生物技术通报 ›› 2025, Vol. 41 ›› Issue (6): 269-283.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0074
• 研究报告 • 上一篇
冯冰1(
), 闫彩霞1, 刘艺1, 董凯悦1, 赵楠2, 赵瑞1(
), 陈少良1
收稿日期:2025-01-16
出版日期:2025-06-26
发布日期:2025-06-30
通讯作者:
赵瑞,男,博士,副教授,研究方向 :树木逆境生物学;E-mail: ruizhao@bjfu.edu.cn作者简介:冯冰,女,硕士研究生,研究方向 :树木逆境生物学;E-mail: 2193419868@qq.com
基金资助:
FENG Bing1(
), YAN Cai-xia1, LIU Yi1, DONG Kai-yue1, ZHAO Nan2, ZHAO Rui1(
), CHEN Shao-liang1
Received:2025-01-16
Published:2025-06-26
Online:2025-06-30
摘要:
目的 研究灰杨(Populus × canescens)PcAHL17(AT-hook motif nuclear localized proteins, AHLs)调控植物响应镉胁迫的分子机制,为抗逆良种的选育和生态修复的应用提供参考。 方法 以野生型(WT)、转空载体对照(VC)和过表达PcAHL17拟南芥(PcAHL17-OE1、PcAHL17-OE2和PcAHL17-OE3)为材料,研究PcAHL17调控植物响应镉胁迫的机制。 结果 镉处理后,灰杨根茎叶的PcAHL17表达量均有变化;过表达株系的萌发率和根长均明显低于WT和VC;过表达株系的抗氧化物酶的活性和转录水平均有所提升,但仍低于WT和VC;过表达株系细胞膜受损伤程度显著高于WT和VC,根部积累的Cd2+和H2O2含量和Cd2+内流显著高于WT和VC;过表达株系叶绿素含量、叶绿素荧光参数和光合速率等方面均低于WT和VC。 结论 过表达灰杨PcAHL17能够负调控拟南芥的镉耐受性。
冯冰, 闫彩霞, 刘艺, 董凯悦, 赵楠, 赵瑞, 陈少良. 灰杨PcAHL17负调控拟南芥的镉耐受性[J]. 生物技术通报, 2025, 41(6): 269-283.
FENG Bing, YAN Cai-xia, LIU Yi, DONG Kai-yue, ZHAO Nan, ZHAO Rui, CHEN Shao-liang. Populus × canescens AHL17 Negatively Regulates Tolerance to Cadmium in Arabidopsis thaliana[J]. Biotechnology Bulletin, 2025, 41(6): 269-283.
引物名称 Primer name | 上游引物 Forward primer (5'-3') | 下游引物 Reverse primer (5'-3') |
|---|---|---|
| PcUBQ | AGACCTACACCAAGCCCAAGAAGA | CCAGCACCGCACTCAGCATTAG |
| AtACTIN2 | GGTAACATTGTGCTCAGTGGTGG | AACGACCTTAATCTTCATGCTGC |
| AtSOD1 | AGGAAACATCACTGTTGGAGAT | GAGTTTGGTCCAGTAAGAGGAA |
| AtPER1 | CGTGCCCTTCATATTGTTGG | GACGCCATCAACAACGAGTC |
| AtCAT3 | CTTGTGGTTCCTGGAATCTACT | AGGATCAAACTTTGAGGGGTAG |
| PcAHL17 | GGGGCCCGGGGTCGACATGAAAGGTGAATATGCAGAACATC | CCATGGTACCGGATCCAAAAGGCGGTGGTGGTGG |
| PcAHL17-RT-qPCR | CAAACCCAAACCACCCGTTAT | TGTTGCCGATGGCTGACG |
表1 本实验所用引物序列
Table 1 Primers used in this study
引物名称 Primer name | 上游引物 Forward primer (5'-3') | 下游引物 Reverse primer (5'-3') |
|---|---|---|
| PcUBQ | AGACCTACACCAAGCCCAAGAAGA | CCAGCACCGCACTCAGCATTAG |
| AtACTIN2 | GGTAACATTGTGCTCAGTGGTGG | AACGACCTTAATCTTCATGCTGC |
| AtSOD1 | AGGAAACATCACTGTTGGAGAT | GAGTTTGGTCCAGTAAGAGGAA |
| AtPER1 | CGTGCCCTTCATATTGTTGG | GACGCCATCAACAACGAGTC |
| AtCAT3 | CTTGTGGTTCCTGGAATCTACT | AGGATCAAACTTTGAGGGGTAG |
| PcAHL17 | GGGGCCCGGGGTCGACATGAAAGGTGAATATGCAGAACATC | CCATGGTACCGGATCCAAAAGGCGGTGGTGGTGG |
| PcAHL17-RT-qPCR | CAAACCCAAACCACCCGTTAT | TGTTGCCGATGGCTGACG |
图1 灰杨PcAHL17蛋白序列分析A:灰杨PcAHL17氨基酸序列与其他物种AHL17多重序列比对;B:系统进化树构建;Pc:灰杨;Pa:银白杨;Pt:毛果杨;Pn:黑杨;Ss:簸箕柳;Sp:红皮柳;Me:木薯;Gm:大豆;At:拟南芥;Nt:烟草;Gh:棉花;Hb:橡胶;Tc:可可;Cs:亚麻荠
Fig. 1 Sequence analysis of PcAHL17 protein in Populus × canescensA: Multiple sequence alignment of AHL17 amino acid sequences between Populus×canescens and other species. B: Construction of evolutionary tree. Pc: Populus × canescens;Pa: Populus alba; Pt: Populus trichocarpa; Pn: Populus nigra; Ss: Salix suchowensis; Sp: Salix purpurea; Me: Manihot esculenta; Gm: Glycine max; At: Arabidopsis thaliana; Nt: Nicotiana tabacum; Gh: Gossypium hirsutum; Hb: Hevea brasiliensis; Tc: Theobroma cacao; Cs: Camelina sativa
