生物技术通报 ›› 2025, Vol. 41 ›› Issue (2): 18-29.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0670
赵长延1(), 柳延涛2, 贾秀苹3, 刘胜利2, 雷中华4, 王鹏2, 朱志锋5, 董红业2, 吕增帅2, 段维2(
), 万素梅1(
)
收稿日期:
2024-07-15
出版日期:
2025-02-26
发布日期:
2025-02-28
通讯作者:
万素梅,女,教授,研究方向 :旱区农业资源管理及高效农作制;E-mail: 119920020@taru.edu.cn作者简介:
赵长延,男,硕士研究生,研究方向 :油葵高产栽培机理和水肥高效利用;E-mail: zhao03116@163.com基金资助:
ZHAO Chang-yan1(), LIU Yan-tao2, JIA Xiu-ping3, LIU Sheng-li2, LEI Zhong-hua4, WANG Peng2, ZHU Zhi-feng5, DONG Hong-ye2, LYU Zeng-shuai2, DUAN Wei2(
), WAN Su-mei1(
)
Received:
2024-07-15
Published:
2025-02-26
Online:
2025-02-28
摘要:
随着全球环境变化和土地资源的不合理利用,土壤盐碱化问题日益严重,对农业生产造成了巨大威胁。褪黑素作为一种广泛存在于生物体内的小分子物质,近年来,在作物逆境生理研究中受到广泛关注。本文综述了褪黑素对作物耐盐碱生理机制的影响研究进展,主要对褪黑素对作物生长发育、维护离子平衡、增强抗氧化系统、改善光合作用、渗透调节,以及转录组和代谢组分子水平等方面的最新研究成果进行综述,并探讨了未来的研究方向,以期为利用褪黑素提高作物耐盐碱能力提供理论依据和技术支持。
赵长延, 柳延涛, 贾秀苹, 刘胜利, 雷中华, 王鹏, 朱志锋, 董红业, 吕增帅, 段维, 万素梅. 盐碱胁迫下褪黑素对作物生理机制影响的研究进展[J]. 生物技术通报, 2025, 41(2): 18-29.
ZHAO Chang-yan, LIU Yan-tao, JIA Xiu-ping, LIU Sheng-li, LEI Zhong-hua, WANG Peng, ZHU Zhi-feng, DONG Hong-ye, LYU Zeng-shuai, DUAN Wei, WAN Su-mei. Research Progress in the Effect of Melatonin on Crop Physiological Mechanism under Saline-alkali Stress[J]. Biotechnology Bulletin, 2025, 41(2): 18-29.
图1 褪黑素对作物生理机制影响Created in BioRender. Sdfsd, S. (2024). https://BioRender.com/w89i683. The same below
Fig. 1 Effects of melatonin on crop physiological mechanism
1 | 王遵亲. 中国盐渍土 [M]. 北京: 科学出版社, 1993. |
Wang ZQ. Saline Soil in China [M]. Beijing: Science Press, 1993. | |
2 | 李亮初. 浅谈盐碱地与园林绿化 [J]. 科技视界, 2012(21): 283-284, 114. |
Li LC. Talking about saline-alkali land and landscape greening [J]. Sci Technol Vis, 2012(21): 283-284, 114. | |
3 | Taiz Lincoln, Zeiger Eduardo. 植物生理学 [M] . 宋纯鹏, 王学路, 周云,等. 北京: 科学出版社, 2015. |
Taiz Lincoln, Zeiger Eduardo. Plant physiology [M]. Song CP, Wang XL, Zhou Y, et al. Beijing: Science Press, 2015. | |
4 | 郗金标, 张福锁, 田长彦. 新疆盐生植物 [M]. 北京: 科学出版社, 2006. |
Xi JB, Zhang FS, Tian CY. Halophytes in Xinjiang [M]. Beijing: Science Press, 2006. | |
5 | 刘强, 袁延飞, 刘一帆, 等. 生物炭对盐渍化土壤改良的研究进展 [J]. 地球科学进展, 2022, 37(10): 1005-1024. |
Liu Q, Yuan YF, Liu YF, et al. Research progress: the application of biochar in the remediation of salt-affected soils [J]. Adv Earth Sci, 2022, 37(10): 1005-1024. | |
6 | 朱生堡, 乌尔古丽·托尔逊, 唐光木, 等. 新疆盐碱地变化及其治理措施研究进展 [J]. 山东农业科学, 2023, 55(3): 158-165. |
Zhu SB, Wuerguli TEX, Tang GM, et al. Research progress on saline-alkali land changes and its treatment measures in Xinjiang [J]. Shandong Agric Sci, 2023, 55(3): 158-165. | |
7 | 新疆维吾尔自治区农业厅, 新疆维吾尔自治区土壤普查办公室. 新疆土壤[M]. 北京: 科学出版社, 1996. |
