生物技术通报 ›› 2024, Vol. 40 ›› Issue (7): 55-67.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0033
隆静1,2(), 陈婧敏1,2, 刘霄1, 张一凡1, 周利斌1,2(), 杜艳1,2()
收稿日期:
2024-01-11
出版日期:
2024-07-26
发布日期:
2024-07-30
通讯作者:
周利斌,男,博士,研究员,研究方向:生物物理学与辐射生物学;E-mail: libinzhou@impcas.ac.cn;作者简介:
隆静,男,硕士研究生,研究方向:生物物理学;E-mail: longjing@impcas.ac.cn
基金资助:
LONG Jing1,2(), CHEN Jing-min1,2, LIU Xiao1, ZHANG Yi-fan1, ZHOU Li-bin1,2(), DU Yan1,2()
Received:
2024-01-11
Published:
2024-07-26
Online:
2024-07-30
摘要:
在自然界中,植物会遭受各种环境或内源因素导致的DNA损伤,其中DNA双链断裂(double strand breaks, DSBs)的影响最为严重,如果修复不当,将导致基因组不稳定、基因突变甚至细胞死亡。一方面,植物进化出了强大且有序的损伤修复机制,以确保其存活及正常繁衍;另一方面,基于修复过程的容错性及致突变性,T-DNA插入、基因编辑、物理诱变等技术广泛应用于动植物品种改良。相较于哺乳动物,植物DSBs修复通路及其分子机制报道较为有限。本文综述了植物对DSBs损伤的响应、主要修复途径及关键因子,介绍了通路机制尚未完全解析的替代末端连接(alternative end joining, Alt-EJ)的最新研究进展;此外,探讨了重离子束引起的植物DSBs修复特征和多途径选择,以及基于不同DSBs修复途径的基因编辑技术的研究进展,旨在为深入了解植物DSBs损伤响应及修复的分子机制和研发高效生物育种技术提供参考。
隆静, 陈婧敏, 刘霄, 张一凡, 周利斌, 杜艳. 植物DNA双链断裂修复机制及其在重离子诱变和基因编辑中的作用[J]. 生物技术通报, 2024, 40(7): 55-67.
LONG Jing, CHEN Jing-min, LIU Xiao, ZHANG Yi-fan, ZHOU Li-bin, DU Yan. Repair Mechanisms of DNA Double-strand Breaks and Their Roles in Heavy Ion Mutagenesis and Gene Editing in Plants[J]. Biotechnology Bulletin, 2024, 40(7): 55-67.
基因缩写名称 Abbreviation of gene name | 英文全称 Full name in English | 基因ID Gene ID | 功能 Function | 参考文献 Reference |
---|---|---|---|---|
MRE11 RAD50 NBS1 | meiotic recombination 11 radiation sensitive 50 nijmegen breakage syndrome 1 | At5g54260 At2g31970 At3g02680 | 形成MRE11-RAD50-NBS1复合物行使DNA结合、核酸酶激活和DSBs末端处理 | [ |
EXO1 | exonuclease 1 | At1g29630 | DSBs末端切除 | [ |
RPA1 RPA2 RPA3 | replication protein a1 replication protein a2 replication protein a3 | At2g06510 At2g24490 At3g52630 | ssDNA结合 | [ |
IDN2 | involved in de novo 2 | At3g48670 | RPA结合 | [ |
RAD51 | radiation sensitive 51 | At5g20850 | 链入侵 | [ |
RAD52-1 RAD52-1 | radiation sensitive 52-1 radiation sensitive 52-2 | At1g71310 At5g47870 | ssDNA结合和退火 | [ |
RAD54 | radiation sensitive 54 | At3g19210 | 同源DNA的搜索 | [ |
RAD51B RAD51C RAD51D | rad51 paralog b rad51 paralog c rad51 paralog d | At2g28560 At2g45280 At1g07745 | ssDNA结合和稳定核蛋白丝 | [ |
XRCC2 XRCC3 | x-ray repair cross complementing 2 x-ray repair cross complementing 3 | At5g64520 At5g54750 | ssDNA结合 | [ |
BRCA1 | breast cancer 1 | At4g21070 | 同源DNA的搜索 | [ |
BRCA2A BRCA2B | breast cancer 2a breast cancer 2b | At4g00020 At5g01630 | 同源DNA的搜索 | [ |
DMC1 | disrupted meiotic cDNA 1 | At3g22880 | 链入侵 | [ |
COM1 | compositum 1 | At3g52115 | 链交换 | [ |
RAD1 RAD10 | radiation sensitive 1 radiation sensitive 10 | At5g41150 At3g05210 | 互补链的修剪 | [ |
FANCM | fanconi anemia complementation group m | At1g35530 | D-Loop形成和单链退火延伸 | [ |
PAF1 | polymerase associated factor 1 | At1g79730 | DNA末端结合 | [ |
DDRM2 | DNA damage response mutants 2 | At4g02110 | 招募RAD51 | [ |
SMC5 SMC6A | structural maintenance of chromosomes 5 structural maintenance of chromosomes 6A | At5g15920 At5g07660 | 促进姐妹染色单体排列 | [ |
表1 植物HR修复途径的关键因子(以拟南芥为例)
Table 1 Key factors of HR repair pathway in plants(Having Arabidopsis thaliana as an example)
基因缩写名称 Abbreviation of gene name | 英文全称 Full name in English | 基因ID Gene ID | 功能 Function | 参考文献 Reference |
---|---|---|---|---|
MRE11 RAD50 NBS1 | meiotic recombination 11 radiation sensitive 50 nijmegen breakage syndrome 1 | At5g54260 At2g31970 At3g02680 | 形成MRE11-RAD50-NBS1复合物行使DNA结合、核酸酶激活和DSBs末端处理 | [ |
EXO1 | exonuclease 1 | At1g29630 | DSBs末端切除 | [ |