图2 镉胁迫下灰杨根茎叶中PcAHL17基因表达量的变化数值为3次重复实验结果的均值,以误差线表征平均标准差。不同小写字母表示差异显著(P<0.05),下同
Fig. 2 Changes of PcAHL17 gene expression in the roots, stems and leaves of Populus × canescens under cadmium stressThe data are the means of three repeated experimental results, with error bars indicating the standard deviation. Different lowercase letters denote significant differences (P<0.05), the same below
图3 灰杨PcAHL17转化拟南芥的DNA鉴定和荧光定量PCR鉴定A:T2代株系DNA检测;B:PcAHL17基因在野生型、转空载体、过表达拟南芥中的表达量,AtACTIN2为内参基因
Fig. 3 DNA identification and fluorescence quantitative PCR identification of A. thaliana transformed by PcAHL17 in Populus×canescensA: DNA detection of T2 genaration. B: Expression of PcAHL17 gene in wild-type, vector control, overexpressing A. thaliana, AtACTIN2 was used as internal control gene
图4 PcAHL17的亚细胞定位分析PcAHL17-GFP与PYR1-mCherry共定位。标尺=10 μm
Fig. 4 Subcellular localization analysis of PcAHL17PcAHL17-GFP co-localized with the PYR1-mCherry. Scale bar =10 μm
图5 拟南芥在各浓度CdCl2培养基上的萌发率A:CdCl2对幼苗生长的影响;B:幼苗萌发率统计分析
Fig. 5 Germination rates of A. thaliana on the media containing different concentrations of CdCl2A: Effects of CdCl2 on seed germination. B: Statistical analysis of the seed germination rate
图6 CdCl2对拟南芥根长生长的影响A:CdCl2对根长生长的影响;B:根系生长分析,白色线条表示拟南芥根的生长位置
Fig. 6 Effects of CdCl2 on the growth of root length of A.thalianaA: Effects of CdCl2 on the growth of root length. B: Analysis of root growth. The white lines indicate the growth position of Arabidopsis roots
图10 拟南芥在镉胁迫下的Cd2+离子含量分析A:拟南芥地上部Cd2+离子含量;B:拟南芥地下部Cd2+离子含量;C:拟南芥根尖稳态Cd2+离子流;D:镉处理后根尖细胞Cd2+荧光强度
Fig. 10 Analysis of Cd2+ content in A. thaliana under cadmium stressA: Cd2+ content in aboveground parts of A. thaliana.B:Cd2+ content in underground parts of A. thaliana.C:Steady Cd2+ flux kinetics in A. thaliana root tips. D: The fluorescence intensity of Cd2+ in the root-tip cells of A. thaliana under CdCl2 treatment
图11 镉胁迫下各株系拟南芥中抗氧化酶基因表达量及蛋白酶活性检测
Fig. 11 Expressions of antioxidant enzyme gene and detection of protein activity in different A. thaliana lines after CdCl2 treatment
| 1 | Zhang J, Martinoia E, Lee Y. Vacuolar transporters for cadmium and arsenic in plants and their applications in phytoremediation and crop development [J]. Plant Cell Physiol, 2018, 59(7): 1317-1325. |
| 2 | Li SL, Yang WH, Yang TT, et al. Effects of cadmium stress on leaf chlorophyll fluorescence and photosynthesis of Elsholtzia argyi—a cadmium accumulating plant [J]. Int J Phytoremediation, 2015, 17(1-6): 85-92. |
| 3 | Iqbal N, Masood A, Syeed S. Cadmium toxicity in plants and role of mineral nutrients in its alleviation [J]. Am J Plant Sci, 201, 3(10): 1476-1489. |