Xinjiang Uygur Autonomous Region Department of Agriculture, Xinjiang Uygur Autonomous Region Soil Census Office. Xinjiang soils [M]. Beijing: Science Press, 1996. | |
8 | 乔玲, 张芳, 邹德华. 新疆灌区盐碱地成因分析及治理措施 [J]. 中国农村水利水电, 2008(8): 89-90. |
Qiao L, Zhang F, Zou DH. Cause analysis and control measures of saline-alkali land in Xinjiang irrigation area [J]. China Rural Water Hydropower, 2008(8): 89-90. | |
9 | 梁伊, 崔航宇, 雅里坤江·雅克夫. 新疆地区高效节水灌溉面临的问题及应对措施 [J]. 农业与技术, 2021, 41(9): 52-54. |
Liang Y, Cui HY, Yalikunjan J. Problems and countermeasures of efficient water-saving irrigation in Xinjiang [J]. Agric Technol, 2021, 41(9): 52-54. | |
10 | 张佳音. 干旱及盐胁迫对虾夷葱与孔雀草植物形态及生理生化的影响 [D]. 哈尔滨: 东北农业大学, 2019. |
Zhang JY. Effects of drought and salt stress on plant morphology, physiology and biochemistry of shrimp, onion and malachite [D]. Harbin: Northeast Agricultural University, 2019. | |
11 | 钟行杰, 张明聪, 韩爱平, 等. 外源褪黑素对苏打盐碱胁迫大豆幼苗的缓解效应 [J]. 生态学杂志, 2023, 42(12): 2953-2960. |
Zhong XJ, Zhang MC, Han AP, et al. Alleviating effect of exogenous melatonin on soybean seedlings under soda saline-alkali stress [J]. Chin J Ecol, 2023, 42(12): 2953-2960. | |
12 | 李平平, 张永清, 张萌, 等. 褪黑素浸种对混合盐碱胁迫下藜麦生长及生理的影响 [J]. 江苏农业科学, 2023, 51(4): 77-84. |
Li PP, Zhang YQ, Zhang M, et al. Influences of seed soaking with melatonin on growth and physiology of quinoa under mixed salt-alkali stress [J]. Jiangsu Agric Sci, 2023, 51(4): 77-84. | |
13 | 蒋希瑶. 外源褪黑素对NaHCO3胁迫下番茄幼苗缓解效应的研究 [D]. 石河子: 石河子大学, 2022. |
Jiang XY. Study on the alleviating effect of exogenous melatonin on tomato seedlings under NaHCO3 stress [D]. Shihezi: Shihezi University, 2022. | |
14 | 房家佳. 外源施用褪黑素对棉花盐害的缓解效应及其机理研究 [D]. 南京: 南京农业大学, 2020. |
Fang JJ. Alleviating effect and mechanism of exogenous melatonin on salt injury of cotton [D]. Nanjing: Nanjing Agricultural University, 2020. | |
15 | 刘婷婷. 基于转录组解析外源褪黑素缓解黄瓜盐胁迫的分子机制 [D]. 太谷: 山西农业大学, 2022. |
Liu TT. Molecular mechanism of exogenous melatonin alleviating salt stress in cucumber based on transcriptome analysis [D]. Taigu: Shanxi Agricultural University, 2022. | |
16 | 李荣, 焦志阳, 银珊珊, 等. 喷施褪黑素对黄瓜幼苗耐盐效应研究 [J]. 中国瓜菜, 2023, 36(1): 53-58. |
Li R, Jiao ZY, Yin SS, et al. Effects of melatonin spraying on salt tolerance of cucumber seedlings [J]. China Cucurbits Veg, 2023, 36(1): 53-58. | |
17 | 刘雨漠. 褪黑素对甜瓜自毒盐碱复合胁迫的缓解效应 [D]. 福州: 福建农林大学, 2022. |
Liu YM. Alleviating effect of melatonin on autotoxic saline-alkali complex stress of melon [D]. Fuzhou: Fujian Agriculture and Forestry University, 2022. | |
18 | 左月桃. 褪黑素调控盐碱胁迫下小黑麦种子萌发和根系生长的生理机制 [D]. 哈尔滨: 东北农业大学, 2022. |
Zuo YT. Physiological mechanism of melatonin regulating seed germination and root growth of triticale under saline-alkali stress [D]. Harbin: Northeast Agricultural University, 2022. | |
