生物技术通报 ›› 2025, Vol. 41 ›› Issue (5): 32-41.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0846
姜丽思(
), 李文远, 张雨祺, 杨洋雯迪, 刘子瑞, 富薇
收稿日期:2024-08-30
出版日期:2025-05-26
发布日期:2025-06-05
作者简介:姜丽思,女,博士,讲师,研究方向 :生态毒理学与环境微生物;E-mail: jianglisi@synu.edu.cn;姜丽思同为本文
基金资助:
JIANG Li-si(
), LI Wen-yuan, ZHANG Yu-qi, YANG Yang-wen-di, LIU Zi-rui, FU Wei
Received:2024-08-30
Published:2025-05-26
Online:2025-06-05
摘要:
21世纪以来,纳米材料的发展和应用愈发迅速广泛,而纳米二氧化钛(TiO2 NPs)作为全球年产量第一的纳米金属氧化物,在广泛应用的同时,也对植物表现出一定的毒性效应,对TiO2 NPs毒性效应的原理及成因进行系统梳理极具重要性与迫切性。本文归纳了TiO2 NPs对植物产生毒性的基本途径,从表观生长、生理生化、分子水平多层面剖析了TiO2 NPs及其与部分污染物复合对植物的毒性效应。同时,在深化毒性机制研究、拓展研究范围以及推动纳米技术创新与应用等方面展望了未来的研究方向,旨在提升对纳米材料环境风险的认知评估能力,并为纳米材料在农业和环境领域的可持续应用提供科学依据。
姜丽思, 李文远, 张雨祺, 杨洋雯迪, 刘子瑞, 富薇. 纳米二氧化钛对植物的毒性效应研究进展[J]. 生物技术通报, 2025, 41(5): 32-41.
JIANG Li-si, LI Wen-yuan, ZHANG Yu-qi, YANG Yang-wen-di, LIU Zi-rui, FU Wei. Research Progress in the Toxic Effects of Titanium Dioxide Nanoparticles on Plants[J]. Biotechnology Bulletin, 2025, 41(5): 32-41.
浓度 Concentration (mg/L) | 植物 Plant | 影响 Influence | 参考文献Reference |
|---|---|---|---|
| 10-20 | 野菊花Chrysanthemum indicum L. | 提升抗氧化酶活性 Enhances antioxidant enzyme activity | [ |
| 20 | 小麦Triticum aestivum L. | 提高生物量;缓解水胁迫 Increasing biomass; mitigation of water stress | [ |
| 60 | 玉米Zea mays L. | 提升抗氧化酶活性;缓解盐胁迫 Enhances antioxidant enzyme activity; mitigation of salt stress | [ |
| 100、200 | 桑树Morusalba L. | 抑制根长、芽长 Inhibition of root and shoot length | [ |
| 10-50 | 菜豆Phaseolus vulgaris L. | 提升抗氧化酶活性;脂质过氧化 Enhances antioxidant enzyme activity; lipid peroxidation | [ |
| 200-500 | 浮萍Lemna minor L. | 细胞质膜损伤 Cytoplasmic membrane damage | [ |
| 100 | 龙头草Meehania henryi Hemsl. | 提升抗氧化酶活性;缓解盐胁迫 Enhanced antioxidant enzyme activity; mitigation of salt stress | [ |
| 10 | 拟南芥Arabidopsis thaliana L. | 提升抗氧化酶活性;屏蔽紫外辐射 Enhances antioxidant enzyme activity; shielding against ultraviolet radiation | [ |
| 200 | 菠菜Spinacia oleracea L. | 抑制光合作用 Inhibition of photosynthesis | [ |
| 25-200 | 扁豆Lens culinaris | DNA损伤;细胞质膜损伤 DNA damage; cytoplasmic membrane damage | [ |
| 10 | 萝卜Raphanus sativus L. | DNA损伤 DNA damage | [ |
| 40 | 紫衫种子Vicia narbonensis L. | DNA损伤 DNA damage | [ |
| 2 000 | 洋葱Allium cepa L. | 细胞周期延滞;染色体畸变 Cell cycle arrest; chromosomal aberrations | [ |
表1 不同浓度下纳米二氧化钛(TiO2 NPs)对植物的影响
Table 1 Effects of titanium dioxide nanoparticles (TiO2 NPs) on plants at different concentrations
浓度 Concentration (mg/L) | 植物 Plant | 影响 Influence | 参考文献Reference |
|---|---|---|---|
| 10-20 | 野菊花Chrysanthemum indicum L. | 提升抗氧化酶活性 Enhances antioxidant enzyme activity | [ |