RPA1 RPA2 RPA3 | replication protein a1 replication protein a2 replication protein a3 | At2g06510 At2g24490 At3g52630 | ssDNA结合 | [ |
IDN2 | involved in de novo 2 | At3g48670 | RPA结合 | [ |
RAD51 | radiation sensitive 51 | At5g20850 | 链入侵 | [ |
RAD52-1 RAD52-1 | radiation sensitive 52-1 radiation sensitive 52-2 | At1g71310 At5g47870 | ssDNA结合和退火 | [ |
RAD54 | radiation sensitive 54 | At3g19210 | 同源DNA的搜索 | [ |
RAD51B RAD51C RAD51D | rad51 paralog b rad51 paralog c rad51 paralog d | At2g28560 At2g45280 At1g07745 | ssDNA结合和稳定核蛋白丝 | [ |
XRCC2 XRCC3 | x-ray repair cross complementing 2 x-ray repair cross complementing 3 | At5g64520 At5g54750 | ssDNA结合 | [ |
BRCA1 | breast cancer 1 | At4g21070 | 同源DNA的搜索 | [ |
BRCA2A BRCA2B | breast cancer 2a breast cancer 2b | At4g00020 At5g01630 | 同源DNA的搜索 | [ |
DMC1 | disrupted meiotic cDNA 1 | At3g22880 | 链入侵 | [ |
COM1 | compositum 1 | At3g52115 | 链交换 | [ |
RAD1 RAD10 | radiation sensitive 1 radiation sensitive 10 | At5g41150 At3g05210 | 互补链的修剪 | [ |
FANCM | fanconi anemia complementation group m | At1g35530 | D-Loop形成和单链退火延伸 | [ |
PAF1 | polymerase associated factor 1 | At1g79730 | DNA末端结合 | [ |
DDRM2 | DNA damage response mutants 2 | At4g02110 | 招募RAD51 | [ |
SMC5 SMC6A | structural maintenance of chromosomes 5 structural maintenance of chromosomes 6A | At5g15920 At5g07660 | 促进姐妹染色单体排列 | [ |
基因缩写名称 Abbreviation of gene name | 英文全称 Full name in English | 基因ID Gene ID | 功能 Function | 参考文献 Reference |
---|---|---|---|---|
Ku70(XRCC6) Ku80(XRCC5) | X-ray repair cross complementing 6 X-ray repair cross complementing 5 | At1g16970 At1g48050 | 结合并保护DSBs末端 | [ |
Pol θ | DNA polymerase theta | At4g32700 | DNA聚合酶,DSBs末端加工 | [ |
MRE11 RAD50 NBS1 | Meiotic recombination 11 Radiation sensitive 50 Nijmegen breakage syndrome 1 | At5g54260 At2g31970 At3g02680 | 形成MRE11-RAD50-NBS1复合物行使 DNA结合、核酸酶激活和DSBs末端处理 | [ |
LIG1 | DNA ligase 1 | At1g08130 | ATP依赖性DNA连接酶 | [ |
LIG4 | DNA ligase 4 | At5g57160 | ATP依赖性DNA连接酶 | [ |
PARP1 PARP2 | Poly(ADP-Ribose)polymerase 1 Poly(ADP-Ribose)polymerase 2 | At2g31320 At4g02390 | DNA末端结合 | [ |
XRCC4 | X-ray repair cross complementing 4 | At3g23100 | 结合LIG4 | [ |
Pol λ | DNA polymerase lambda | At1g10520 | DNA聚合酶,DSBs末端加工 | [ |
COM1 | Compositum 1 | At3g52115 | 链交换反应 | [ |
表2 植物NHEJ修复途径的关键因子(以拟南芥为例)
Table 2 Key factors of the plant NHEJ repair pathway(Having Arabidopsis thaliana as an example)
基因缩写名称 Abbreviation of gene name | 英文全称 Full name in English | 基因ID Gene ID | 功能 Function | 参考文献 Reference |
---|---|---|---|---|
Ku70(XRCC6) Ku80(XRCC5) | X-ray repair cross complementing 6 X-ray repair cross complementing 5 | At1g16970 At1g48050 | 结合并保护DSBs末端 | [ |
Pol θ | DNA polymerase theta | At4g32700 | DNA聚合酶,DSBs末端加工 | [ |
MRE11 RAD50 NBS1 | Meiotic recombination 11 Radiation sensitive 50 Nijmegen breakage syndrome 1 | At5g54260 At2g31970 At3g02680 | 形成MRE11-RAD50-NBS1复合物行使 DNA结合、核酸酶激活和DSBs末端处理 | [ |
LIG1 | DNA ligase 1 | At1g08130 | ATP依赖性DNA连接酶 | [ |
LIG4 | DNA ligase 4 | At5g57160 | ATP依赖性DNA连接酶 | [ |
PARP1 PARP2 | Poly(ADP-Ribose)polymerase 1 Poly(ADP-Ribose)polymerase 2 | At2g31320 At4g02390 | DNA末端结合 | [ |
XRCC4 | X-ray repair cross complementing 4 | At3g23100 | 结合LIG4 | [ |
Pol λ | DNA polymerase lambda | At1g10520 | DNA聚合酶,DSBs末端加工 | [ |
COM1 | Compositum 1 | At3g52115 | 链交换反应 | [ |
[1] |
Manova V, Gruszka D. DNA damage and repair in plants - from models to crops[J]. Front Plant Sci, 2015, 6: 885.