19 | Arnao MB, Hernández-Ruiz J. The physiological function of melatonin in plants [J]. Plant Signal Behav, 2006, 1(3): 89-95. |
20 | Bassil E, Blumwald E. The ins and outs of intracellular ion homeostasis: NHX-type cation/H+ transporters [J]. Curr Opin Plant Biol, 2014, 22: 1-6. |
21 | Chen YL, Li RK, Ge JF, et al. Exogenous melatonin confers enhanced salinity tolerance in rice by blocking the ROS burst and improving Na+/K+ homeostasis [J]. Environ Exp Bot, 2021, 189: 104530. |
22 | 王彪, 宋世佳, 李东晓, 等. 褪黑素通过H2O2调控盐胁迫下小豆Na+/K+平衡机制 [J]. 华北农学报, 2023, 38(6): 62-71. |
Wang B, Song SJ, Li DX, et al. The mechanism of melatonin regulating Na+/K+ balance by mediating H2O2 in adzuki bean under salt stress [J]. Acta Agric Boreali Sin, 2023, 38(6): 62-71. | |
23 | Hasanuzzaman M, Bhuyan MHMB, Anee TI, et al. Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress [J]. Antioxidants (Basel), 2019, 8(9): 384. |
24 | Li JP, Liu J, Zhu TT, et al. The role of melatonin in salt stress responses [J]. Int J Mol Sci, 2019, 20(7): 1735. |
25 | Zhang HL, Yu FF, Xie P, et al. A Gy protein regulates alinese nsitrmty crope [J]. Science, 2023, 379: 6638. |
26 | 叶君, 邓西平, 王仕稳, 等. 干旱胁迫下褪黑素对小麦幼苗生长、光合和抗氧化特性的影响 [J]. 麦类作物学报, 2015, 35(9): 1275-1283. |
Ye J, Deng XP, Wang SW, et al. Effects of melatonin on growth, photosynthetic characteristics and antioxidant system in seedling of wheat under drought stress [J]. J Triticeae Crops, 2015, 35(9): 1275-1283. | |
27 | 黄荣, 段明明, 文珂, 等. 外源褪黑素对铜胁迫下大豆幼苗生长及生理特性的影响 [J]. 华南农业大学学报, 2023, 44(5): 780-786. |
Huang R, Duan MM, Wen K, et al. Effects of exogenous melatonin on seedling growth and physiological characteristics of soybean under copper stress [J]. J South China Agric Univ, 2023, 44(5): 780-786. | |
28 | 段文静. 褪黑素对盐胁迫下棉花根系形态、生理及代谢的调控效应 [D]. 保定: 河北农业大学, 2022. |
Duan WJ. Regulatory effects of melatonin on root morphology, physiology and metabolism of cotton under salt stress[D]. Baoding: Hebei Agricultural University, 2022. | |
29 | Zahra N, Al Hinai MS, Hafeez MB, et al. Regulation of photosynthesis under salt stress and associated tolerance mechanisms [J]. Plant Physiol Biochem, 2022, 178: 55-69. |
30 | Khan TA, Saleem M, Fariduddin Q. Melatonin influences stomatal behavior, root morphology, cell viability, photosynthetic responses, fruit yield, and fruit quality of tomato plants exposed to salt stress [J]. J Plant Growth Regul, 2023, 42(4): 2408-2432. |
31 | 刘佳奇, 李丽, 杨红红, 等. 盐胁迫下褪黑素对小麦种子萌发和幼苗生理特性的影响 [J]. 麦类作物学报, 2022, 42(7): 857-863. |
