生物技术通报 ›› 2025, Vol. 41 ›› Issue (4): 47-60.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0982

• 综述与专论 • 上一篇    下一篇

生物合成聚乳酸研究进展

鲁天怡1(), 李爱朋1,2, 费强1,2()   

  1. 1.西安交通大学化学工程与技术学院,西安 710049
    2.西安市一碳化合物生物转化技术重点实验室,西安 710049
  • 收稿日期:2024-10-08 出版日期:2025-04-26 发布日期:2025-04-25
  • 通讯作者: 费强,男,博士,教授,研究方向 :一碳合成生物制造;E-mail: feiqiang@xjtu.edu.cn
  • 作者简介:鲁天怡,女,硕士研究生,研究方向 :生物转化甲烷合成聚乳酸;E-mail: luty6099@stu.xjtu.edu.cn
  • 基金资助:
    基?金?项?目 ?:基金项目:国家重点研发计划“政府间国际科技创新合作”重点专项(2023YFE0106600);陕西省重点研发计划(2024NC-YBXM-226);陕西省杰出青年科学基金(2022JC-09)

Research Progress in the Biosynthesis of Polylactic Acid

LU Tian-yi1(), LI Ai-peng1,2, FEI Qiang1,2()   

  1. 1.School of Chemical Engineering and Technology, Xi'?an Jiaotong University, Xi'?an 710049
    2.Xi'?an Key Laboratory of C1 Compound Bioconversion Technology, Xi'?an 710049
  • Received:2024-10-08 Published:2025-04-26 Online:2025-04-25

摘要:

聚乳酸(polylactic acid, PLA)是以乳酸为原料聚合而成的非天然生物可降解塑料,具有优良的生物降解性,是碳达峰、碳中和背景下传统石油基塑料的重要替代品之一。作为典型的碳中和材料,PLA正逐步成为国民经济和社会发展所需的基础性大宗原材料。目前,PLA主要通过生物发酵与化学聚合相结合的工艺生产,生产过程复杂,成本较高,且存在毒性物质残留的隐患。因此,更加绿色便捷的生产方法开发成为PLA合成领域的关注热点。随着合成生物学、蛋白质工程和代谢工程的快速发展,PLA全生物合成关键酶被逐渐挖掘和改造,PLA全生物合成路径被设计和组装,以具有工业化属性的微生物为底盘构建一步合成PLA的细胞工厂成为现实,为PLA的绿色合成提供了新的解决方案。然而,生物合成法面临PLA产量低、产品性能差等问题,难以满足工业化生产的要求。因此,提高PLA生物合成效率和改善产品性能成为PLA生物合成技术开发的重点。本文首先对PLA及其合成方法进行了介绍,并系统分析了化学合成法与生物合成法各自的优势和不足;随后,总结了PLA生物合成的途径和关键酶,着重从蛋白质工程和代谢工程两个方面归纳了PLA生物合成的调控策略;最后,对PLA生物合成技术升级发展中面临的关键挑战和未来研究趋势进行了系统的分析和展望,旨在为更高效、更绿色的PLA生物合成系统的设计和开发提供有益参考。

关键词: 聚乳酸, 生物合成, 关键酶, 蛋白质工程, 代谢工程, 辅酶A转移酶, PHA合成酶

Abstract:

Polylactic acid (PLA) is a non-natural biodegradable plastic polymerized from lactic acid. It demonstrates remarkable biodegradability and serves as a significant alternative to traditional petroleum-based plastics, particularly in the background of achieving carbon peak and carbon neutrality. As a typical carbon-neutral material, PLA is increasingly recognized as a crucial raw material for fostering national economic and social development. Currently, PLA is primarily produced through a combination of biological fermentation and chemical polymerization. However, this systhesis method is fraught with complexities, high costs, and potential risks of toxic residue accumulation. Consequently, the exploration of more environmentally sustainable and efficient production methods has become a central focus in the field of PLA synthesis. With the rapid advancements in synthetic biology, protein engineering and metabolic engineering, the key enzymes of PLA biosynthesis have been gradually identified and modified, the PLA biosynthesis pathways have been designed and assembled, leading to the establishment of cell factories for one-step synthesis of PLA utilizing microorganisms with industrial properties, thereby offering a new solution for the green synthesis of PLA. Nonetheless, the biosynthesis method is confronted with challenges, including low PLA yield and suboptimal product performance, which hinder its alignment with industrial standard. Therefore, enhancing the efficiency of PLA biosynthesis and improving product performance have emerged as critical objectives in the development of PLA biosynthesis technologies. In this paper, PLA and its synthesis methods were introduced briefly, and the advantages and disadvantages of chemical synthesis and biosynthesis were systematically analyzed. Subsequently, the pathways and key enzymes of PLA biosynthesis were summarized, and the regulatory strategies of PLA biosynthesis were summarized from the aspects of protein engineering and metabolic engineering. Finally, the key challenges and future research trends in the upgrading and development of PLA biosynthesis technology were systematically analyzed and prospected, aiming to provide useful reference for the design and development of more efficient and greener PLA biosynthesis system.

Key words: polylactic acid, biosynthesis, key enzyme, protein engineering, metabolic engineering, CoA transferase, PHA synthase