生物技术通报 ›› 2025, Vol. 41 ›› Issue (6): 284-296.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0006
• 研究报告 • 上一篇
李小欢(
), 陈相宇, 陶麒宇, 朱玲, 唐铭, 姚银安, 汪丽君(
)
收稿日期:2025-01-03
出版日期:2025-06-26
发布日期:2025-06-30
通讯作者:
汪丽君,女,博士,讲师,研究方向 :林木遗传育种;E-mail: wanglijun@swust.edu.cn作者简介:李小欢,女,硕士研究生,研究方向 :植物学;E-mail: 2213917129@qq.com
基金资助:
LI Xiao-huan(
), CHEN Xiang-yu, TAO Qi-yu, ZHU Ling, TANG Ming, YAO Yin-an, WANG Li-jun(
)
Received:2025-01-03
Published:2025-06-26
Online:2025-06-30
摘要:
目的 研究PtoMYB61对毛白杨(Populus tomentosa)次生细胞壁形成和胁迫防御的影响,为木材发育和抗逆性育种奠定基础。 方法 使用RT-PCR法从毛白杨中克隆PtoMYB61基因。进化树分析及同源性比对预测其生物学功能。利用RT-qPCR分析PtoMYB61的组织表达特异性及对生物和非生物胁迫的响应。叶盘法转化毛白杨获得PtoMYB61过表达及敲除株系。采用组织切片、甲苯胺蓝染色、木质素含量测定及次生细胞壁生物合成途径中关键酶基因的表达量检测来分析PtoMYB61对杨树次生发育的影响。利用150 mmol/L NaCl处理转基因株系,通过表型观察及生理指标测定分析PtoMYB61对毛白杨耐盐性的影响。 结果 PtoMYB61基因编码了一个由309个氨基酸组成的R2R3-MYB转录因子,其在腋芽、叶和茎中有较高表达,且受到盐、ABA和真菌病的诱导。与野生型相比,过表达和敲除株系的生长表型没有明显差异,但PtoMYB61过表达植株的木质部细胞层数增多,木质素含量显著增加,次生细胞壁生物合成关键酶基因表达水平上调,而敲除PtoMYB61导致木质部细胞层数减少,木质素含量降低,及次生细胞壁生物合成关键酶基因下调。盐处理发现,与野生型相比,PtoMYB61敲除植株对盐胁迫更为敏感,而过表达株系则具有一定的耐受性。 结论 PtoMYB61响应盐胁迫的诱导,并通过调控杨树次生细胞壁发育进而影响杨树对盐胁迫的耐受性。
李小欢, 陈相宇, 陶麒宇, 朱玲, 唐铭, 姚银安, 汪丽君. PtoMYB61对毛白杨木质素合成及耐盐性的影响[J]. 生物技术通报, 2025, 41(6): 284-296.
LI Xiao-huan, CHEN Xiang-yu, TAO Qi-yu, ZHU Ling, TANG Ming, YAO Yin-an, WANG Li-jun. Effects of PtoMYB61 on Lignin Biosynthesis and Salt Tolerance in Populus tomentosa[J]. Biotechnology Bulletin, 2025, 41(6): 284-296.