Liu JQ, Li L, Yang HH, et al. Effect of melatonin on seed germination and seedling physiological characteristics of wheat under salt stress [J]. J Triticeae Crops, 2022, 42(7): 857-863. | |
32 | 苏立娜, 麻冬梅, 李嘉文, 等. 外源褪黑素对盐胁迫下两种紫花苜蓿生理及光合特性的影响 [J]. 草地学报, 2023, 31(3): 726-732. |
Su LN, Ma DM, Li JW, et al. Implications of exogenous melatonin on the physiological and photosynthetic characteristics of the seedlings of two alfalfa varieties [J]. Acta Agrestia Sin, 2023, 31(3): 726-732. | |
33 | Maurya AK. Oxidative stress in crop plants [M]//Hasanuzzaman M, ed. Agronomic Crops. Singapore: Springer Singapore, 2020: 349-380. |
34 | Cao YB, Song HF, Zhang LY. New insight into plant saline-alkali tolerance mechanisms and application to breeding [J]. Int J Mol Sci, 2022, 23(24): 16048. |
35 | Gao WY, Feng Z, Bai QQ, et al. Melatonin-mediated regulation of growth and antioxidant capacity in salt-tolerant naked oat under salt stress [J]. Int J Mol Sci, 2019, 20(5): 1176. |
36 | Alam P, Albalawi TH, Altalayan FH, et al. 24-epibrassinolide (EBR) confers tolerance against NaCl stress in soybean plants by up-regulating antioxidant system, ascorbate-glutathione cycle, and glyoxalase system [J]. Biomolecules, 2019, 9(11): 640. |
37 | Kamiab F. Exogenous melatonin mitigates the salinity damages and improves the growth of pistachio under salinity stress [J]. J Plant Nutr, 2020, 43(10): 1468-1484. |
38 | Helal NM, Saudy HS, Hamada MMA, et al. Potentiality of melatonin for reinforcing salinity tolerance in sorghum seedlings via boosting photosynthetic pigments, ionic and osmotic homeostasis and reducing the carbonyl/oxidative stress markers [J]. J Soil Sci Plant Nutr, 2024. . |
39 | Guo XQ, Shi Y, Zhu GL, et al. Melatonin mitigated salinity stress on alfalfa by improving antioxidant defense and osmoregulation [J]. Agronomy, 2023, 13(7): 1727. |
40 | Xian XL, Zhang ZX, Wang SC, et al. Exogenous melatonin strengthens saline-alkali stress tolerance in apple rootstock M9-T337 seedlings by initiating a variety of physiological and biochemical pathways [J]. Chem Biol Technol Agric, 2024, 11(1): 58. |
41 | Tiwari RK, Lal MK, Kumar R, et al. Insight into melatonin-mediated response and signaling in the regulation of plant defense under biotic stress [J]. Plant Mol Biol, 2022, 109(4/5): 385-399. |
42 | Gupta A, Rico-Medina A, Caño-Delgado AI. The physiology of plant responses to drought [J]. Science, 2020, 368(6488): 266-269. |
43 | Wei J, Li DX, Zhang JR, et al. Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana [J]. J Pineal Res, 2018, 65(2): e12500. |
44 | Ahmad I, Zhu GL, Zhou GS, et al. Melatonin role in plant growth and physiology under abiotic stress [J]. Int J Mol Sci, 2023, 24(10): 8759. |
