生物技术通报 ›› 2015, Vol. 31 ›› Issue (11): 51-59.doi: 10.13560/j.cnki.biotech.bull.1985.2015.11.001
刘捷孟1,2, 戚继1
收稿日期:
2015-07-21
出版日期:
2015-11-26
发布日期:
2015-11-26
作者简介:
刘捷孟,博士,研究方向: 宏基因组学;E-mail: icaruswing@126.com
Liu Jiemeng1,2, Qi Ji1
Received:
2015-07-21
Published:
2015-11-26
Online:
2015-11-26
摘要: 新一代测序技术的快速发展,使得元基因组学研究方法成为了理解环境微生物群落结构和相互作用的重要手段之一。元基因组学方法不需要将环境样本中的微生物单独分离培养,而是作为整体进行研究,因而可以回避传统研究时分离培养微生物的困难。基于这一优势,人体、海洋和土壤等环境有关的各项环境微生物测序计划相继启动,并取得了一系列重要的研究进展。探讨了元基因组测序数据分析中所经常采用的方法,以及有关流程的优势和局限性,并进一步讨论了这些方法在各种环境微生物研究中的应用和成果。
刘捷孟, 戚继. 元基因组学方法在环境微生物中的研究进展[J]. 生物技术通报, 2015, 31(11): 51-59.
Liu Jiemeng, Qi Ji. Progress in the Study of Environmental Microbes by Metagenomic Methods[J]. Biotechnology Bulletin, 2015, 31(11): 51-59.
[1] Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiological Reviews, 1995, 59(1): 143-169. [2] Handelsman J, Rondon MR, Brady SF, et al. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products[J]. Chem Biol, 1998, 5(10): R245-R249. [3] Nelson KE, White BA. Metagenomics and Its Applications to the Study of the Human Microbiome[M]//Marco D. Metagenomics: Theory, Methods and Applications, Caister Academic Press, 2010. [4] Li LL, McCorkle SR, Monchy S, et al. Bioprospecting metagenomes: glycosyl hydrolases for converting biomass[J]. Biotechnology for Biofuels, 2009, 2: 10. [5] George I. Application of Metagenomics to Bioremediation, in Metagenomics: Theory, Methods and Applications[M]. Caister Academic Press, 2010. [6] Raes J, Letunic I, Yamada T, et al. Toward molecular trait-based ecology through integration of biogeochemical, geographical and metagenomic data[J]. Molecular Systems Biology, 2011, 7: 473. [7] Human Microbiome Jumpstart Reference Strains Consortium, Nelson KE, Weinstock GM, et al. A catalog of reference genomes from the human microbiome[J]. Science, 2010, 328(5981): 994-999. [8] Mathur EJ, Toledo G, Green BD, et al. A biodiversity-based approach to develo-pment of performance enzymes: Applied metagenomics and directed evolution[J]. Genetic Engineering News, 2006, 26(4): 16-19. [9] FastQC A quality control tool for high throughput sequence data, (Babraham Bioinformatics Web site). [10] Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets[J]. Bioinformatics, 2011, 27(6): 863-864. [11] Zerbino DR, Birney E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs[J]. Genome Research, 2008, 18(5): 821-829. [12] Luo RB, Liu BH, Xie YL, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler[J]. Giga Science, 2012, 1: 18. [13] Namiki T, Hachiya T, Tanaka H, et al. MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads[J]. Nucleic Acids Research, 2012, 40(20): e155. [14] Peng Y, Leung HCM, Yiu SM, et al. Meta-IDBA: a de Novo asse-mbler for metagenomic data[J]. Bioinformatics, 2011, 27(13): i94-i101. [15] Peng Y, Leung HCM, Yiu SM, et al. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth[J]. Bioinformatics, 2012, 28(11): 1420-1428. [16] Rho M, Tang H, Ye Y. FragGeneScan: predicting genes in short and error-prone reads[J]. Nucleic Acids Research, 2010, 38(20): e191. [17] Delcher AL, Bratke KA, Powers EC, et al. Identifying bacterial genes and endosymbiont DNA with Glimmer[J]. Bioinformatics, 2007, 23(6): 673-679. [18] Salzberg SL, Pertea M, Delcher AL, et al. Interpolated Markov models for eukaryotic gene finding[J]. Genomics, 1999, 59(1): 24-31. [19] Besemer J, Borodovsky M. GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses[J]. Nucleic Acids Research, 2005, 33(Web Server issue): W451-W454. [20] Lukashin AV, Borodovsky M. GeneMark. hmm: New solutions for gene finding[J]. Nucleic Acids Research, 1998, 26(4): 1107-1115. [21] Kent WJ. BLAT—The BLAST-Like Alignment Tool[J]. Genome Research, 2002, 12(4): 656-664. [22] Meyer F, Paarmann D, D'Souza M, et al. The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes[J]. BMC Bioinformatics, 2008, 9(1): 386. [23] Huson DH, Auch AF, Qi J, et al. MEGAN analysis of metagenomic data[J]. Genome Research, 2007, 17(3): 377-386. [24] Krause L, Diaz NN, Goesmann A, et al. Phylogenetic classification of short environmental DNA fragments[J]. Nucleic Acids Research, 2008, 36(7): 2230-2239. [25] Wu M, Eisen J. A simple, fast, and accurate method of phylogeno-mic inference[J]. Genome Biology, 2008, 9(10): R151. [26] Brady A, Salzberg SL. Phymm and