doi: 10.3389/fpls.2015.00885 pmid: 26557130 |
[2] |
Roy S. Maintenance of genome stability in plants: repairing DNA double strand breaks and chromatin structure stability[J]. Front Plant Sci, 2014, 5: 487.
doi: 10.3389/fpls.2014.00487 pmid: 25295048 |
[3] | Shen HX, Li Z. DNA double-strand break repairs and their application in plant DNA integration[J]. Genes, 2022, 13(2): 322. |
[4] | Roldán-Arjona T, Ariza RR. Repair and tolerance of oxidative DNA damage in plants[J]. Mutat Res, 2009, 681(2-3): 169-179. |
[5] |
Kuzminov A. Single-strand interruptions in replicating chromosomes cause double-strand breaks[J]. Proc Natl Acad Sci USA, 2001, 98(15): 8241-8246.
doi: 10.1073/pnas.131009198 pmid: 11459959 |
[6] |
Schmidt C, Pacher M, Puchta H. DNA break repair in plants and its application for genome engineering[J]. Methods Mol Biol, 2019, 1864: 237-266.
doi: 10.1007/978-1-4939-8778-8_17 pmid: 30415341 |
[7] |
Edlinger B, Schlögelhofer P. Have a break: determinants of meiotic DNA double strand break(DSB)formation and processing in plants[J]. J Exp Bot, 2011, 62(5): 1545-1563.
doi: 10.1093/jxb/erq421 pmid: 21220780 |
[8] |
Siebert R, Puchta H. Efficient repair of genomic double-strand breaks by homologous recombination between directly repeated sequences in the plant genome[J]. Plant Cell, 2002, 14(5): 1121-1131.
doi: 10.1105/tpc.001727 pmid: 12034901 |
[9] |
Frit P, Barboule N, Yuan Y, et al. Alternative end-joining pathway(s): bricolage at DNA breaks[J]. DNA Repair, 2014, 17: 81-97.
doi: 10.1016/j.dnarep.2014.02.007 pmid: 24613763 |
[10] | Chiruvella KK, Liang ZB, Wilson TE. Repair of double-strand breaks by end joining[J]. Cold Spring Harb Perspect Biol, 2013, 5(5): a012757. |
[11] | Dudás A, Chovanec M. DNA double-strand break repair by homologous recombination[J]. Mutat Res, 2004, 566(2): 131-167. |
[12] | Mehta A, Haber JE. Sources of DNA double-strand breaks and models of recombinational DNA repair[J]. Cold Spring Harb Perspect Biol, 2014, 6(9): a016428. |
[13] |
Puizina J, Siroky J, Mokros P, et al. Mre11 deficiency in Arabidopsis is associated with chromosomal instability in somatic cells and Spo11-dependent genome fragmentation during meiosis[J]. Plant Cell, 2004, 16(8): 1968-1978.
pmid: 15258261 |
[14] |
Gallego ME, Jeanneau M, Granier F, et al. Disruption of the Arabidopsis RAD50 gene leads to plant sterility and MMS sensitivity[J]. Plant J, 2001, 25(1): 31-41.
pmid: 11169180 |
[15] |
Waterworth WM, Altun C, Armstrong SJ, et al. NBS1 is involved in DNA repair and plays a synergistic role with ATM in mediating meiotic homologous recombination in plants[J]. Plant J, 2007, 52(1): 41-52.