45 | Mittler R, Zandalinas SI, Fichman Y, et al. Reactive oxygen species signalling in plant stress responses [J]. Nat Rev Mol Cell Biol, 2022, 23(10): 663-679. |
46 | Arnao MB, Hernández-Ruiz J. Melatonin: a new plant hormone and/or a plant master regulator? [J]. Trends Plant Sci, 2019, 24(1): 38-48. |
47 | Khan A, Numan M, Khan AL, et al. Melatonin: awakening the defense mechanisms during plant oxidative stress [J]. Plants, 2020, 9(4): 407. |
48 | Zhang TG, Shi ZF, Zhang XH, et al. Alleviating effects of exogenous melatonin on salt stress in cucumber [J]. Sci Hortic, 2020, 262: 109070. |
49 | Ahammed GJ, Li Z, Chen JY, et al. Reactive oxygen species signaling in melatonin-mediated plant stress response [J]. Plant Physiol Biochem, 2024, 207: 108398. |
50 | Arnao MB, Hernández-Ruiz J. Melatonin against environmental plant stressors: a review [J]. Curr Protein Pept Sci, 2021, 22(5): 413-429. |
51 | Su QF, Zheng XD, Tian YK, et al. Exogenous brassinolide alleviates salt stress in Malus hupehensis rehd. by regulating the transcription of NHX-type Na+(K+)/H+ antiporters [J]. Front Plant Sci, 2020, 11: 38. |
52 | Rademacher W. GROWTH RETARDANTS: effects on gibberellin biosynthesis and other metabolic pathways [J]. Annu Rev Plant Physiol Plant Mol Biol, 2000, 51: 501-531. |
53 | Wang J, Qin H, Zhou SR, et al. The ubiquitin-binding protein OsDSK2a mediates seedling growth and salt responses by regulating gibberellin metabolism in rice [J]. Plant Cell, 2020, 32(2): 414-428. |
54 | Duan WJ, Lu B, Liu LT, et al. Effects of exogenous melatonin on root physiology, transcriptome and metabolome of cotton seedlings under salt stress [J]. Int J Mol Sci, 2022, 23(16): 9456. |
55 | He HY, He LF. Crosstalk between melatonin and nitric oxide in plant development and stress responses [J]. Physiol Plant, 2020, 170(2): 218-226. |
56 | Kaur H, Bhatla SC. Melatonin and nitric oxide modulate glutathione content and glutathione reductase activity in sunflower seedling cotyledons accompanying salt stress [J]. Nitric Oxide, 2016, 59: 42-53. |
57 | Arora D, Bhatla SC. Melatonin and nitric oxide regulate sunflower seedling growth under salt stress accompanying differential expression of Cu/Zn SOD and Mn SOD [J]. Free Radic Biol Med, 2017, 106: 315-328. |
58 | Zhao G, Zhao YY, Yu XL, et al. Nitric oxide is required for melatonin-enhanced tolerance against salinity stress in rapeseed (Brassica napus L.) seedlings [J]. Int J Mol Sci, 2018, 19(7): 1912. |
59 | Castro-Moretti FR, Gentzel IN, MacKey D, et al. Metabolomics as an emerging tool for the study of plant-pathogen interactions [J]. Metabolites, 2020, 10(2): 52. |