| 20 | 小麦Triticum aestivum L. | 提高生物量;缓解水胁迫 Increasing biomass; mitigation of water stress | [ |
| 60 | 玉米Zea mays L. | 提升抗氧化酶活性;缓解盐胁迫 Enhances antioxidant enzyme activity; mitigation of salt stress | [ |
| 100、200 | 桑树Morusalba L. | 抑制根长、芽长 Inhibition of root and shoot length | [ |
| 10-50 | 菜豆Phaseolus vulgaris L. | 提升抗氧化酶活性;脂质过氧化 Enhances antioxidant enzyme activity; lipid peroxidation | [ |
| 200-500 | 浮萍Lemna minor L. | 细胞质膜损伤 Cytoplasmic membrane damage | [ |
| 100 | 龙头草Meehania henryi Hemsl. | 提升抗氧化酶活性;缓解盐胁迫 Enhanced antioxidant enzyme activity; mitigation of salt stress | [ |
| 10 | 拟南芥Arabidopsis thaliana L. | 提升抗氧化酶活性;屏蔽紫外辐射 Enhances antioxidant enzyme activity; shielding against ultraviolet radiation | [ |
| 200 | 菠菜Spinacia oleracea L. | 抑制光合作用 Inhibition of photosynthesis | [ |
| 25-200 | 扁豆Lens culinaris | DNA损伤;细胞质膜损伤 DNA damage; cytoplasmic membrane damage | [ |
| 10 | 萝卜Raphanus sativus L. | DNA损伤 DNA damage | [ |
| 40 | 紫衫种子Vicia narbonensis L. | DNA损伤 DNA damage | [ |
| 2 000 | 洋葱Allium cepa L. | 细胞周期延滞;染色体畸变 Cell cycle arrest; chromosomal aberrations | [ |
| 1 | Nasr M, Eid C, Habchi R, et al. Recent progress on titanium dioxide nanomaterials for photocatalytic applications [J]. ChemSusChem, 2018, 11(18): 3023-3047. |
| 2 | Yin ZF, Wu L, Yang HG, et al. Recent progress in biomedical applications of titanium dioxide [J]. Phys Chem Chem Phys, 2013, 15(14): 4844-4858. |
| 3 | Yu JG, Zhao XJ. Effect of surface treatment on the photocatalytic activity and hydrophilic property of the Sol-gel derived TiO2 thin films [J]. Mater Res Bull, 2001, 36(1/2): 97-107. |
| 4 | 李奕洋. 原子团簇纳米二氧化钛材料抗菌性能及电化学研究 [D]. 北京: 北京化工大学, 2021. |
| Li YY. Study on antibacterial properties and electrochemistry of atomic cluster nano-TiO2 materials [D]. Beijing: Beijing University of Chemical Technology, 2021. | |
| 5 | Moore MN. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? [J]. Environ Int, 2006, 32(8): 967-976. |
| 6 | Larue C, Laurette J, Herlin-Boime N, et al. Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): Influence of diameter and crystal phase [J]. Sci Total Environ, 2012, 431: 197-208. |
| 7 | 王苗苗. 纳米二氧化钛对镉胁迫下小白菜毒性效应的影响机制 [D]. 北京: 中国农业科学院, 2020. |
| Wang MM. Influence mechanism of nano titanium dioxide on the toxicity effects of Chinese cabbage under cadmium stress [D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. | |
| 8 | Lettieri S, Pavone M, Fioravanti A, et al. Charge carrier processes and optical properties in TiO2 and TiO2-based heterojunction photocatalysts: a review [J]. Materials, 2021, 14(7): 1645. |