| 4 | Sharma P, Jha A, Dubey R, et al. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions [J]. J Bot, 2012, 2012: 1-26. |
| 5 | Cui WN, Wang HT, Song J, et al. Cell cycle arrest mediated by Cd-induced DNA damage in Arabidopsis root tips [J]. Ecotoxicol Environ Saf, 2017, 145: 569-574. |
| 6 | 焦文献, 彭彬, 苏鹏. 不同高山树种中重金属镉迁移富集研究 [J]. 现代农业研究, 2024, 30(8): 1-5. |
| Jiao WX, Peng B, Su P. Study on migration and enrichment of heavy metal cadmium in different alpine tree species [J]. Mod Agric Res, 2024, 30(8): 1-5. | |
| 7 | 卢赛, 谷海红, 艾艳君, 等. 紫花苜蓿对钒钛磁铁尾矿重金属铜和镉的吸收、转运特性 [J]. 矿产综合利用, 2025, 46(2): 72-80. |
| Lu S, Gu HH, Ai YJ, et al. Absorption and transport of heavy metals copper and cadmium in alfalfa from vanadium-titanium magnetite tailings [J]. Multipurp Util Miner Resour, 2025, 46(2): 72-80. | |
| 8 | 黄意成, 范拴喜, 李丹, 等. 菊芋 (Helianthus tuberosus) 对镉、铅、锌复合污染土壤的修复潜力 [J]. 地球与环境, 2024, 52(1): 96-103. |
| Huang YC, Fan SX, Li D, et al. Remediation potential of Helianthus tuberosus on cadmium, lead and zinc compound contaminated soil [J]. Earth Environ, 2024, 52(1): 96-103. | |
| 9 | Wang LY, Li TT, Liu N, et al. Identification of tomato AHL gene families and functional analysis their roles in fruit development and abiotic stress response [J]. Plant Physiol Biochem, 2023, 202: 107931. |
| 10 | 张贵慰, 曾珏, 郭维, 等. 水稻AT-hook基因家族生物信息学分析 [J]. 植物学报, 2014, 49(1): 49-62. |
| Zhang GW, Zeng J, Guo W, et al. Bioinformatics analysis of the AT-hook gene family in rice [J]. Chin Bull Bot, 2014, 49(1): 49-62. | |
| 11 | 丁丽雪, 李涛, 李植良, 等. 番茄AT-hook基因家族的鉴定及胁迫条件下的表达分析 [J]. 植物遗传资源学报, 2016, 17(2): 303-315. |
| Ding LX, Li T, Li ZL, et al. Genome-wide identification and expression analysis in oxidative stress of AT-hook gene family in tomato [J]. J Plant Genet Resour, 2016, 17(2): 303-315. | |
| 12 | Aravind L, Landsman D. AT-hook motifs identified in a wide variety of DNA-binding proteins [J]. Nucleic Acids Res, 1998, 26(19): 4413-4421. |
| 13 | Do HJ, Song H, Yang HM, et al. Identification of multiple nuclear localization signals in murine Elf3, an ETS transcription factor [J]. FEBS Lett, 2006, 580(7): 1865-1871. |
| 14 | Zhao JF, Favero DS, Peng H, et al. Arabidopsis thaliana AHL family modulates hypocotyl growth redundantly by interacting with each other via the PPC/DUF296 domain [J]. Proc Natl Acad Sci USA, 2013, 110(48): E4688-E4697. |
| 15 | Fujimoto S, Matsunaga S, Yonemura M, et al. Identification of a novel plant MAR DNA binding protein localized on chromosomal surfaces [J]. Plant Mol Biol, 2004, 56(2): 225-239. |
| 16 | Bishop EH, Kumar R, Luo F, et al. Genome-wide identification, expression profiling, and network analysis of AT-hook gene family in maize [J]. Genomics, 2020, 112(2): 1233-1244. |
| 17 | Lim PO, Kim Y, Breeze E, et al. Overexpression of a chromatin architecture-controlling AT-hook protein extends leaf longevity and increases the post-harvest storage life of plants [J]. Plant J, 2007, 52(6): 1140-1153. |