pmid: 17672843 |
[16] | Nimonkar AV, Genschel J, Kinoshita E, et al. BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair[J]. Genes Dev, 2011, 25(4): 350-362. |
[17] | Liu MM, Ba ZQ, Costa-Nunes P, et al. IDN2 interacts with RPA and facilitates DNA double-strand break repair by homologous recombination in Arabidopsis[J]. Plant Cell, 2017, 29(3): 589-599. |
[18] | Abe K, Osakabe K, Nakayama S, et al. Arabidopsis RAD51C gene is important for homologous recombination in meiosis and mitosis[J]. Plant Physiol, 2005, 139(2): 896-908. |
[19] | Samach A, Melamed-Bessudo C, Avivi-Ragolski N, et al. Identification of plant RAD52 homologs and characterization of the Arabidopsis thaliana RAD52-like genes[J]. Plant Cell, 2011, 23(12): 4266-4279. |
[20] |
Mazin AV, Alexeev AA, Kowalczykowski SC. A novel function of Rad54 protein. Stabilization of the Rad51 nucleoprotein filament[J]. J Biol Chem, 2003, 278(16): 14029-14036.
doi: 10.1074/jbc.M212779200 pmid: 12566442 |
[21] | Serra H, Da Ines O, Degroote F, et al. Roles of XRCC2, RAD51B and RAD51D in RAD51-independent ssa recombination[J]. PLoS Genet, 2013, 9(11): e1003971. |
[22] | Bleuyard JY, White CI. The Arabidopsis homologue of Xrcc3 plays an essential role in meiosis[J]. EMBO J, 2004, 23(2): 439-449. |
[23] |
Zhong Q, Chen CF, Chen PL, et al. BRCA1 facilitates microhomology-mediated end joining of DNA double strand breaks[J]. J Biol Chem, 2002, 277(32): 28641-28647.
doi: 10.1074/jbc.M200748200 pmid: 12039951 |
[24] | Fu RF, Wang C, Shen HY, et al. Rice OsBRCA2 is required for DNA double-strand break repair in meiotic cells[J]. Front Plant Sci, 2020, 11: 600820. |
[25] |
Cloud V, Chan YL, Grubb J, et al. Rad51 is an accessory factor for Dmc1-mediated joint molecule formation during meiosis[J]. Science, 2012, 337(6099): 1222-1225.
doi: 10.1126/science.1219379 pmid: 22955832 |
[26] |
Uanschou C, Siwiec T, Pedrosa-Harand A, et al. A novel plant gene essential for meiosis is related to the human CtIP and the yeast COM1/SAE2 gene[J]. EMBO J, 2007, 26(24): 5061-5070.
doi: 10.1038/sj.emboj.7601913 pmid: 18007598 |
[27] |
Dubest S, Gallego ME, White CI. Role of the AtRad1p endonuclease in homologous recombination in plants[J]. EMBO Rep, 2002, 3(11): 1049-1054.
pmid: 12393748 |
[28] | Kurzbauer MT, Janisiw MP, Paulin LF, et al. ATM controls meiotic DNA double-strand break formation and recombination and affects synaptonemal complex organization in plants[J]. Plant Cell, 2021, 33(5): 1633-1656. |
[29] | Li CL, Guo YY, Wang LL, et al. The SMC5/6 complex recruits the PAF1 complex to facilitate DNA double-strand break repair in Arabidopsis[J]. EMBO J, 2023, 42(7): e112756. |
[30] |
Yu C, Hou LH, Huang YC, et al. The multi-BRCT domain protein DDRM2 promotes the recruitment of RAD51 to DNA damage sites to facilitate homologous recombination[J]. New Phytol, 2023, 238(3): 1073-1084.
doi: 10.1111/nph.18787 pmid: 36727295 |
[31] | Chen HC, He CP, Wang CY, et al. RAD51 supports DMC1 by inhibiting the SMC5/6 complex during meiosis[J]. Plant Cell, 2021, 33(8): 2869-2882. |
[32] |
Gisler B, Salomon S, Puchta H. The role of double-strand break-induced allelic homologous recombination in somatic plant cells[J]. Plant J, 2002, 32(3): 277-284.
doi: 10.1046/j.1365-313x.2002.01421.x pmid: 12410807 |
[33] | Renkawitz J, Lademann CA, Jentsch S. Mechanisms and principles of homology search during recombination[J]. Nat Rev Mol Cell Biol, 2014, 15(6): 369-383. |
[34] |
Lieberman-Lazarovich M, Levy AA. Homologous recombination in plants: an antireview[J]. Methods Mol Biol, 2011, 701: 51-65.
doi: 10.1007/978-1-61737-957-4_3 pmid: 21181524 |
[35] | Roth N, Klimesch J, Dukowic-Schulze S, et al. The requirement for recombination factors differs considerably between different pathways of homologous double-strand break repair in somatic plant cells[J]. Plant J, 2012, 72(5): 781-790. |
[36] | Puchta H, Fauser F. Synthetic nucleases for genome engineering in plants: prospects for a bright future[J]. Plant J, 2014, 78(5): 727-741. |
[37] |
Osman K, Higgins JD, Sanchez-Moran E, et al. Pathways to meiotic recombination in Arabidopsis thaliana[J]. New Phytol, 2011, 190(3): 523-544.
doi: 10.1111/j.1469-8137.2011.03665.x pmid: 21366595 |
[38] |
Pradillo M, Varas J, Oliver C, et al. On the role of AtDMC1, AtRAD51 and its paralogs during Arabidopsis meiosis[J]. Front Plant Sci, 2014, 5: 23.