| 9 | Ma HY, Zhao LX, Guo LH, et al. Roles of reactive oxygen species (ROS) in the photocatalytic degradation of pentachlorophenol and its main toxic intermediates by TiO2/UV [J]. J Hazard Mater, 2019, 369: 719-726. |
| 10 | Yuan SJ, Chen JJ, Lin ZQ, et al. Nitrate formation from atmospheric nitrogen and oxygen photocatalysed by nano-sized titanium dioxide [J]. Nat Commun, 2013, 4: 2249. |
| 11 | Mishra V, Mishra RK, Dikshit A, et al. Interactions of nanoparticles with plants [M]//Emerging Technologies and Management of Crop Stress Tolerance. Amsterdam: Elsevier, 2014: 159-180. |
| 12 | 徐洪超, 商靖, 刘铭荟, 等. 氮代谢相关酶的研究进展 [J]. 安徽农业科学, 2022, 50(4): 17-20. |
| Xu HC, Shang J, Liu MH, et al. Research progress of enzymes related to nitrogen metabolism [J]. J Anhui Agric Sci, 2022, 50(4): 17-20. | |
| 13 | Pavasupree S, Chanchula N, Nunya N, et al. Titanium dioxide nanoparticles affect growth and antibacterial activity of Chrysanthemum indicum cuttings in vitro culture [J]. S Afr N J Bot, 2023, 156: 72-78. |
| 14 | Jaberzadeh A, Moaveni P, Tohidi Moghadam HR, et al. Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress [J]. Not Bot Hort Agrobot Cluj, 2013, 41(1): 201. |
| 15 | Mahmoodzadeh H, Nabavi M, Kashefi H. Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus) [J]. J Ornam Plants, 2015, 3: 25-32. |
| 16 | Shah T, Latif S, Saeed F, et al. Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress [J]. J King Saud Univ Sci, 2021, 33(1): 101207. |
| 17 | 于栋梁. 纳米二氧化钛对桑树种子萌发及幼苗生长发育影响的研究 [D]. 南宁: 广西大学, 2023. |
| Yu DL. Effects of nano-titanium dioxide on seed germination and seedling growth of mulberry [D]. Nanning: Guangxi University, 2023. | |
| 18 | Feizi H, Rezvani Moghaddam P, Shahtahmassebi N, et al. Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth [J]. Biol Trace Elem Res, 2012, 146(1): 101-106. |
| 19 | Šebesta M, Kolenčík M, Sunil BR, et al. Field application of ZnO and TiO2 nanoparticles on agricultural plants [J]. Agronomy, 2021, 11(11): 2281. |
| 20 | Abdel Hamed Abdel Latef A, Srivastava AK, El-sadek MSA, et al. Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions [J]. Land Degrad Dev, 2018, 29(4): 1065-1073. |
| 21 | Alabdallah NM, Alluqmani SM, Almarri HM, et al. Physical, chemical, and biological routes of synthetic titanium dioxide nanoparticles and their crucial role in temperature stress tolerance in plants [J]. Heliyon, 2024, 10(4): e26537. |
| 22 | Skipitari M, Kalaitzopoulou E, Papadea P, et al. Titanium dioxide nanoparticle-based hydroxyl and superoxide radical production for oxidative stress biological simulations [J]. J Photochem Photobiol A Chem, 2023, 435: 114290. |