60 | Fu LL, Ding ZH, Tie WW, et al. Integrated metabolomic and transcriptomic analyses reveal novel insights of anthocyanin biosynthesis on color formation in cassava tuberous roots [J]. Front Nutr, 2022, 9: 842693. |
61 | Lu HY, Wang ZQ, Xu CY, et al. Multiomics analysis provides insights into alkali stress tolerance of sunflower (Helianthus annuus L.) [J]. Plant Physiol Biochem, 2021, 166: 66-77. |
62 | Ren W, Chen L, Xie ZM, et al. Combined transcriptome and metabolome analysis revealed pathways involved in improved salt tolerance of Gossypium hirsutum L. seedlings in response to exogenous melatonin application [J]. BMC Plant Biol, 2022, 22(1): 552. |
63 | 杨晓旭, 李梦娣, 刘大军, 等. 外源褪黑素对低温胁迫下菜豆种子萌发及抗性的影响 [J]. 中国农学通报, 2022, 38(33): 34-38. |
Yang XX, Li MD, Liu DJ, et al. Exogenous melatonin affects the germination and resistance ability of common bean seeds under chilling stress [J]. Chin Agric Sci Bull, 2022, 38(33): 34-38. | |
64 | 陈莉. 盐胁迫下外源褪黑素促进棉花种子萌发的生理及分子机制 [D]. 保定: 河北农业大学, 2020. |
Chen L. Physiological and molecular mechanism of exogenous melatonin promoting cotton seed germination under salt stress [D]. Baoding: Hebei Agricultural University, 2020. | |
65 | 袁瑞敏, 彭静, 王佳傲, 等. 褪黑素调控水杨酸和乙烯代谢维持沙果贮藏品质 [J]. 核农学报, 2023, 37(9): 1798-1805. |
Yuan RM, Peng J, Wang JA, et al. Melatonin regulates salicylic acid and ethylene metabolism to maintain Shaguo quality during storage [J]. J Nucl Agric Sci, 2023, 37(9): 1798-1805. | |
66 | 丹冬淳, 王洪春, 向东红, 等. 褪黑素对干旱胁迫下烤烟幼苗激素代谢的影响[J/OL]. 中国烟草学报, 2024. . |
Dan DC, Wang HC, Xiang DH, et al. Effects of melatonin on hormone metabolism of flue-cured tobacco seedlings under drought stress[J/OL]. China Tobacco Journal, 2024. . | |
67 | 徐洪雨, 李向林. 控水处理对紫花苜蓿抗寒性影响的代谢组学分析 [J]. 草业学报, 2020, 29(1): 106-116. |
Xu HY, Li XL. A metabolomics analysis of the effect of water deficit on the freezing tolerance of alfalfa (Medicago sativa) [J]. Acta Prataculturae Sin, 2020, 29(1): 106-116. | |
68 | Shelden MC, Dias DA, Jayasinghe NS, et al. Root spatial metabolite profiling of two genotypes of barley (Hordeum vulgare L.) reveals differences in response to short-term salt stress [J]. J Exp Bot, 2016, 67(12): 3731-3745. |
69 | Ho WWH, Hill CB, Doblin MS, et al. Integrative multi-omics analyses of barley rootzones under salinity stress reveal two distinctive salt tolerance mechanisms [J]. Plant Commun, 2020, 1(3): 100031. |
70 | 高玉刚. 基于转录组和代谢组联合分析燕麦响应盐碱胁迫的机制研究 [D]. 大庆: 黑龙江八一农垦大学, 2022. |
Gao YG. Study on the mechanism of oats response to saline-alkali stress based on transcriptome and metabonomics joint analysis [D]. Daqing: Heilongjiang Bayi Agricultural University, 2022. | |