| 18 | Matsushita A, Furumoto T, Ishida S, et al. AGF1, an AT-hook protein, is necessary for the negative feedback of AtGA3ox1 encoding GA 3-oxidase [J]. Plant Physiol, 2007, 143(3): 1152-1162. |
| 19 | Street IH, Shah PK, Smith AM, et al. The AT-hook-containing proteins SOB3/AHL29 and ESC/AHL27 are negative modulators of hypocotyl growth in Arabidopsis [J]. Plant J, 2008, 54(1): 1-14. |
| 20 | Yun J, Kim YS, Jung JH, et al. The AT-hook motif-containing protein AHL22 regulates flowering initiation by modifying FLOWERING LOCUS T chromatin in Arabidopsis [J]. J Biol Chem, 2012, 287(19): 15307-15316. |
| 21 | Vom Endt D, Soares e Silva M, Kijne JW, et al. Identification of a bipartite jasmonate-responsive promoter element in the Catharanthus roseus ORCA3 transcription factor gene that interacts specifically with AT-Hook DNA-binding proteins [J]. Plant Physiol, 2007, 144(3): 1680-1689. |
| 22 | Martínez-García JF, Quail PH. The HMG-I/Y protein PF1 stimulates binding of the transcriptional activator GT-2 to the PHYA gene promoter [J]. Plant J, 1999, 18(2): 173-183. |
| 23 | Jin Y, Luo Q, Tong HN, et al. An AT-hook gene is required for Palea formation and floral organ number control in rice [J]. Dev Biol, 2011, 359(2): 277-288. |
| 24 | Delaney SK, Orford SJ, Martin-Harris M, et al. The fiber specificity of the cotton FSltp4 gene promoter is regulated by an AT-rich promoter region and the AT-hook transcription factor GhAT1 [J]. Plant Cell Physiol, 2007, 48(10): 1426-1437. |
| 25 | 胡冬秀, 刘浩, 梁炫强, 等. 花生AT-hook家族基因的生物信息学分析 [J]. 热带作物学报, 2021, 42(3): 649-659. |
| Hu DX, Liu H, Liang XQ, et al. Bioinformatics analysis of AT-hook genes family in peanut(Arachis hypogaea L.) [J]. Chin J Trop Crops, 2021, 42(3): 649-659. | |
| 26 | 刘行行, 种培芳. 胡杨AHL基因家族生物信息学分析及逆境胁迫下的表达特征 [J]. 草地学报, 2023, 31(3): 741-750. |
| Liu HH, Chong PF. Bioinformatics analysis of the AHL gene family in Populus euphratica and its expression characteristics under stress [J]. Acta Agrestia Sin, 2023, 31(3): 741-750. | |
| 27 | 马超峰. 灰杨(Populus × canescens)PcHMA4的基因克隆和表达分析研究 [D]. 杨凌: 西北农林科技大学, 2014. |
| Ma CF. Molecular cloning and expression analysis of PcHMA4 in Populus × canescens [D]. Yangling: Northwest A & F University, 2014. | |
| 28 | 何佳丽. 杨树对重金属镉胁迫的分子生理响应机制研究 [D]. 杨凌: 西北农林科技大学, 2014. |
| He JL. A study on mechanisms of molecular and pgysiological responses to cadmium in Populus species[D]. Yangling: Northwest A & F University, 2014. | |
| 29 | Komárková M, Chromý J, Pokorná E, et al. Physiological and transcriptomic response of grey poplar (Populus × canescens aiton Sm.) to cadmium stress [J]. Plants, 2020, 9(11): 1485. |
| 30 | 张超. 外源脱落酸对灰杨(Populus × canescens)响应镉胁迫的影响 [D]. 杨凌: 西北农林科技大学, 2014. |