| 23 | Li Z, Juneau P, Lian Y, Zhang W, et al. Effects of titanium dioxide nanoparticles on photosynthetic and antioxidative processes of Scenedesmus obliquus [J]. Plants. 2020, 9(12):1748. |
| 24 | Hadizadeh H, Samiei L, Shakeri A. Chrysanthemum, an ornamental genus with considerable medicinal value: a comprehensive review [J]. S Afr N J Bot, 2022, 144: 23-43. |
| 25 | Ebrahimi A, Galavi M, Ramroudi M, et al. Effect of TiO2 nanoparticles on antioxidant enzymes activity and biochemical biomarkers in pinto bean (Phaseolus vulgaris L.) [J]. J Mol Biol Res, 2015, 6(1): 58. |
| 26 | Song GL, Gao Y, Wu H, et al. Physiological effect of anatase TiO2 nanoparticles on Lemna minor [J]. Environ Toxicol Chem, 2012, 31(9): 2147-2152. |
| 27 | Li FM, Liang Z, Zheng X, et al. Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production [J]. Aquat Toxicol, 2015, 158: 1-13. |
| 28 | Gohari G, Mohammadi A, Akbari A, et al. Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica [J]. Sci Rep, 2020, 10(1): 912. |
| 29 | Wang JH, Li MW, Feng JL, et al. Effects of TiO2-NPs pretreatment on UV-B stress tolerance in Arabidopsis thaliana [J]. Chemosphere, 2021, 281: 130809. |
| 30 | Ze YG, Liu C, Wang L, et al. The regulation of TiO2 nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of Arabidopsis thaliana [J]. Biol Trace Elem Res, 2011, 143(2): 1131-1141. |
| 31 | Hashemi SA, Tabibian S. Application of Mulberry nigra to absorb heavy metal, mercury, from the environment of green space city [J]. Toxicol Rep, 2018, 5: 644-646. |
| 32 | 吴碧莹. 纳米二氧化钛对水稻的毒性及代谢影响初探 [D]. 杭州: 浙江大学, 2017. |
| Wu BY. The toxicity and metabolic effects of TiO2 nanoparticle on rice (Oryza sativa L.) [D]. Hangzhou: Zhejiang University, 2017. | |
| 33 | Zheng L, Su MY, Wu X, et al. Effects of nano-anatase on spectral characteristics and distribution of LHCII on the thylakoid membranes of spinach [J]. Biol Trace Elem Res, 2007, 120(1-3): 273-283. |
| 34 | Trela-Makowej A, Orzechowska A, Szymańska R. Less is more: The hormetic effect of titanium dioxide nanoparticles on plants[J]. Sci Total Environ. 2024, 910:168669. |
| 35 | 杨逾凡. 土施纳米TiO2对番茄生长及土壤酶活性的影响 [D]. 太谷: 山西农业大学, 2022. |
| Yang YF. Effects of soil application of nano-tio2 on tomato growth and soil enzyme activities [D]. Taigu: Shanxi Agricultural University, 2022. | |
| 36 | Rico CM, Peralta-Videa JR, Gardea-Torresdey JL. Chemistry, biochemistry of nanoparticles, and their role in antioxidant defense system in plants [M]//Nanotechnology and Plant Sciences. Cham: Springer International Publishing, 2015: 1-17. |