图1 PtoMYB61的系统发育分析及氨基酸序列比对A:PtoMYB61的蛋白进化树分析;B:PtoMYB61氨基酸同源性分析
Fig. 1 Phylogenetic analysis and amino acid sequence alignment of PtoMYB61A: Protein phylogenetic tree analysis of PtoMYB61; B: amino acid homology analysis of PtoMYB61
图2 PtoMYB61表达模式的特异性分析A: 荧光定量分析PtoMYB61在不同组织中的表达量,R:根,S:茎,YL:幼叶,ML:成熟叶,P:叶柄,AB: 顶芽,LB:腋芽;星号表示使用 Student t 检验的显著差异(*P<0.05;**P<0.01),n=3,下同
Fig. 2 Specificity analysis of PtoMYB61 expression patternA: Quantitative analysis of the expression of PtoMYB61 in different tissues by fluorescence, R: root, S: stem, YL: young leaf, ML: mature leaf, P: petiole, AB: terminal bud, LB: axillary bud. Asterisks indicate significant differences using Student’s t-test ( *P<0.05; **P<0.01 ), n=3, the same below
图3 PtoMYB61转基因植株的阳性鉴定A:35S::PtoMYB61过表达株系的阳性鉴定电泳图,不同的数字代表独立的转基因株系;B:RT-qPCR分析35S::PtoMYB61过表达株系中PtoMYB61的相对表达量;C: CRISPR/Cas9定点编辑PtoMYB61基因的靶点示意图,T1-T3代表3个靶点的设计区域;D:PtoMYB61突变株系的测序分析,图片显示3、4、5三个独立株系中间的碱基缺失情况
Fig. 3 Positive identification of transgenic plants of PtoMYB61A: Positive identification electropherogram of 35S::PtoMYB61 overexpressed plants, different numbers represent independent transgenic lines; B: RT-qPCR quantitative results of overexpressed strains; C: schematic diagram of CRISPR/Cas9 targeted editing of PtoMYB61, T1 to T3 represent the design areas of three targets; D: Sequencing analysis of PtoMYB61 mutant lines, the picture shows the base deletion in the middle of 3, 4 and 5 independent lines
图4 PtoMYB61转基因株系的形态学观察A:生长9周的毛白杨植株,标尺=10 cm;B:生长9周的毛白杨植株根,标尺=10 cm;C:4-9周的毛白杨植株高度统计;D:4-9周的毛白杨植株离地5 cm茎直径统计;E:生长11周的毛白杨根长;F:生长11周的毛白杨根部表面积
Fig. 4 Morphological observation of transgenic lines of PtoMYB61A: 9-week-old Populus tomentosa, scale bar=10 cm; B: roots of 9-week-old P. tomentosa plant, scale bar=5 cm; C: height statistics of P. tomentosa from 4 weeks to 9 weeks; D: statistics of stem diameter of P. tomentosa 5 cm above the ground from 4 weeks to 9 weeks; E: the root length of P. tomentosa growing for 11 weeks; F: root surface area of P. tomentosa growing for 11 weeks
图5 PtoMYB61转基因株系杨树木质素及总黄酮含量的检测A:WT植株和PtoMYB61转基因株系在体式显微镜下第5节间和第7节间的茎横切面;B:第4/5/7茎节的木质部细胞层数统计,n=10;C:WT和转基因植株茎中木质素含量,n=3;D:WT和转基因植株叶中的总黄酮含量,误差线表示均值±SD,不同的小写字母表示基于单因素方差分析后进行Tukey’s post hoc test的显著差异(P<0.05),下同
Fig. 5 Detection of lignin and total flavonoids in transgenic lines of PtoMYB61A: Cross-section of the stem of the 5th and 7th internode of WT plant and PtoMYB61 transgenic line under the stereomicroscope; B: statistics of xylem cell layers in the 4th, 5th and 7th stem nodes, n=10; C: lignin content in stems of WT and transgenic plants, n=3; D: total flavonoids content in leaves of WT and transgenic plants. The error line indicates the mean SD, and different lowercase letters indicate the significant difference of Tukey’s post hoc test based on one-way ANOVA (P<0.05), the same below
图6 转基因杨树茎中次生壁生物合成基因的表达分析A: 木质素生物合成基因;B: 纤维素生物合成基因;C: 木聚糖合酶基因
Fig. 6 Expression analysis of secondary cell wall biosynthesis genes in transgenic poplar stemsA: Lignin biosynthesis genes; B: cellulose biosynthesis genes; C: xylan synthase gene