| Zhang C. The impact of exogenous abscisic acid on poplar (Populus × canescens) exposed to cadmium[D]. Yangling: Northwest A & F University, 2014. | |
| 31 | Deng C, Zhu ZM, Liu J, et al. Ectomycorrhizal fungal strains facilitate Cd2+ enrichment in a woody hyperaccumulator under co-existing stress of cadmium and salt [J]. Int J Mol Sci, 2021, 22(21): 11651. |
| 32 | Zhang YH, Sa G, Zhang Y, et al. Paxillus involutus-facilitated Cd2+ influx through plasma membrane Ca2+-permeable channels is stimulated by H2O2 and H+-ATPase in ectomycorrhizal Populus × canescens under cadmium stress. Front Plant Sci. 2017, 7: 1975. |
| 33 | 刘晓婧, 温馨, 赵瑞, 等. 胡杨PeCSP1过表达负调控拟南芥耐盐性 [J]. 北京林业大学学报, 2023, 45(7): 9-17. |
| Liu XJ, Wen X, Zhao R, et al. Overexpression of Populus euphratica PeCSP1 negatively regulating salt tolerance in Arabidopsis thaliana [J]. Journal of Beijing Forestry University, 2023, 45(7): 9-17. | |
| 34 | 安珂悦, 马思圆, 李静, 等. 胡杨PeMAX2对拟南芥镉吸收和耐受能力的影响 [J]. 河南农业大学学报, 2025, 59(2): 233-242. |
| An KY, Ma SY, Li J, et al. Effects of Populus euphratica PeMAX2 on cadmium uptake and tolerance in Arabidopsis [J]. China Ind Econ, 2025, 59(2): 233-242. | |
| 35 | Zhang YN, Sa G, Zhang Y, et al. Populus euphratica annexin1 facilitates cadmium enrichment in transgenic Arabidopsis [J]. J Hazard Mater, 2021, 405: 124063. |
| 36 | Yan CX, Feng B, Zhao ZY, et al. Populus euphratica R2R3-MYB transcription factor RAX2 binds ANN1 promoter to increase cadmium enrichment in Arabidopsis [J]. Plant Sci, 2024, 344: 112082. |
| 37 | Yin KX, Liu Y, Liu Z, et al. Populus euphratica CPK21 interacts with NF-YC3 to enhance cadmium tolerance in Arabidopsis [J]. Int J Mol Sci, 2024, 25(13): 7214. |
| 38 | Park SY, Fung P, Nishimura N, et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins [J]. Science, 2009, 324(5930): 1068-1071. |
| 39 | Aponte H, Meli P, Butler B, et al. Meta-analysis of heavy metal effects on soil enzyme activities [J]. Sci Total Environ, 2020, 737: 139744. |
| 40 | Xue WJ, Zhang X, Zhang CB, et al. Mitigating the toxicity of reactive oxygen species induced by cadmium via restoring citrate valve and improving the stability of enzyme structure in rice [J]. Chemosphere, 2023, 327: 138511. |
| 41 | Czarnocka W, Karpiński S. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses [J]. Free Radic Biol Med, 2018, 122: 4-20. |
| 42 | Makhtoum S, Sabouri H, Gholizadeh A, et al. Genomics and physiology of chlorophyll fluorescence parameters in Hordeum vulgare L. under drought and salt stresses [J]. Plants, 2023, 12(19): 3515. |
| 43 | 杨居荣, 贺建群, 蒋婉茹. Cd污染对植物生理生化的影响 [J]. 农业环境保护, 1995, 14(5): 193-197. |
| Yang JR, He JQ, Jiang WR. Effects of Cd contamination on plant physiology and biochemistry [J]. J Agro Environ Sci, 1995, 14(5): 193-197. | |
| 44 | Pagliano C, Raviolo M, Dalla Vecchia F, et al. Evidence for PSII donor-side damage and photoinhibition induced by cadmium treatment on rice (Oryza sativa L.) [J]. J Photochem Photobiol B, 2006, 84(1): 70-78. |