doi: 10.3389/fpls.2014.00023 pmid: 24596572 |
[39] | Bleuyard JY, Gallego ME, Savigny F, et al. Differing requirements for the Arabidopsis Rad51 paralogs in meiosis and DNA repair[J]. Plant J, 2005, 41(4): 533-545. |
[40] |
Bundock P, Hooykaas P. Severe developmental defects, hypersensitivity to DNA-damaging agents, and lengthened telomeres in Arabidopsis MRE11 mutants[J]. Plant Cell, 2002, 14(10): 2451-2462.
pmid: 12368497 |
[41] |
Crismani W, Girard C, Froger N, et al. FANCM limits meiotic crossovers[J]. Science, 2012, 336(6088): 1588-1590.
doi: 10.1126/science.1220381 pmid: 22723424 |
[42] |
Knoll A, Fauser F, Puchta H. DNA recombination in somatic plant cells: mechanisms and evolutionary consequences[J]. Chromosome Res, 2014, 22(2): 191-201.
doi: 10.1007/s10577-014-9415-y pmid: 24788060 |
[43] |
Bhargava R, Onyango DO, Stark JM. Regulation of single-strand annealing and its role in genome maintenance[J]. Trends Genet, 2016, 32(9): 566-575.
doi: S0168-9525(16)30068-3 pmid: 27450436 |
[44] |
Vu GTH, Cao HX, Reiss B, et al. Deletion-bias in DNA double-strand break repair differentially contributes to plant genome shrinkage[J]. New Phytol, 2017, 214(4): 1712-1721.
doi: 10.1111/nph.14490 pmid: 28245065 |
[45] |
van Gent DC, van der Burg M. Non-homologous end-joining, a sticky affair[J]. Oncogene, 2007, 26(56): 7731-7740.
doi: 10.1038/sj.onc.1210871 pmid: 18066085 |
[46] | Tamura K, Adachi Y, Chiba K, et al. Identification of Ku70 and Ku80 homologues in Arabidopsis thaliana: evidence for a role in the repair of DNA double-strand breaks[J]. Plant J, 2002, 29(6): 771-781. |
[47] | Nisa M, Bergis C, Pedroza-Garcia JA, et al. The plant DNA polymerase theta is essential for the repair of replication-associated DNA damage[J]. Plant J, 2021, 106(5): 1197-1207. |
[48] |
Waterworth WM, Kozak J, Provost CM, et al. DNA ligase 1 deficient plants display severe growth defects and delayed repair of both DNA single and double strand breaks[J]. BMC Plant Biol, 2009, 9: 79.
doi: 10.1186/1471-2229-9-79 pmid: 19558640 |
[49] |
Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway[J]. Annu Rev Biochem, 2010, 79: 181-211.
doi: 10.1146/annurev.biochem.052308.093131 pmid: 20192759 |
[50] | Song JQ, Keppler BD, Wise RR, et al. PARP2 is the predominant poly(ADP-ribose)polymerase in Arabidopsis DNA damage and immune responses[J]. PLoS Genet, 2015, 11(5): e1005200. |
[51] |
West CE, Waterworth WM, Jiang Q, et al. Arabidopsis DNA ligase IV is induced by gamma-irradiation and interacts with an Arabidopsis homologue of the double strand break repair protein XRCC4[J]. Plant J, 2000, 24(1): 67-78.
pmid: 11029705 |
[52] | Roy S, Choudhury SR, Sengupta DN, et al. Involvement of AtPolλ in the repair of high salt- and DNA cross-linking agent-induced double strand breaks in Arabidopsis[J]. Plant Physiol, 2013, 162(2): 1195-1210. |
[53] |
Karanam K, Kafri R, Loewer A, et al. Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase[J]. Mol Cell, 2012, 47(2): 320-329.
doi: 10.1016/j.molcel.2012.05.052 pmid: 22841003 |
[54] |
Dynan WS, Yoo S. Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids[J]. Nucleic Acids Res, 1998, 26(7): 1551-1559.
doi: 10.1093/nar/26.7.1551 pmid: 9512523 |
[55] |
Mimitou EP, Symington LS. Ku prevents Exo1 and Sgs1-dependent resection of DNA ends in the absence of a functional MRX complex or Sae2[J]. EMBO J, 2010, 29(19): 3358-3369.
doi: 10.1038/emboj.2010.193 pmid: 20729809 |
[56] |
Dobbs TA, Tainer JA, Lees-Miller SP. A structural model for regulation of NHEJ by DNA-PKcs autophosphorylation[J]. DNA Repair, 2010, 9(12): 1307-1314.
doi: 10.1016/j.dnarep.2010.09.019 pmid: 21030321 |
[57] |
Nishizawa-Yokoi A, Nonaka S, Saika H, et al. Suppression of Ku70/80 or Lig4 leads to decreased stable transformation and enhanced homologous recombination in rice[J]. New Phytol, 2012, 196(4): 1048-1059.