图7 盐处理对PtoMYB61过表达及敲除株系的影响A:150 mmol/L NaCl 处理7 d后的表型图,标尺=10 cm;B:150 mmol/L NaCl处理4 d后,DAB 染色结果图,标尺=5 cm
Fig. 7 Phenotype of PtoMYB61 over-expressing and knocking-out lines under salt stressA: Phenotypic map after 7 d of 150 mmol/L NaCl treatment, bar=10 cm; B: DAB staining results after four days of 150 mmol/L NaCl treatment, bar=5 cm
| 1 | Sundell D, Street NR, Kumar M, et al. AspWood: high-spatial-resolution transcriptome profiles reveal uncharacterized modularity of wood formation in Populus tremula [J]. Plant Cell, 2017, 29(7): 1585-1604. |
| 2 | Cosgrove DJ, Jarvis MC. Comparative structure and biomechanics of plant primary and secondary cell walls [J]. Front Plant Sci, 2012, 3: 204. |
| 3 | Kelly SM, Munoz-Munoz J, van Sinderen D. Plant glycan metabolism by bifidobacteria [J]. Front Microbiol, 2021, 12: 609418. |
| 4 | Weng JK, Chapple C. The origin and evolution of lignin biosynthesis [J]. New Phytol, 2010, 187(2): 273-285. |
| 5 | Zhao Q. Lignification: flexibility, biosynthesis and regulation [J]. Trends Plant Sci, 2016, 21(8): 713-721. |
| 6 | Ohtani M, Demura T. The quest for transcriptional hubs of lignin biosynthesis: beyond the NAC-MYB-gene regulatory network model [J]. Curr Opin Biotechnol, 2019, 56: 82-87. |
| 7 | Ko JH, Kim WC, Han KH. Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis [J]. Plant J, 2009, 60(4): 649-665. |
| 8 | McCarthy RL, Zhong RQ, Ye ZH. MYB83 is a direct target of SND1 and acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in Arabidopsis [J]. Plant Cell Physiol, 2009, 50(11): 1950-1964. |
| 9 | Geng P, Zhang S, Liu JY, et al. MYB20, MYB42, MYB43, and MYB85 regulate phenylalanine and lignin biosynthesis during secondary cell wall formation [J]. Plant Physiol, 2020, 182(3): 1272-1283. |
| 10 | Zhong RQ, Ye ZH. MYB46 and MYB83 bind to the SMRE sites and directly activate a suite of transcription factors and secondary wall biosynthetic genes [J]. Plant Cell Physiol, 2012, 53(2): 368-380. |
| 11 | 张勇, 张守攻, 齐力旺, 等. 杨树——林木基因组学研究的模式物种 [J]. 植物学通报, 2006, 41(3): 286-293. |
| Zhang Y, Zhang SG, Qi LW, et al. Poplar as a model for forest tree in genome research [J]. Chin Bull Bot, 2006, 41(3): 286-293. | |
| 12 | Zhong RQ, McCarthy RL, Haghighat M, et al. The poplar MYB master switches bind to the SMRE site and activate the secondary wall biosynthetic program during wood formation [J]. PLoS One, 2013, 8(7): e69219. |
| 13 | Chai GH, Qi G, Cao YP, et al. Poplar PdC3H17 and PdC3H18 are direct targets of PdMYB3 and PdMYB21, and positively regulate secondary wall formation in Arabidopsis and poplar [J]. New Phytol, 2014, 203(2): 520-534. |
| 14 | McCarthy RL, Zhong RQ, Fowler S, et al. The poplar MYB transcription factors, PtrMYB3 and PtrMYB20, are involved in the regulation of secondary wall biosynthesis [J]. Plant Cell Physiol, 2010, 51(6): 1084-1090. |