71 | 刘晨, 徐浩博, 斯钰阳, 等. 基于转录组学的植物响应盐胁迫调控机制研究进展 [J]. 浙江农业学报, 2022, 34(4): 870-878. |
Liu C, Xu HB, Si YY, et al. Research progress on regulation mechanism of plant response to salt stress based on transcriptomics [J]. Acta Agric Zhejiangensis, 2022, 34(4): 870-878. | |
72 | 王先虚. 外源褪黑素缓解大豆不同生育期碱胁迫效应的研究 [D]. 哈尔滨: 东北农业大学, 2022. |
Wang XX. Effect of exogenous melatonin on alleviating alkali stress in soybean at different growth stages [D]. Harbin: Northeast Agricultural University, 2022. | |
73 | 魏龙. 外源褪黑素增强水稻幼苗耐盐性的生理功能和基因表达分析 [D]. 南京: 南京农业大学, 2020. |
Wei L. Physiological function and gene expression analysis of exogenous melatonin enhancing salt tolerance of rice seedlings [D]. Nanjing: Nanjing Agricultural University, 2020. | |
74 | 徐金鹏. 外源褪黑素调控NaCl胁迫下大麦苗生理代谢及酚酸富集机理 [D]. 扬州: 扬州大学, 2022. |
Xu JP. Exogenous melatonin regulates physiological metabolism and phenolic acid enrichment mechanism of barley seedlings under NaCl stress [D]. Yangzhou: Yangzhou University, 2022. | |
75 | ElSayed AI, Rafudeen MS, Gomaa AM, et al. Exogenous melatonin enhances the reactive oxygen species metabolism, antioxidant defense-related gene expression, and photosynthetic capacity of Phaseolus vulgaris L. to confer salt stress tolerance [J]. Physiol Plant, 2021, 173(4): 1369-1381. |
76 | 李亚坤, 陈乃钰, 杨晓雪, 等. 紫花苜蓿MsCIPK8基因的克隆与表达分析 [J]. 植物遗传资源学报, 2020, 21(2): 491-499. |
Li YK, Chen NY, Yang XX, et al. Cloning and expression analysis of MsCIPK8 in alfalfa [J]. J Plant Genet Resour, 2020, 21(2): 491-499. | |
77 | 王丽. 小麦转录因子TaC2H2ZF参与盐碱胁迫应答的功能研究 [D]. 济南: 山东大学, 2019. |
Wang L. Study on the function of wheat transcription factor TaC2H2ZF involved in saline-alkali stress response [D]. Jinan: Shandong University, 2019. | |
78 | 宋士伟, 焦德志, 杨允菲. 东北草地野大麦对混合盐碱胁迫的生理响应及转录组分析 [J]. 草业科学, 2019, 36(5): 1379-1388. |
Song SW, Jiao DZ, Yang YF. Physiological response and transcriptome analysis of Hordeum brevisubulatum under mixed salt and alkaline stress [J]. Pratacultural Sci, 2019, 36(5): 1379-1388. | |
79 | 李红, 李波, 邬婷婷, 等. 紫花苜蓿耐苏打盐碱相关基因的转录组学分析 [J]. 草地学报, 2019, 27(4): 848-858. |
Li H, Li B, Wu TT, et al. Transcriptomic analysis of soda salt-alkaline tolerance related genes in alfalfa [J]. Acta Agrestia Sin, 2019, 27(4): 848-858. | |
80 | 赵晋锋, 王高鸿, 杜艳伟, 等. 谷子磷酸烯醇式丙酮酸羧化酶基因(PEPC)对逆境胁迫的响应 [J]. 华北农学报, 2019, 34(4): 67-74. |
Zhao JF, Wang GH, Du YW, et al. Response of phosphoenolpyruvate carboxylase (PEPC) gene to abiotic stresses in foxtail millet [J]. Acta Agric Boreali Sin, 2019, 34(4): 67-74. | |
81 | 杨劲松, 姚荣江, 王相平, 等. 中国盐渍土研究: 历程、现状与展望 [J]. 土壤学报, 2022, 59(1): 10-27. |