doi: 10.1111/j.1469-8137.2012.04350.x pmid: 23050791 |
[58] | 赵健. 重离子束辐射对拟南芥DNA双链断裂修复缺陷突变体AtLig4-/-的诱变效应研究[D]. 兰州: 兰州理工大学, 2022. |
Zhao J. The mutagenic effects of heavy ion beam irradiation on DNA double-strand break repair deficient mutant AtLig4-/- in Arabidopsis thaliana[D]. Lanzhou: Lanzhou University of Technology, 2022. | |
[59] |
Wyatt DW, Feng WJ, Conlin MP, et al. Essential roles for polymerase θ-mediated end joining in the repair of chromosome breaks[J]. Mol Cell, 2016, 63(4): 662-673.
doi: S1097-2765(16)30278-7 pmid: 27453047 |
[60] | Seol JH, Shim EY, Lee SE. Microhomology-mediated end joining: good, bad and ugly[J]. Mutat Res, 2018, 809: 81-87. |
[61] | Oh JM, Myung K. Crosstalk between different DNA repair pathways for DNA double strand break repairs[J]. Mutat Res Genet Toxicol Environ Mutagen, 2022, 873: 503438. |
[62] |
Yu AM, McVey M. Synthesis-dependent microhomology-mediated end joining accounts for multiple types of repair junctions[J]. Nucleic Acids Res, 2010, 38(17): 5706-5717.
doi: 10.1093/nar/gkq379 pmid: 20460465 |
[63] | Huang J, Cook DE. The contribution of DNA repair pathways to genome editing and evolution in filamentous pathogens[J]. FEMS Microbiol Rev, 2022, 46(6): fuac035. |
[64] | Inagaki S, Nakamura K, Morikami A. A link among DNA replication, recombination, and gene expression revealed by genetic and genomic analysis of TEBICHI gene of Arabidopsis thaliana[J]. PLoS Genet, 2009, 5(8): e1000613. |
[65] | Chang HHY, Pannunzio NR, Adachi N, et al. Non-homologous DNA end joining and alternative pathways to double-strand break repair[J]. Nat Rev Mol Cell Biol, 2017, 18(8): 495-506. |
[66] | Corneo B, Wendland RL, Deriano L, et al. Rag mutations reveal robust alternative end joining[J]. Nature, 2007, 449(7161): 483-486. |
[67] |
Truong LN, Li YJ, Shi LZ, et al. Microhomology-mediated End Joining and Homologous Recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells[J]. Proc Natl Acad Sci USA, 2013, 110(19): 7720-7725.
doi: 10.1073/pnas.1213431110 pmid: 23610439 |
[68] |
Deriano L, Roth DB. Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage[J]. Annu Rev Genet, 2013, 47: 433-455.
doi: 10.1146/annurev-genet-110711-155540 pmid: 24050180 |
[69] | Mara K, Charlot F, Guyon-Debast A, et al. POLQ plays a key role in the repair of CRISPR/Cas9-induced double-stranded breaks in the moss Physcomitrella patens[J]. New Phytol, 2019, 222(3): 1380-1391. |
[70] | McVey M, Lee SE. MMEJ repair of double-strand breaks(director's cut): deleted sequences and alternative endings[J]. Trends Genet, 2008, 24(11): 529-538. |
[71] |
Cheng Q, Barboule N, Frit P, et al. Ku counteracts mobilization of PARP1 and MRN in chromatin damaged with DNA double-strand breaks[J]. Nucleic Acids Res, 2011, 39(22): 9605-9619.
doi: 10.1093/nar/gkr656 pmid: 21880593 |
[72] |
Luijsterburg MS, de Krijger I, Wiegant WW, et al. PARP1 links CHD2-mediated chromatin expansion and H3.3 deposition to DNA repair by non-homologous end-joining[J]. Mol Cell, 2016, 61(4): 547-562.
doi: S1097-2765(16)00046-0 pmid: 26895424 |
[73] |
Mateos-Gomez PA, Kent T, Deng SK, et al. The helicase domain of Polθ counteracts RPA to promote alt-NHEJ[J]. Nat Struct Mol Biol, 2017, 24: 1116-1123.
doi: 10.1038/nsmb.3494 pmid: 29058711 |
[74] | Simsek D, Brunet E, Wong SYW, et al. DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation[J]. PLoS Genet, 2011, 7(6): e1002080. |
[75] | Charbonnel C, Gallego ME, White CI. Xrcc1-dependent and Ku-dependent DNA double-strand break repair kinetics in Arabidopsis plants[J]. Plant J, 2010, 64(2): 280-290. |
[76] |
Yousefzadeh MJ, Wood RD. DNA polymerase POLQ and cellular defense against DNA damage[J]. DNA Repair, 2013, 12(1): 1-9.
doi: 10.1016/j.dnarep.2012.10.004 pmid: 23219161 |
[77] | Hanscom T, McVey M. Regulation of error-prone DNA double-strand break repair and its impact on genome evolution[J]. Cells, 2020, 9(7): 1657. |
[78] |
Huang J, Rowe D, Subedi P, et al. CRISPR-Cas12a induced DNA double-strand breaks are repaired by multiple pathways with different mutation profiles in Magnaporthe oryzae[J]. Nat Commun, 2022, 13(1): 7168.