| 37 | Fenoglio I, Greco G, Livraghi S, et al. Non-UV-induced radical reactions at the surface of TiO2 nanoparticles that may trigger toxic responses [J]. Chemistry, 2009, 15(18): 4614-4621. |
| 38 | Khan Z, Shahwar D, Yunus Ansari MK, et al. Toxicity assessment of anatase (TiO2) nanoparticles: a pilot study on stress response alterations and DNA damage studies in Lens culinaris medik [J]. Heliyon, 2019, 5(7): e02069. |
| 39 | Jiang LS, Zhang QR, Wang JM, et al. Ecotoxicological effects of titanium dioxide nanoparticles and Galaxolide, separately and as binary mixtures, in radish (Raphanus sativus) [J]. J Environ Manag, 2021, 294: 112972. |
| 40 | Ruffini Castiglione M, Giorgetti L, Cremonini R, et al. Impact of TiO2 nanoparticles on Vicia narbonensis L.: potential toxicity effects [J]. Protoplasma, 2014, 251(6): 1471-1479. |
| 41 | Ahmed B, Shahid M, Khan MS, et al. Chromosomal aberrations, cell suppression and oxidative stress generation induced by metal oxide nanoparticles in onion (Allium cepa) bulb [J]. Metallomics, 2018, 10(9): 1315-1327. |
| 42 | Amini S, Maali-Amiri R, Mohammadi R, et al. cDNA-AFLP analysis of transcripts induced in chickpea plants by TiO2 nanoparticles during cold stress [J]. Plant Physiol Biochem, 2017, 111: 39-49. |
| 43 | 沙天珍, 刘莹, 海梅荣. 外源褪黑素对干旱胁迫下植物生理及根际土壤影响的研究进展 [J]. 江苏农业科学, 2024, 52(15): 8-15. |
| Sha TZ, Liu Y, Hai MR. Progress in the study of the effects of exogenous melatonin on plant physiology and inter-root soil under drought stress [J]. Jiangsu Agric Sci, 2024, 52(15): 8-15. | |
| 44 | Zhu LX, Li AC, Sun HC, et al. The effect of exogenous melatonin on root growth and lifespan and seed cotton yield under drought stress [J]. Ind Crops Prod, 2023, 204: 117344. |
| 45 | Yang XX, Feng K, Wang G, et al. Titanium dioxide nanoparticles alleviates polystyrene nanoplastics induced growth inhibition by modulating carbon and nitrogen metabolism via melatonin signaling in maize [J]. J Nanobiotechnology, 2024, 22(1): 262. |
| 46 | Chen Z, Han ML, Guo ZP, et al. An integration of physiology, transcriptomics, and proteomics reveals carbon and nitrogen metabolism responses in alfalfa (Medicago sativa L.) exposed to titanium dioxide nanoparticles [J]. J Hazard Mater, 2024, 474: 134851. |
| 47 | Wu BY, Zhu LZ, Le XC. Metabolomics analysis of TiO2 nanoparticles induced toxicological effects on rice (Oryza sativa L.) [J]. Environ Pollut, 2017, 230: 302-310. |
| 48 | Zhang YD, Liu N, Wang W, et al. Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L.) growth by TiO2 nanoparticles [J]. Front Environ Sci Eng, 2020, 14(6): 103. |
