生物技术通报 ›› 2025, Vol. 41 ›› Issue (6): 327-334.doi: 10.13560/j.cnki.biotech.bull.1985.2024-1257
• 研究报告 • 上一篇
收稿日期:2024-12-25
出版日期:2025-06-26
发布日期:2025-06-30
通讯作者:
邬向丽,女,博士,副研究员,研究方向 :食用菌遗传发育;E-mail: wuxiangli@caas.cn作者简介:裴景琪,女,硕士,研究方向 :食用菌遗传发育;E-mail: peijingqi666@163.com
基金资助:
PEI Jing-qi(
), ZHAO Meng-ran, HUANG Chen-yang, WU Xiang-li(
)
Received:2024-12-25
Published:2025-06-26
Online:2025-06-30
摘要:
目的 研究功能未知基因g13394对糙皮侧耳菌丝到原基及子实体发育的影响。 方法 通过PCR技术从糙皮侧耳CCMSSC00389菌株中扩增g13394基因,并进行生物信息学分析。利用同源重组方法构建g13394基因的过表达载体和RNAi载体,并通过根癌农杆菌介导的方法对糙皮侧耳进行遗传转化,通过RT-qPCR检测基因表达量筛选g13394过表达菌株和RNAi菌株。对转化菌株和野生型菌株(WT)在菌丝生长阶段和子实体发育阶段的表型进行比较。 结果 生物信息学分析显示,g13394基因编码的蛋白无明确的已知结构域,亚细胞定位预测为细胞核。成功构建并获得了g13394基因的过表达菌株和RNAi菌株各两株。与野生型菌株相比,过表达菌株在菌丝生长和子实体发育阶段生长速度显著加快,而RNAi菌株菌丝生长速度显著减慢,原基和子实体发育时间延缓。 结论 基因g13394促进菌丝生长、加速子实体发育。
裴景琪, 赵梦然, 黄晨阳, 邬向丽. 一个影响糙皮侧耳生长发育的功能基因的发现与验证[J]. 生物技术通报, 2025, 41(6): 327-334.
PEI Jing-qi, ZHAO Meng-ran, HUANG Chen-yang, WU Xiang-li. Discovery and Verification of a Functional Gene Influencing the Growth and Development of Pleurotus ostreatus[J]. Biotechnology Bulletin, 2025, 41(6): 327-334.
引物名称 Primer name | 引物序列 Primer sequence(5'-3') | 用途 Purpose |
|---|---|---|
| g13394-F | ATGAACGAAGTCTCGGG | 克隆 |
| g13394-R | TCACGCGCCCTCTGCATTTA | |
| OE13-F | ACTGACCTGGGGATCCATGAACGAAGTCTCGGGGCG | |
| OE13-R | GCATGCCAATTCTAGATCACGCGCCCTCTGCATTTAACACG | |
| Ri-sense-g13394 F | ACTGACCTGGGGATCCTCACGCGCCCTCTGCATT | |
| Ri-sense-g13394 R | GCATGCCAATTCTAGAACGAAAGAGAGAGCATCCAAGGC | |
| Ri-anti-g13394 F | TCTCTTTCGTTCTAGACGGATGTCCTCTACGAGGGA | |
| Ri-anti-g13394 R | GGCCAGTGCCAAGCTTTCACGCGCCCTCTGCATT | |
| q13-F | CGCTCACCTGCTCAATACG | RT-qPCR引物 |
| q13-R | TCCATGACCCTGCCAATTG | |
| tub-F | AGGCTTTCTTGCATTGGTACACGC | 内参引物 |
| tub-R | TATTCGCCTTCTTCCTCATCGGCA | |
| S10-F | CCACACAAATCCTCTCACTCACG | 验证引物 |
| S10-R | GCTTGCATGCCTGCAGTAATT | |
| Hyg-F | CGACAGATCCGGTCGGCATCTACTCTATTTCTT | |
| Hyg-R | TCTCGTGCTTTCAGCTTCGATGTAGGAGGG |
表1 引物列表
Table 1 List of primers
引物名称 Primer name | 引物序列 Primer sequence(5'-3') | 用途 Purpose |
|---|---|---|
| g13394-F | ATGAACGAAGTCTCGGG | 克隆 |
| g13394-R | TCACGCGCCCTCTGCATTTA | |
| OE13-F | ACTGACCTGGGGATCCATGAACGAAGTCTCGGGGCG | |
| OE13-R | GCATGCCAATTCTAGATCACGCGCCCTCTGCATTTAACACG | |
| Ri-sense-g13394 F | ACTGACCTGGGGATCCTCACGCGCCCTCTGCATT | |
| Ri-sense-g13394 R | GCATGCCAATTCTAGAACGAAAGAGAGAGCATCCAAGGC | |
| Ri-anti-g13394 F | TCTCTTTCGTTCTAGACGGATGTCCTCTACGAGGGA | |
| Ri-anti-g13394 R | GGCCAGTGCCAAGCTTTCACGCGCCCTCTGCATT | |
| q13-F | CGCTCACCTGCTCAATACG | RT-qPCR引物 |