doi: 10.1038/s41467-022-34736-1 pmid: 36418866 |
[79] | Zhao L, Bao CY, Shang YX, et al. The determinant of DNA repair pathway choices in ionising radiation-induced DNA double-strand breaks[J]. Biomed Res Int, 2020, 2020: 4834965. |
[80] |
Schipler A, Iliakis G. DNA double-strand-break complexity levels and their possible contributions to the probability for error-prone processing and repair pathway choice[J]. Nucleic Acids Res, 2013, 41(16): 7589-7605.
doi: 10.1093/nar/gkt556 pmid: 23804754 |
[81] |
Aymard F, Aguirrebengoa M, Guillou E, et al. Genome-wide mapping of long-range contacts unveils clustering of DNA double-strand breaks at damaged active genes[J]. Nat Struct Mol Biol, 2017, 24(4): 353-361.
doi: 10.1038/nsmb.3387 pmid: 28263325 |
[82] | Nickoloff JA, Sharma N, Taylor L. Clustered DNA double-strand breaks: biological effects and relevance to cancer radiotherapy[J]. Genes, 2020, 11(1): 99. |
[83] |
Alloni D, Campa A, Belli M, et al. A Monte Carlo study of the radiation quality dependence of DNA fragmentation spectra[J]. Radiat Res, 2010, 173(3): 263-271.
doi: 10.1667/RR1957.1 pmid: 20199211 |
[84] | Okayasu R. Repair of DNA damage induced by accelerated heavy ions—a mini review[J]. Int J Cancer, 2012, 130(5): 991-1000. |
[85] | Hirano T, Kazama Y, Ohbu S, et al. Molecular nature of mutations induced by high-LET irradiation with argon and carbon ions in Arabidopsis thaliana[J]. Mutat Res, 2012, 735(1-2): 19-31. |
[86] | Du Y, Feng Z, Wang J, et al. Frequency and spectrum of mutations induced by gamma rays revealed by phenotype screening and whole-genome re-sequencing in Arabidopsis thaliana[J]. Int J Mol Sci, 2022, 23(2): 654. |
[87] | 李景鹏, 余丽霞, 张鑫, 等. 水稻新品种东稻122选育及应用[J]. 北方水稻, 2021, 51(6): 44-47. |
Li JP, Yu LX, Zhang X, et al. Breeding and application of a new rice variety Dongdao-122[J]. N Rice, 2021, 51(6): 44-47. | |
[88] | 毛毕刚, 韶也, 唐丽, 等. OsNRAMP5基因突变低镉型臻两优8612的试验示范及关键栽培技术[J]. 杂交水稻, 2023, 38(2): 116-123. |
Mao BG, Shao Y, Tang L, et al. Experimental demonstration and key cultivation techniques of OsNRAMP5 gene mutant low cadmium type zhenliangyou 8612[J]. Hybrid Rice, 2023, 38(2): 116-123. | |
[89] | Singh S, Chaudhary R, Deshmukh R, et al. Opportunities and challenges with CRISPR-Cas mediated homologous recombination based precise editing in plants and animals[J]. Plant Mol Biol, 2023, 111(1): 1-20. |
[90] | Schmidt C, Schindele P, Puchta H. From gene editing to genome engineering: restructuring plant chromosomes via CRISPR/Cas[J]. aBIOTECH, 2019, 1(1): 21-31. |
[91] | 蒋金金, 苏汉东, 洪登峰, 等. 植物生物技术研究进展[J]. 植物生理学报, 2023, 59(8): 1436-1462. |
Jiang JJ, Su HD, Hong DF, et al. Advances and perspectives in plant biotechnology[J]. Plant Physiol J, 2023, 59(8): 1436-1462. | |
[92] |
Ceccaldi R, Rondinelli B, D’Andrea AD. Repair pathway choices and consequences at the double-strand break[J]. Trends Cell Biol, 2016, 26(1): 52-64.
doi: S0962-8924(15)00142-7 pmid: 26437586 |
[93] | Ray U, Raghavan SC. Modulation of DNA double-strand break repair as a strategy to improve precise genome editing[J]. Oncogene, 2020, 39(41): 6393-6405. |
[94] | Qi YP, Zhang Y, Zhang F, et al. Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways[J]. Genome Res, 2013, 23(3): 547-554. |
[95] | Miki D, Zhang WX, Zeng WJ, et al. CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation[J]. Nat Commun, 2018, 9(1): 1967. |
[96] |
Ali Z, Shami A, Sedeek K, et al. Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice[J]. Commun Biol, 2020, 3(1): 44.
doi: 10.1038/s42003-020-0768-9 pmid: 31974493 |
[97] | Boyko A, Filkowski J, Kovalchuk I. Homologous recombination in plants is temperature and day-length dependent[J]. Mutat Res, 2005, 572(1-2): 73-83. |
[98] |
Sakuma T, Nakade S, Sakane Y, et al. MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems[J]. Nat Protoc, 2016, 11(1): 118-133.
