阳, 肖冰, 王晨尧, 杨现明, 梁晋刚, 吴孔明. 转基因抗虫耐除草剂玉米瑞丰125 Cry1Ab/Cry2Aj杀虫蛋白的时空表达分析[J]. 生物技术通报, 2023, 39(1): 31-39. |
[11] | 李鹏程, 张明俊, 王银晓, 李香银, 李圣彦, 郎志宏. 转基因玉米HGK60在不同遗传背景下抗虫性鉴定及农艺性状分析[J]. 生物技术通报, 2023, 39(1): 40-47. |
[12] | 金云倩, 王彬, 郭书磊, 赵霖熙, 韩赞平. 赤霉素调控玉米种子活力的研究进展[J]. 生物技术通报, 2023, 39(1): 84-94. |
[13] | 王松, 简晓平, 潘婉舒, 张永光, 王涛, 游玲. 玉米小曲酒糟发酵饲料对育肥猪肠道菌群的影响[J]. 生物技术通报, 2022, 38(9): 248-257. |
[14] | 王雨辰, 丁尊丹, 关菲菲, 田健, 刘国安, 伍宁丰. 耐热漆酶ba4基因鉴定与酶学性质分析[J]. 生物技术通报, 2022, 38(8): 252-260. |
[15] | 王新光, 田磊, 王恩泽, 钟成, 田春杰. 玉米秸秆高效降解微生物复合菌系的构建及降解效果评价[J]. 生物技术通报, 2022, 38(4): 217-229. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||