| q13-R | TCCATGACCCTGCCAATTG | |
| tub-F | AGGCTTTCTTGCATTGGTACACGC | 内参引物 |
| tub-R | TATTCGCCTTCTTCCTCATCGGCA | |
| S10-F | CCACACAAATCCTCTCACTCACG | 验证引物 |
| S10-R | GCTTGCATGCCTGCAGTAATT | |
| Hyg-F | CGACAGATCCGGTCGGCATCTACTCTATTTCTT | |
| Hyg-R | TCTCGTGCTTTCAGCTTCGATGTAGGAGGG |
图1 g13394的生物信息学分析A:基因结构;B:跨膜结构域分析;C:蛋白结构域预测;D:磷酸化位点预测;E:信号肽预测
Fig. 1 Bioinformatics analysis of g13394A: Gene structure; B: transmembrane structural domain analysis; C: signal peptide prediction; D: phosphorylation site prediction; E: protein structural domain prediction
图3 g13394过表达和干扰质粒图谱A:质粒Po-gpdOE-g13394;B:质粒RNAi-g13394
Fig. 3 g13394 overexpression and RNAi plasmid profilesA: Plasmid Po-gpdOE-g13394; B: plasmid RNAi-g13394
图4 g13394转化子PCR验证及相对表达水平A:过表达转化子;B:RNAi转化子;M:DL2000 marker; 1-20:g13394转化子;CK:阳性对照(g13394过表达/RNAi 质粒);NC1:阴性对照(野生型);NC2:阴性对照(ddH2O);C:过表达阳性转化子;D:RNAi阳性转化子;WT:野生型;OE-2、OE-7、OE-9、OE-10、OE-13在图A中对应泳道1、6、8、9、12;Ri-12、Ri-13、Ri-23、Ri-32、Ri-34在图B中对应泳道1、2、7、16、18。不同字母表示不同菌株之间存在显著差异,P<0.05。下同
Fig. 4 PCR verification of g13394 putative transformants and the relative expressionA: Overexpression positive transformants; B: RNAi positive transformants; M: DL2000 marker; 1-20: g13394 transformants; CK: positive control (g13394 overexpression/RNAi plasmid); NC1: negative control (WT); NC2: negative control (ddH2O); C: Overexpressing positive transformants; D: RNAi transformants; WT: wild type; OE-2, OE-7, OE-9, OE-10, and OE-13 correspond to lane 1, 6, 8, 9, 12 in Fig. 4-A. Ri-12, Ri-13, Ri-23, Ri-32, and Ri-34 correspond to lane 1, 2, 7, 16, 18 in Fig. 4-B. Different letters indicate significant differences among strains at P<0.05. The same below
图5 野生型菌株和g13394转化菌株在PDA培养基上的菌丝生长A:菌落形态;B:菌丝生长速率
Fig. 5 Mycelial growth of wild-type strain and g13394 transformed strain on PDA mediumA: Colony morphology. B: Mycelial growth rate
图6 野生型菌株和g13394转化菌株的子实体形成情况A:子实体形态;M:菌丝期(12 d);P:原基期(25 d);F:子实体期(29 d);B:原基形成时间;C:子实体形成时间
Fig. 6 Fruiting body development of the wild-type strain and g13394 transformantsA: Fruiting body morphology; M: mycelium (12 d); P: primordium (25 d); F: fruiting body (29 d). B: Primordium formation time. C: Fruiting body formation time
| 1 | Liu Q, Kong WL, Cui X, et al. Dynamic succession of microbial compost communities and functions during Pleurotus ostreatus mushroom cropping on a short composting substrate [J]. Front Microbiol, 2022, 13: 946777. |
| 2 | Li X, Liu MQ, Dong CH. Hydrophobin gene Cmhyd4 negatively regulates fruiting body development in edible fungi Cordyceps militaris [J]. Int J Mol Sci, 2023, 24(5): 4586. |