| 15 | Zhong RQ, McCarthy RL, Lee CH, et al. Dissection of the transcriptional program regulating secondary wall biosynthesis during wood formation in poplar [J]. Plant Physiol, 2011, 157(3): 1452-1468. |
| 16 | Wang LJ, Lu WX, Ran LY, et al. R2R3-MYB transcription factor MYB6 promotes anthocyanin and proanthocyanidin biosynthesis but inhibits secondary cell wall formation in Populus tomentosa [J]. Plant J, 2019, 99(4): 733-751. |
| 17 | Yang L, Zhao X, Ran LY, et al. PtoMYB156 is involved in negative regulation of phenylpropanoid metabolism and secondary cell wall biosynthesis during wood formation in poplar [J]. Sci Rep, 2017, 7: 41209. |
| 18 | Wang ZF, Mao YL, Guo YJ, et al. MYB transcription Factor161 mediates feedback regulation of Secondary wall-associated NAC-Domain1 family genes for wood formation [J]. Plant Physiol, 2020, 184(3): 1389-1406. |
| 19 | Jiao B, Zhao X, Lu WX, et al. The R2R3 MYB transcription factor MYB189 negatively regulates secondary cell wall biosynthesis in Populus [J]. Tree Physiol, 2019, 39(7): 1187-1200. |
| 20 | Tang XF, Zhuang YM, Qi G, et al. Poplar PdMYB221 is involved in the direct and indirect regulation of secondary wall biosynthesis during wood formation [J]. Sci Rep, 2015, 5: 12240. |
| 21 | Guo HY, Wang YC, Wang LQ, et al. Expression of the MYB transcription factor gene BplMYB46 affects abiotic stress tolerance and secondary cell wall deposition in Betula Platyphylla [J]. Plant Biotechnol J, 2017, 15(1): 107-121. |
| 22 | Yu Y, Liu HZ, Zhang N, et al. The BpMYB4 transcription factor from Betula platyphylla contributes toward abiotic stress resistance and secondary cell wall biosynthesis [J]. Front Plant Sci, 2021, 11: 606062. |
| 23 | Hu RB, Qi G, Kong YZ, et al. Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa [J]. BMC Plant Biol, 2010, 10: 145. |
| 24 | Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔct Method [J]. Methods, 2001, 25(4): 402-408. |
| 25 | Shi R, Sun YH, Li QZ, et al. Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes [J]. Plant Cell Physiol, 2010, 51(1): 144-163. |
| 26 | Zhao YQ, Song XQ, Zhou HJ, et al. KNAT2/6b, a class I KNOX gene, impedes xylem differentiation by regulating NAC domain transcription factors in poplar [J]. New Phytol, 2020, 225(4): 1531-1544. |
| 27 | Ma XL, Zhang QY, Zhu QL, et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants [J]. Mol Plant, 2015, 8(8): 1274-1284. |
| 28 | 汪丽君. 杨树转录因子MYB6调控类黄酮和木质素生物合成的机制研究 [D]. 重庆: 西南大学, 2018. |
| Wang LJ. The transcriptional regulatory mechanism of the poplar transcription factor MYB6 involved in flavonoid and lignin biosynthesis [D]. Chongqing: Southwest University, 2018. | |
| 29 | 任园宇, 魏东伟, 王中伟, 等. 亚硝酸钠-硝酸铝比色法测定干旱胁迫前后玉米幼苗的总黄酮含量 [J]. 农学学报, 2020, 10(5): 15-20. |
| Ren YY, Wei DW, Wang ZW, et al. Total flavonoids in maize seedlings before and after drought stress: determination with sodium nitrite-aluminum nitrate colorimetry [J]. J Agric, 2020, 10(5): 15-20. | |
| 30 | Rao XL, Dixon RA. Current models for transcriptional regulation of secondary cell wall biosynthesis in grasses [J]. Front Plant Sci, 2018, 9: 399. |