Yang JS, Yao RJ, Wang XP, et al. Research on salt-affected soils in China: history, status quo and prospect [J]. Acta Pedol Sin, 2022, 59(1): 10-27. | |
82 | 刘小京, 郭凯, 封晓辉, 等. 农业高效利用盐碱地资源探讨 [J]. 中国生态农业学报: 中英文, 2023, 31(3): 345-353. |
Liu XJ, Guo K, Feng XH, et al. Discussion on the agricultural efficient utilization of saline-alkali land resources [J]. Chin J Eco Agric, 2023, 31(3): 345-353. | |
83 | Zhang N, Sun QQ, Zhang HJ, et al. Roles of melatonin in abiotic stress resistance in plants [J]. J Exp Bot, 2015, 66(3): 647-656. |
84 | Debnath B, Islam W, Li M, et al. Melatonin mediates enhancement of stress tolerance in plants [J]. Int J Mol Sci, 2019, 20(5): 1040. |
85 | Ameen M, Zafar A, Mahmood A, et al. Melatonin as a master regulatory hormone for genetic responses to biotic and abiotic stresses in model plant Arabidopsis thaliana: a comprehensive review [J]. Funct Plant Biol, 2024, 51: FP23248. |
86 | Zhang YJ, Li DH, Zhou R, et al. Transcriptome and metabolome analyses of two contrasting sesame genotypes reveal the crucial biological pathways involved in rapid adaptive response to salt stress [J]. BMC Plant Biol, 2019, 19(1): 66. |
[1] | 马天意, 许家佳, 路文婧, 吴艳, 沙伟, 张梅娟, 彭疑芳. ‘金小童’大白菜BrcGASA3基因在盐碱胁迫下的表达分析及抗性鉴定[J]. 生物技术通报, 2025, 41(2): 127-138. |
[2] | 贾子健, 王宝强, 陈立飞, 王义真, 魏小红, 赵颖. 响应NO的藜麦CHX基因家族在盐碱胁迫下的表达模式[J]. 生物技术通报, 2025, 41(2): 163-174. |
[3] | 寇焙森, 程萌萌, 郭雪琴, 葛彬, 刘迪, 陆海, 李慧. 组蛋白去乙酰化酶抑制剂TSA处理对杨树茎生长发育的影响[J]. 生物技术通报, 2025, 41(1): 240-251. |
[4] | 裴旭娟, 狄靖宜, 刘浩, 高伟霞. 基于转录组分析挖掘兽疫链球菌透明质酸分子量调控元件[J]. 生物技术通报, 2025, 41(1): 347-356. |
[5] | 岳丽昕, 王清华, 刘泽洲, 孔素萍, 高莉敏. 基于转录组和WGCNA筛选大葱雄性不育相关基因[J]. 生物技术通报, 2024, 40(9): 212-224. |
[6] | 聂祝欣, 郭瑾, 乔子洋, 李微薇, 张学燕, 刘春阳, 王静. 黑果枸杞不同发育时期果实花色苷合成的转录组分析[J]. 生物技术通报, 2024, 40(8): 106-117. |
[7] | 周麟, 黄顺满, 苏文坤, 姚响, 屈燕. 滇山茶bHLH基因家族鉴定及花色形成相关基因筛选[J]. 生物技术通报, 2024, 40(8): 142-151. |
[8] | 王睿, 戚继. 整合组织学图像信息增强空间转录组细胞聚类的分辨率[J]. 生物技术通报, 2024, 40(8): 39-46. |
[9] | 刘文浩, 吴刘记, 徐芳. 小肽调控植物分生组织发育的机制及其在作物改良中的研究进展[J]. 生物技术通报, 2024, 40(7): 1-18. |
[10] | 高萌萌, 赵天宇, 焦馨悦, 林春晶, 关哲允, 丁孝羊, 孙妍妍, 张春宝. 大豆细胞质雄性不育系及其恢复系的比较转录组分析[J]. 生物技术通报, 2024, 40(7): 137-149. |
[11] | 廖杨梅, 赵国春, 翁学煌, 贾黎明, 陈仲. 无患子雄性不育品种‘琦蕊’不同发育时期雄花转录组分析[J]. 生物技术通报, 2024, 40(7): 197-206. |
[12] | 虞昕磊, 何结望, 林国平, 李金海, 王大爱, 袁跃斌, 刘圣高, 李志豪, 陶德欣. 夏冬两季发酵雪茄烟叶的代谢组差异分析[J]. 生物技术通报, 2024, 40(6): 260-270. |
[13] | 秦健, 李振月, 何浪, 李俊玲, 张昊, 杜荣. 肌源性细胞分化的单细胞转录谱变化及细胞间通讯分析[J]. 生物技术通报, 2024, 40(6): 330-342. |
[14] | 白志元, 徐菲, 杨午, 王明贵, 杨玉花, 张海平, 张瑞军. 大豆细胞质雄性不育弱恢复型杂种F1育性转变的转录组分析[J]. 生物技术通报, 2024, 40(6): 134-142. |
[15] | 吴迪, 游小凤, 郑亦铮, 林楠, 张燕燕, 魏艺聪. 草珊瑚中类胡萝卜素合成的内源激素调控机制分析[J]. 生物技术通报, 2024, 40(5): 203-214. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 100
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||