| 45 | Riaz M, Kamran M, Rizwan M, et al. Cadmium uptake and translocation: selenium and silicon roles in Cd detoxification for the production of low Cd crops: a critical review [J]. Chemosphere, 2021, 273: 129690. |
| 46 | Liu HT, Jiao QJ, Fan LN, et al. Integrated physio-biochemical and transcriptomic analysis revealed mechanism underlying of Si-mediated alleviation to cadmium toxicity in wheat [J]. J Hazard Mater, 2023, 452: 131366. |
| 47 | 魏畅, 焦秋娟, 柳海涛, 等. 镉暴露条件下玉米生长及根系构型分级特征研究 [J]. 草业学报, 2022, 31(3): 101-113. |
| Wei C, Jiao QJ, Liu HT, et al. Physiological effects of different Cd concentrations on maize root architecture and classification [J]. Acta Pratac Sin, 2022, 31(3): 101-113. | |
| 48 | 孙亚莉, 刘红梅, 徐庆国. 镉胁迫对不同水稻品种苗期光合特性与生理生化特性的影响 [J]. 华北农学报, 2017, 32(4): 176-181. |
| Sun YL, Liu HM, Xu QG. Effect of cadmium stress on photosynthetic characteristics and physiological and biochemical traits during seedling stage of different rice cultivars [J]. Acta Agric Boreali Sin, 2017, 32(4): 176-181. | |
| 49 | Shi ZY, Yang SQ, Han D, et al. Silicon alleviates cadmium toxicity in wheat seedlings (Triticum aestivum L.) by reducing cadmium ion uptake and enhancing antioxidative capacity [J]. Environ Sci Pollut Res Int, 2018, 25(8): 7638-7646. |
| [1] | 王伟伟, 赵振杰, 王志, 邹景伟, 罗政辉, 张玉杰, 钮力亚, 于亮, 杨学举. 盐胁迫下与小麦生理响应相关的耐盐基因研究进展[J]. 生物技术通报, 2025, 41(5): 14-22. |
| [2] | 周志国, 樊双虎, 邓晨, 冯雪. 2,4-表油菜素内酯对镉胁迫下胡萝卜幼苗生理特性的影响[J]. 生物技术通报, 2025, 41(5): 165-174. |
| [3] | 王斌, 王玉昆, 肖艳辉. 丁香罗勒(Ocimum gratissimum)叶片响应镉胁迫的比较转录组学分析[J]. 生物技术通报, 2025, 41(3): 255-270. |
| [4] | 武志健, 刘广洋, 林志豪, 盛彬, 陈鸽, 许晓敏, 王军伟, 徐东辉. 蔬菜种子萌发的纳米调控及其机制研究进展[J]. 生物技术通报, 2025, 41(1): 14-24. |
| [5] | 文静, 李倩倩, 张明达, 谭茗月, 金博阳, 沈秀丽, 杜志强. Duox 2调控克氏原螯虾肠组织抗细菌先天免疫的分子机制[J]. 生物技术通报, 2025, 41(1): 324-332. |
| [6] | 蔡志成, 王媛媛, 桑晓涵, 曾丽仙, 邓文韬, 王佳媚. 低温等离子体活化溶液在抑菌及清除生物被膜中的研究进展[J]. 生物技术通报, 2024, 40(6): 95-104. |
| [7] | 李慧, 文钰芳, 王悦, 纪超, 石国优, 罗英, 周勇, 李志敏, 吴晓玉, 杨有新, 刘建萍. 盐胁迫下辣椒CaPIF4的表达特性与功能分析[J]. 生物技术通报, 2024, 40(4): 148-158. |
| [8] | 邹修为, 岳佳妮, 李志宇, 戴良英, 李魏. 水稻热激转录因子HsfA2b调控非生物胁迫抗性的功能分析[J]. 生物技术通报, 2024, 40(2): 90-98. |
| [9] | 余慧, 王静, 梁昕昕, 辛亚平, 周军, 赵会君. 宁夏枸杞铁镉响应基因的筛选及其功能验证[J]. 生物技术通报, 2023, 39(7): 195-205. |
| [10] | 刘辉, 卢扬, 叶夕苗, 周帅, 李俊, 唐健波, 陈恩发. 外源硫诱导苦荞镉胁迫响应的比较转录组学分析[J]. 生物技术通报, 2023, 39(5): 177-191. |
| [11] | 周恒, 谢彦杰. 植物氧化胁迫信号应答的研究进展[J]. 生物技术通报, 2023, 39(11): 36-43. |
| [12] | 赵佳, 赵飞燕, 沈馨, 高广琦, 孙志宏. 乳酸菌抗氧化活性及其应用研究进展[J]. 生物技术通报, 2023, 39(11): 182-190. |
| [13] | 姜南, 石杨, 赵志慧, 李斌, 赵熠辉, 杨俊彪, 闫家铭, 靳雨璠, 陈稷, 黄进. 镉胁迫下水稻OsPT1的表达及功能分析[J]. 生物技术通报, 2023, 39(1): 166-174. |
| [14] | 徐红云, 张明意. GRAS转录因子AtSCL4负调控拟南芥应答渗透胁迫[J]. 生物技术通报, 2022, 38(6): 129-135. |
| [15] | 呼艳姣, 陈美凤, 强瑀, 李海燕, 刘静, 秦樊鑫. 镉胁迫下锌硒交互作用对水稻镉毒害的缓解机制[J]. 生物技术通报, 2022, 38(4): 143-152. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||