| 31 | Zhong RQ, Cui DT, Ye ZH. Secondary cell wall biosynthesis [J]. New Phytol, 2019, 221(4): 1703-1723. |
| 32 | Novaković L, Guo TT, Bacic A, et al. Hitting the wall-sensing and signaling pathways involved in plant cell wall remodeling in response to abiotic stress [J]. Plants, 2018, 7(4): 89. |
| 33 | Zhang J, Wang XQ, Wang HT, et al. Overexpression of reduced wall acetylation c increases xylan acetylation and biomass recalcitrance in Populus [J]. Plant Physiol, 2023, 194(1): 243-257. |
| 34 | Zhang J, Tuskan GA, Tschaplinski TJ, et al. Transcriptional and post-transcriptional regulation of lignin biosynthesis pathway genes in Populus [J]. Front Plant Sci, 2020, 11: 652. |
| 35 | Wang LJ, Ran LY, Hou YS, et al. The transcription factor MYB115 contributes to the regulation of proanthocyanidin biosynthesis and enhances fungal resistance in poplar [J]. New Phytol, 2017, 215(1): 351-367. |
| 36 | Vanholme R, De Meester B, Ralph J, et al. Lignin biosynthesis and its integration into metabolism [J]. Curr Opin Biotechnol, 2019, 56: 230-239. |
| 37 | 齐琪, 马书荣, 徐维东. 盐胁迫对植物生长的影响及耐盐生理机制研究进展 [J]. 分子植物育种, 2020, 18(8): 2741-2746. |
| Qi Q, Ma SR, Xu WD. Advances in the effects of salt stress on plant growth and physiological mechanisms of salt tolerance [J]. Mol Plant Breed, 2020, 18(8): 2741-2746. |
| [1] | 李锐, 胡婷, 陈树溦, 王尧, 王计平. 紫苏PfMYB80转录因子正向调控花青素的生物合成[J]. 生物技术通报, 2025, 41(6): 243-255. |
| [2] | 郭涛, 艾丽皎, 邹世慧, 周玲, 李学梅. 山茶CjRAV1调控开花延迟的功能研究[J]. 生物技术通报, 2025, 41(6): 208-217. |
| [3] | 程珊, 王会伟, 陈晨, 朱雅婧, 李春鑫, 别海, 王树峰, 陈献功, 张向歌. 油莎豆MYB转录因子基因CeMYB154克隆及耐盐功能分析[J]. 生物技术通报, 2025, 41(6): 218-228. |
| [4] | 罗嗣芳, 张祖铭, 谢丽芳, 郭紫晶, 陈兆星, 杨月华, 严翔, 张洪铭. 山金柑GATA基因家族全基因组鉴定及在果实发育中的表达分析[J]. 生物技术通报, 2025, 41(5): 218-230. |
| [5] | 杨春, 王晓倩, 王红军, 晁跃辉. 蒺藜苜蓿MtZHD4基因克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2025, 41(5): 244-254. |
| [6] | 胡若群, 曾菁菁, 梁婉凤, 曹佳玉, 黄小苇, 梁晓英, 仇明月, 陈莹. 转录组和代谢组联合分析探究不同遮光条件下金线莲类胡萝卜素合成代谢机制[J]. 生物技术通报, 2025, 41(5): 231-243. |
| [7] | 曲珊, 赵月, 李雅华, 郑桂玲, 咸洪泉. 调控棘孢木霉几丁质酶Tachi2基因的转录因子和蛋白的互作研究[J]. 生物技术通报, 2025, 41(5): 310-319. |
| [8] | 杨朝结, 张兰, 陈红, 黄娟, 石桃雄, 朱丽伟, 陈庆富, 李洪有, 邓娇. 苦荞转录因子基因FtbHLH3调控类黄酮生物合成的功能鉴定[J]. 生物技术通报, 2025, 41(4): 134-144. |
| [9] | 王天禧, 杨炳松, 潘荣君, 盖文贤, 梁美霞. 苹果PLATZ基因家族鉴定及MdPLATZ9基因功能研究[J]. 生物技术通报, 2025, 41(4): 176-187. |
| [10] | 宋姝熠, 蒋开秀, 刘欢艳, 黄亚成, 刘林娅. ‘红阳’猕猴桃TCP基因家族鉴定及其在果实中的表达分析[J]. 生物技术通报, 2025, 41(3): 190-201. |
| [11] | 王斌, 王玉昆, 肖艳辉. 丁香罗勒(Ocimum gratissimum)叶片响应镉胁迫的比较转录组学分析[J]. 生物技术通报, 2025, 41(3): 255-270. |
| [12] | 刘洁, 王飞, 陶婷, 张玉静, 陈浩婷, 张瑞星, 石玉, 张毅. 过表达SlWRKY41提高番茄幼苗抗旱性[J]. 生物技术通报, 2025, 41(2): 107-118. |
| [13] | 李艳伟, 杨妍妍, 孙亚玲, 霍雨猛, 王振宝, 刘冰江. 基于转录组分析植物激素对洋葱鳞茎膨大发育的调控机制[J]. 生物技术通报, 2025, 41(2): 187-201. |
| [14] | 钱政毅, 吴绍芳, 曹舒怡, 宋雅欣, 潘鑫峰, 李兆伟, 范凯. 睡莲NAC转录因子的鉴定及其表达分析[J]. 生物技术通报, 2025, 41(2): 234-247. |
| [15] | 寇焙森, 程萌萌, 郭雪琴, 葛彬, 刘迪, 陆海, 李慧. 组蛋白去乙酰化酶抑制剂TSA处理对杨树茎生长发育的影响[J]. 生物技术通报, 2025, 41(1): 240-251. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||