| 49 | Lai MY, Ghouri F, Sarwar S, et al. Modulation of metal transporters, oxidative stress and cell abnormalities by synergistic application of silicon and titanium oxide nanoparticles: a strategy for cadmium tolerance in rice [J]. Chemosphere, 2023, 345: 140439. |
| 50 | 王苗苗, 强沥文, 王伟, 等. 纳米二氧化钛对镉胁迫下小白菜毒性效应的影响 [J]. 农业环境科学学报, 2020, 39(6): 1185-1195. |
| Wang MM, Qiang LW, Wang W, et al. Effects of nano titanium dioxide on the toxicity of Chinese cabbage under cadmium stress [J]. J Agro Environ Sci, 2020, 39(6): 1185-1195. | |
| 51 | Kumar D, Mariyam S, Gupta KJ, et al. Comparative investigation on chemical and green synthesized titanium dioxide nanoparticles against chromium (Ⅵ) stress eliciting differential physiological, biochemical, and cellular attributes in Helianthus annuus L [J]. Sci Total Environ, 2024, 930: 172413. |
| 52 | Ghouri F, Shahid MJ, Liu JW, et al. The protective role of tetraploidy and nanoparticles in arsenic-stressed rice: Evidence from RNA sequencing, ultrastructural and physiological studies [J]. J Hazard Mater, 2023, 458: 132019. |
| [1] | 胡若群, 曾菁菁, 梁婉凤, 曹佳玉, 黄小苇, 梁晓英, 仇明月, 陈莹. 转录组和代谢组联合分析探究不同遮光条件下金线莲类胡萝卜素合成代谢机制[J]. 生物技术通报, 2025, 41(5): 231-243. |
| [2] | 樊玥妮, 仙保山, 师艺萍, 任梦圆, 徐佳慧, 魏绍巍, 许晓敬, 罗晓峰, 舒凯. SPINDLY和SECRET AGENT介导的蛋白糖基化调控植物发育与逆境响应[J]. 生物技术通报, 2025, 41(4): 1-8. |
| [3] | 夏馨媛, 薛道晟, 李鑫静, 龙俊杰, 陆开形, 丁沃娜, 李梦莎. 稻油轮作土壤多功能促生菌的鉴定及其对油菜生长和根际细菌群落的影响[J]. 生物技术通报, 2025, 41(4): 289-301. |
| [4] | 唐游, 赵俊伟, 孙兰茜, 李翔. 多组学技术在植物代谢通路解析中的联合应用[J]. 生物技术通报, 2025, 41(4): 76-87. |
| [5] | 田琴, 刘奎, 吴翔纬, 纪媛媛, 曹一博, 张凌云. 转录因子VcMYB17调控蓝莓抗旱性的功能研究[J]. 生物技术通报, 2025, 41(4): 198-210. |
| [6] | 李艳伟, 杨妍妍, 孙亚玲, 霍雨猛, 王振宝, 刘冰江. 基于转录组分析植物激素对洋葱鳞茎膨大发育的调控机制[J]. 生物技术通报, 2025, 41(2): 187-201. |
| [7] | 匡健华, 程志鹏, 赵永晶, 杨洁, 陈润乔, 陈龙清, 胡慧贞. 激素和非生物胁迫下荷花GH3基因家族的表达分析[J]. 生物技术通报, 2025, 41(2): 221-233. |
| [8] | 殷缘, 程爽, 刘定豪, 邓晓霞, 李凯月, 王竞红, 蔺吉祥. 外源过氧化氢(H2O2)影响非生物胁迫下植物生长与生理代谢机制的研究进展[J]. 生物技术通报, 2025, 41(1): 1-13. |
| [9] | 刘平阳, 刘占芳, 周红, 张冠男, 孙振文, 李亚军, 周正, 刘耀. 多元数据分析方法在解释GC-MS动植物油脂数据中的应用[J]. 生物技术通报, 2025, 41(1): 120-131. |
| [10] | 刘璐, 朱哲远, 李颖曦, 王颉, 彭迪. 微生物除草剂的研究进展[J]. 生物技术通报, 2024, 40(9): 161-171. |
| [11] | 刘文志, 贺丹, 李鹏, 傅应林, 张译心, 温华杰, 于文清. 多粘类芽胞杆菌新菌株X-11及其对番茄和水稻的促生效应[J]. 生物技术通报, 2024, 40(9): 249-259. |
| [12] | 李庆懋, 彭聪归, 齐笑含, 刘兴蕾, 李臻园, 李沁妍, 黄立钰. 促进水稻铁素吸收的野生稻内生细菌优良菌株的筛选与鉴定[J]. 生物技术通报, 2024, 40(8): 255-263. |
| [13] | 聂祝欣, 郭瑾, 乔子洋, 李微薇, 张学燕, 刘春阳, 王静. 黑果枸杞不同发育时期果实花色苷合成的转录组分析[J]. 生物技术通报, 2024, 40(8): 106-117. |
| [14] | 杨嘉泓, 李婧怡, 吴佳昊, 黄幼梅, 刘艳芬, 秦源, 蔡汉阳. 生长素信号途径参与调控拟南芥雌配子体发育研究进展[J]. 生物技术通报, 2024, 40(7): 19-27. |
| [15] | 王青, 倪尔冬, 王秋霜, 秦丹丹, 方开星, 李红建, 姜晓辉, 李波, 潘晨东, 吴华玲. 植物花青素修饰相关UDP-糖基转移酶研究进展[J]. 生物技术通报, 2024, 40(7): 28-42. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||