生物技术通报 ›› 2025, Vol. 41 ›› Issue (10): 72-86.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0620

• 作物高光效专题 • 上一篇    下一篇

运用小麦杂交株系挖掘环式光合电子传递调控基因并应用于作物高光效改造

范艳飞1,2,3(), 叶露幻1,2, 李雨桐1,2,3, 王钏跞1,2,3, 张瑞1,2, 罗建华1,2,3, 王鹏1,2()   

  1. 1.中国科学院分子植物科学卓越创新中心,上海 200032
    2.植物高效碳汇重点实验室(中国科学院),上海 200032
    3.中国科学院大学,北京 100049
  • 收稿日期:2025-06-13 出版日期:2025-10-26 发布日期:2025-07-30
  • 通讯作者: 王鹏,研究员,研究方向 :植物光合机构塑造及运转调控;E-mail: wangpeng@cemps.ac.cn
  • 作者简介:范艳飞,博士研究生,研究方向 :环式光合电子传递的遗传调控机制;E-mail: fanyanfei@cemps.ac.cn
  • 基金资助:
    农业生物育种国家科技重大专项(2023ZD04072)

Utilizing Wheat Hybrid Lines to Mine Genes Regulating Cyclic Electron Flow and Applying Them in Improving Photosynthetic Efficiency in Crops

FAN Yan-fei1,2,3(), YE Lu-huan1,2, LI Yu-tong1,2,3, WANG Chuan-luo1,2,3, ZHANG Rui1,2, LUO Jian-hua1,2,3, WANG Peng1,2()   

  1. 1.Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032
    2.Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai 200032
    3.University of the Chinese Academy of Sciences, Beijing 100049
  • Received:2025-06-13 Published:2025-10-26 Online:2025-07-30

摘要:

目的 在全球气候变暖以及粮食需求不断增长的背景下,粮食安全问题愈发严峻,要求作物在增产的同时提高环境胁迫适应能力。光合作用是作物产量形成的基础,其光反应阶段的环式光合电子传递途径偶联ATP合成并调节还原力积累,对植物的高温响应和高光效具有重要作用,因此本研究致力于相关遗传调控因子的发掘和应用。 方法 利用具有环式光合电子传递活性差异的代表性小麦品系为参照,结合光合参数测量、蛋白含量测定和转录组测序技术,从小麦小偃54和京411杂交培育的重组自交系后代中筛选获得了具有环式电子传递活性两极分离的株系及其差异表达基因。 结果 其中环式电子传递活性较高的株系同时表现出较高的线性电子传递活性和光合CO2同化速率,并在光强升高条件下保持优势,可作为高光效育种材料加以应用。通过差异表达基因分析挖掘出一系列具有促进环式光合电子传递或整体光合活性潜力的功能基因和转录因子。将部分基因(包括TaPnsL2TaNAC等)构建过量表达载体转化水稻栽培品种秀水134,T1代和T2代转基因材料在海南省和上海大田试验表现出光合速率升高的优势。 结论 针对环式电子传递活性的遗传筛选或改造,具有提高作物光合效率或强光适应性的潜力。

关键词: 环式电子传递, 光合作用, NDH复合体, 遗传调控, 小麦, 水稻

Abstract:

Objective Global warming and a rapidly increasing global population present formidable challenges to food security, necessitating significant advancements in both crop yield improvement and enhanced resilience to environmental stresses. Photosynthesis serves as the foundation of crop productivity, with the cyclic electron flow during the light reactions coupling ATP synthesis and modulating reducing power accumulation. This pathway plays an important role in heat adaptation and photosynthetic efficiency, making the identification and application of its genetic regulators imperative. Method This study utilized representative wheat lines with varying cyclic photosynthetic electron transport activities as references, combined with photosynthetic parameter measurements, protein content assays, and transcriptome sequencing techniques. From the recombinant inbred lines derived from the crossbreeding of wheat varieties Xiaoyan 54 and Jing 411, strains exhibiting polar separation in cyclic electron transport activity were screened and differentially expressed genes were obtained. Result The strains with higher cyclic electron transport activity also demonstrated elevated linear electron transport activity and photosynthetic CO2 assimilation rates, maintaining these advantages under increased light intensity, making them suitable for application as high-efficiency breeding materials. Through differential gene expression analysis, a series of functional genes and transcription factors with potential to enhance cyclic photosynthetic electron transport or overall photosynthetic activity were identified. Selected genes (including TaPnsL2 and TaNAC) were constructed into overexpressing vectors and transformed into the rice cultivar Xiushui 134. The T1 and T2 generation transgenic materials presented advantages in photosynthetic rate during field trials in both Hainan province and Shanghai. Conclusion Through genetic screening or modification targeting the activity of cyclic electron transport, there is potential to enhance the photosynthetic efficiency or adaptability to high light intensity in crops.

Key words: cyclic electron transport, photosynthesis, NDH complex, genetic regulation, wheat, rice