| 3 | Lyu XM, Jiang SY, Wang L, et al. The Fvclp1 gene regulates mycelial growth and fruiting body development in edible mushroom Flammulina velutipes [J]. Arch Microbiol, 2021, 203(9): 5373-5380. |
| 4 | Lyu XM, Wang QJ, Liu A, et al. The transcription factor Ste12-like increases the mycelial abiotic stress tolerance and regulates the fruiting body development of Flammulina filiformis [J]. Front Microbiol, 2023, 14: 1139679. |
| 5 | Tao YX, Chen RL, Yan JJ, et al. A hydrophobin gene, Hyd9, plays an important role in the formation of aerial hyphae and primordia in Flammulina filiformis [J]. Gene, 2019, 706: 84-90. |
| 6 | Li ZH, Zhou YY, Xu CT, et al. Genome-wide analysis of the Pleurotus eryngii laccase gene (PeLac) family and functional identification of PeLac5 [J]. AMB Express, 2023, 13(1): 104. |
| 7 | Liu QZ, Qu S, He GQ, et al. Mating-type genes play an important role in fruiting body development in Morchella sextelata [J]. J Fungi, 2022, 8(6): 564. |
| 8 | Hou LD, Liu ZQ, Yan KX, et al. Mnsod1 promotes the development of Pleurotus ostreatus and enhances the tolerance of mycelia to heat stress [J]. Microb Cell Fact, 2022, 21(1): 155. |
| 9 | Hou LD, Wang LN, Wu XL, et al. Expression patterns of two pal genes of Pleurotus ostreatus across developmental stages and under heat stress [J]. BMC Microbiol, 2019, 19(1): 231. |
| 10 | 王丽宁. 糙皮侧耳过氧化氢酶基因特征分析和功能研究 [D]. 北京: 中国农业科学院, 2019. |
| Wang LN. Characteristics and function of catalase gene in Pleurotus ostreatus [D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. | |
| 11 | Pei JQ, Zhao MR, Zhang LJ, et al. The metacaspase gene PoMCA1 enhances the mycelial heat stress tolerance and regulates the fruiting body development of Pleurotus ostreatus [J]. Horticulturae, 2024, 10(2): 116. |
| 12 | Song LH, Ciftci-Yilmaz S, Harper J, et al. Enhanced tolerance to oxidative stress in transgenic Arabidopsis plants expressing proteins of unknown function [J]. Plant Physiol, 2008, 148(1): 280-292. |
| 13 | Ricoux R, Boucher JL, Mansuy D, et al. Microperoxidase 8 catalyzed nitration of phenol by nitrogen dioxide radicals [J]. Eur J Biochem, 2001, 268(13): 3783-3788. |
| 14 | Lei M, Wu XL, Zhang JX, et al. Establishment of an efficient transformation system for Pleurotus ostreatus [J]. World J Microbiol Biotechnol, 2017, 33(12): 214. |
| 15 | 侯志浩. 糙皮侧耳Zn2Cys6转录因子家族的表达分析及PoZCP26的功能研究 [D]. 北京: 中国农业科学院, 2020. |
| Hou ZH. Expression analysis of Zn2Cys6 transcription factor family in Pleurotus ostreatus and functional study of PoZCP26 [D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. | |