doi: 10.1038/nprot.2015.140 pmid: 26678082 |
[99] | Tan JT, Zhao YC, Wang B, et al. Efficient CRISPR/Cas9-based plant genomic fragment deletions by microhomology-mediated end joining[J]. Plant Biotechnol J, 2020, 18(11): 2161-2163. |
[100] |
Luo M, Gilbert B, Ayliffe M. Applications of CRISPR/Cas9 technology for targeted mutagenesis, gene replacement and stacking of genes in higher plants[J]. Plant Cell Rep, 2016, 35(7): 1439-1450.
doi: 10.1007/s00299-016-1989-8 pmid: 27146973 |
[101] |
Paul B, Montoya G. CRISPR-Cas12a: functional overview and applications[J]. Biomed J, 2020, 43(1): 8-17.
doi: S2319-4170(19)30505-0 pmid: 32200959 |
[102] | 刘耀光, 李构思, 张雅玲, 等. CRISPR/Cas植物基因组编辑技术研究进展[J]. 华南农业大学学报, 2019, 40(5): 38-49. |
Liu YG, Li GS, Zhang YL, et al. Current advances on CRISPR/Cas genome editing technologies in plants[J]. J South China Agric Univ, 2019, 40(5): 38-49. |
[1] | 侯文婷, 孙琳, 张艳军, 董合忠. 基因编辑技术在棉花种质创新和遗传改良中的应用[J]. 生物技术通报, 2024, 40(7): 68-77. |
[2] | 杨帅朋, 屈子啸, 朱向星, 唐冬生. DNA碱基编辑技术的研究进展及在猪基因修饰中的应用[J]. 生物技术通报, 2024, 40(1): 127-144. |
[3] | 程亚楠, 张文聪, 周圆, 孙雪, 李玉, 李庆刚. 乳酸乳球菌生产2'-岩藻糖基乳糖的途径构建及发酵培养基优化[J]. 生物技术通报, 2023, 39(9): 84-96. |
[4] | 陈小玲, 廖东庆, 黄尚飞, 陈英, 芦志龙, 陈东. 利用CRISPR/Cas9系统改造酿酒酵母的研究进展[J]. 生物技术通报, 2023, 39(8): 148-158. |
[5] | 杨玉梅, 张坤晓. 应用CRISPR/Cas9技术建立ERK激酶相分离荧光探针定点整合的稳定细胞株[J]. 生物技术通报, 2023, 39(8): 159-164. |
[6] | 石佳鑫, 刘凯, 朱金洁, 祁显涛, 谢传晓, 刘昌林. 基因编辑技术改良玉米株型增加杂交种产量[J]. 生物技术通报, 2023, 39(8): 62-69. |
[7] | 程静雯, 曹磊, 张艳敏, 叶倩, 陈敏, 谭文松, 赵亮. CHO细胞多基因工程改造策略的建立及应用[J]. 生物技术通报, 2023, 39(2): 283-291. |
[8] | 黄文莉, 李香香, 周炆婷, 罗莎, 姚维嘉, 马杰, 张芬, 沈钰森, 顾宏辉, 王建升, 孙勃. 利用CRISPR/Cas9技术靶向编辑青花菜BoZDS[J]. 生物技术通报, 2023, 39(2): 80-87. |
[9] | 林蓉, 郑月萍, 徐雪珍, 李丹丹, 郑志富. 拟南芥ACOL8基因在乙烯合成与响应中的功能分析[J]. 生物技术通报, 2023, 39(1): 157-165. |
[10] | 赖昕彤, 王柯岚, 由雨欣, 谭俊杰. 基于CRISPR/Cas系统的DNA碱基编辑研究进展[J]. 生物技术通报, 2022, 38(6): 1-12. |
[11] | 张豪, 李哲, 郭凯, 黄艳华, 郝永任. 绿色木霉Tv-1511组蛋白乙酰化酶编码基因TvGCN5的功能分析[J]. 生物技术通报, 2022, 38(5): 136-148. |
[12] | 陈映丹, 张扬, 夏嫱, 孙虹霞. CRISPR/Cas基因编辑技术及其在微藻研究中的应用[J]. 生物技术通报, 2022, 38(5): 257-268. |
[13] | 胡秀文, 刘华, 王宇, 唐雪明, 王金斌, 曾海娟, 蒋玮, 李红. CRISPR-Cas系统在核酸检测中的应用研究[J]. 生物技术通报, 2021, 37(9): 266-273. |
[14] | 黄耀辉, 焦悦, 付仲文. 日本转基因作物安全管理制度概况及进展[J]. 生物技术通报, 2021, 37(3): 99-106. |
[15] | 左玲莉, 周丽婷, 吴兴旗, 吴超逸, 吴淑燕. 鼠伤寒沙门菌spvBC基因编辑株的构建[J]. 生物技术通报, 2021, 37(2): 253-260. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||