| 16 | Chen SC, Ge W, Buswell JA. Molecular cloning of a new laccase from the edible straw mushroom Volvariella volvacea: possible involvement in fruit body development [J]. FEMS Microbiol Lett, 2004, 230(2): 171-176. |
| 17 | 边银丙. 食用菌栽培学 [M]. 3版. 北京: 高等教育出版社, 2017. |
| Bian YB. Edible mushroom cultivation [M]. 3rd ed. Beijing: Higher Education Press, 2017. | |
| 18 | de Jong JF, Ohm RA, de Bekker C, et al. Inactivation of Ku80 in the mushroom-forming fungus Schizophyllum commune increases the relative incidence of homologous recombination [J]. FEMS Microbiol Lett, 2010, 310(1): 91-95. |
| 19 | Peñas MM, Asgeirsdóttir SA, Lasa I, et al. Identification, characterization, and in situ detection of a fruit-body-specific hydrophobin of Pleurotus ostreatus [J]. Appl Environ Microbiol, 1998, 64(10): 4028-4034. |
| 20 | Qi YC, Chen HJ, Zhang MK, et al. Identification and expression analysis of Pofst3 suggests a role during Pleurotus ostreatus primordia formation [J]. Fungal Biol, 2019, 123(3): 200-208. |
| 21 | Gollery M, Harper J, Cushman J, et al. What makes species unique? The contribution of proteins with obscure features [J]. Genome Biol, 2006, 7(7): R57. |
| 22 | Gollery M, Harper J, Cushman J, et al. POFs: what we don't know can hurt us [J]. Trends Plant Sci, 2007, 12(11): 492-496. |
| 23 | Zhang Y, Zhang F, Huang XZ. Characterization of an Arabidopsis thaliana DUF761-containing protein with a potential role in development and defense responses [J]. Theor Exp Plant Physiol, 2019, 31(2): 303-316. |
| 24 | Zhou XY, Zhu XG, Shao WN, et al. Genome-wide mining of wheat DUF966 gene family provides new insights into salt stress responses [J]. Front Plant Sci, 2020, 11: 569838. |
| 25 | Chen K, Wang YL, Nong XY, et al. Characterization and in silico analysis of the domain unknown function DUF568-containing gene family in rice (Oryza sativa L.) [J]. BMC Genomics, 2023, 24(1): 544. |
| 26 | Sánchez-Castro I, Gómez C, García J, et al. Role of certain DUF proteins in Agaricus bisporus development and environmental stress responses [J]. Fungal Biology Reviews, 2019, 32(3): 143-150. |
| 27 | López-García M, Pérez A, Hernández F, et al. Functional analysis of a DUF protein in white rot fungus reveals its role in mycelial growth and fruiting body formation [J]. Fungal Biology, 2020, 124(2): 120-129. |
| 28 | Rathore M, Kumar V, Singh S, et al. Multiple unknown function genes in Aspergillus niger are involved in spore formation and growth regulation [J]. Fungal Genetics and Biology, 2018, 112(1): 87-95. |
| 29 | Zhang L, Li J, Wang S, et al. Functional analysis of a novel DUF protein in Pleurotus ostreatus reveals its role in fruiting body development [J]. Fungal Genetics and Biology, 2020, 138(1): 103-112. |
| 30 | Li Y, Chen W, Zhou M, et al. Identification and characterization of a DUF protein involved in mycelial growth and fruiting body formation in Lentinula edodes [J]. Mycologia, 2019, 111(6): 123-131. |
| 31 | Wang H, Zhao X, Zhang Y, et al. A novel DUF protein regulates sexual development in Schizophyllum commune [J]. Fungal Biology, 2018, 122(2): 99-106. |
| 32 | Chen G, Lin Y, Xu Z, et al. Functional characterization of a DUF protein in Coprinopsis cinerea reveals its involvement in fruiting body development [J]. Fungal Genetics and Biology, 2017, 96(1): 73-80. |
| [1] | 许慧珍, SHANTWANA Ghimire, RAJU Kharel, 岳云, 司怀军, 唐勋. 马铃薯SUMO E3连接酶基因家族分析及StSIZ1基因的克隆与表达模式分析[J]. 生物技术通报, 2025, 41(6): 119-129. |
| [2] | 刘鑫, 王嘉雯, 李进伟, 牟策, 杨盼盼, 明军, 徐雷锋. 兰州百合三个LdBBXs基因的克隆与表达分析[J]. 生物技术通报, 2025, 41(5): 186-196. |
| [3] | 杨朝结, 张兰, 陈红, 黄娟, 石桃雄, 朱丽伟, 陈庆富, 李洪有, 邓娇. 苦荞转录因子基因FtbHLH3调控类黄酮生物合成的功能鉴定[J]. 生物技术通报, 2025, 41(4): 134-144. |
| [4] | 班秋艳, 赵鑫月, 迟文静, 黎俊生, 王琼, 夏瑶, 梁丽云, 贺巍, 李叶云, 赵广山. 茶树光敏色素互作因子CsPIF3a的克隆及其与光温逆境的响应[J]. 生物技术通报, 2025, 41(4): 256-265. |
| [5] | 文博霖, 万敏, 胡建军, 王克秀, 景晟林, 王心悦, 朱博, 唐铭霞, 李兵, 何卫, 曾子贤. 马铃薯川芋50遗传转化及基因编辑体系的建立[J]. 生物技术通报, 2025, 41(4): 88-97. |
| [6] | 彭婷, 林颖, 谭圆圆, 饶英, 黄覃, 张文娥, 汪波, 田瑞丰, 刘国锋. 多星韭AwANSs基因的克隆与表达分析[J]. 生物技术通报, 2025, 41(3): 230-239. |
| [7] | 许圆梦, 毛娇, 王梦瑶, 王数, 任江陵, 刘宇涵, 刘思辰, 乔治军, 王瑞云, 曹晓宁. 糜子PmDEP1和PmEP3基因的克隆与表达特征分析[J]. 生物技术通报, 2025, 41(2): 150-162. |
| [8] | 焦小雨, 吴琼, 刘丹丹, 孙明慧, 阮旭, 王雷刚, 王文杰. 茶树CsWAK8克隆及其在响应冷胁迫过程中的功能分析[J]. 生物技术通报, 2025, 41(2): 210-220. |
| [9] | 宋倩娜, 段永红, 冯瑞云. CRISPR/Cas9介导的高效四倍体马铃薯试管薯基因编辑体系的建立[J]. 生物技术通报, 2024, 40(9): 33-41. |
| [10] | 乔岩, 杨芳, 任盼荣, 祁伟亮, 安沛沛, 李茜, 李丹, 肖俊飞. 马铃薯野生种烯酰水合酶超家族基因ScDHNS的克隆与功能分析[J]. 生物技术通报, 2024, 40(9): 92-103. |
| [11] | 庞梦真, 徐汉琴, 刘海燕, 宋娟, 王佳涵, 孙丽娜, 姬佩梅, 尹泽芝, 胡又川, 赵晓萌, 梁闪闪, 张泗举, 栾维江. 水稻黄化早抽穗突变体 hz1 的基因鉴定及功能分析[J]. 生物技术通报, 2024, 40(7): 125-136. |
| [12] | 沈真辉, 曹瑶, 杨林雷, 罗祥英, 子灵山, 陆青青, 李荣春. 金耳和毛韧革菌麦角硫因生物合成基因的克隆及生物信息学分析[J]. 生物技术通报, 2024, 40(7): 259-272. |
| [13] | 黄丹, 姜山, 彭涛. 褐角苔FfCYP98基因克隆及其功能分析[J]. 生物技术通报, 2024, 40(7): 273-284. |
| [14] | 张美玉, 赵玉斌, 王灵云, 宋元达, 赵新河, 任晓洁. 微藻破囊壶菌产功能性脂肪酸DHA研究进展[J]. 生物技术通报, 2024, 40(6): 81-94. |
| [15] | 王玉书, 赵琳琳, 赵爽, 胡琦, 白慧霞, 王欢, 曹业萍, 范震宇. 大白菜BrCYP83B1基因的克隆及表达分析[J]. 生物技术通报, 2024, 40(6): 152-160. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||