PhymmBL: metagenomic phylogenetic classification with interpolated Markov models[J]. Nat Meth, 2009, 6(9): 673-676. [27] McHardy AC, Martin HG, Tsirigos A, et al. Accurate phylogenetic classification of variable-length DNA fragments[J]. Nat Meth, 2007, 4(1): 63-72. [28] Liu JM, Wang HF, Yang HX, et al. Composition-based classification of short metagenomic sequences elucidates the landscapes of taxonomic and functional enrichment of microorganisms[J]. Nucleic Acids Research, 2013, 41(1): e3. [29] Teeling H, Waldmann J, Lombardot T, et al. TETRA: a web-service and a stand-alone program for the analysis and comparison of tetranucleotide usage patterns in DNA sequences[J]. BMC Bioinformatics, 2004, 5: 163. [30] Chatterji S, Yamazaki I, Bai ZJ, et al. CompostBin: A DNA Composition-Based Algorithm for Binning Environmental Shotgun Reads[M]//Vingron M, Wong L. Research in Computational Molecular Biology, Springer Berlin Heidelberg, 2008: 17-28. [31] Wang Y, Leung HCM, Yiu SM, et al. MetaCluster 5. 0: a two-round binning approach for metagenomic data for low-abundance species in a noisy sample[J]. Bioinformatics, 2012, 28(18): i356-i362. [32] Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome[J]. Nature, 2011, 473(7346): 174-180. [33] Qin JJ, Li RQ, Raes J, et al. A human gut microbial gene catalog established by metagenomic sequencing[J]. Nature, 2010, 464(7285): 59-65. [34] Qin J. A metagenome-wide association study of gut microbiota in type 2 diabetes[J]. Nature, 2012, 490(7418): 55-60. [35] Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration[J]. Lancet, 1984, 1(8390): 1311-1315. [36] Borody TJ, Cole P, Noonan S, et al. Recurrence of duodenal ulcer and Campylobacter pylori infection after eradication[J]. The Medical journal of Australia, 1989, 151(8): 431-435. [37] Manichanh C, Rigottier-Gois L, Bonnaud E, et al. Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach[J]. Gut, 2006, 55(2): 205-211. [38] Ley RE, B?ckhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(31): 11070-11075. [39] Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microb-iome in obese and lean twins[J]. Nature, 2009, 457(7228): 480-484. [40] B?ckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(44): 15718-15723. [41] Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444(7122): 1027-1131. [42] Larsen N, Vogensen FK, van den Berg FWJ, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic Adults[J]. PLoS One, 2010, 5(2): e9085. [43] Chen YF, Yang FL, Lu HF, et al. Characterization of fecal microbial communities in patients with liver cirrhosis[J]. Hepatology, 2011, 54(2): 562-572. [44] Gao Z, Tseng CH, Strober BE, et al. Substantial alterations of the cutaneous bacterial biota in psoriatic lesions[J]. PLoS One, 2008, 3(7): e2719. [45] Cho I, Blaser MJ. The Human Microbiome: at the interface of health and disease[J]. Nature Reviews Genetics, 2012, 13(4): 260-270. [46] Costello EK, Lauber CL, Hamady M, et al. Bacterial community variation in human body habitats across space and time[J]. Science, 2009, 326(5960): 1694-1697. [47] Blaser MJ, Kirschner D. The equilibria that allow bacterial persistence in human hosts[J]. Nature, 2007, 449(7164): 843-849. [48] Ravel J, Gajer P, Abdo Z, et al. Vaginal microbiome of reproductive-age women[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(Suppl. 1): 4680-4687. [49] Vestman NR, Chen T, Lif Holgerson P, et al. Oral microbiota shift after 12-week supplementation with Lactobacillus reuteri DSM 17938 and PTA 5289;A randomized control trial[J]. PLoS One, 2015, 10(5): e0125812. [50] Eloe-Fadrosh EA, Brady A, Crabtree J, et al. Functional dynamics of the gut microbiome in elderly people during probiotic consumption[J]. MBio, 2015, 6(2): e00231-15. [51] Lee YK, Mazmanian SK. Has the microbiota played a critical role in the evolution of the adaptive immune system?[J]. Science, 2010, 330(6012): 1768-1773. [52] Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes[J]. Science, 2011, 334(6052): 105-108. [53] Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(Suppl. 1): 4554-4561. [54] Martin Blaser. Antibiotic overuse: Stop the killing of beneficial bacteria[J]. Nature, 2011, 476(7361): 393-394. [55] Huse SM, Dethlefsen L, Huber JA, et al. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing[J]. PLoS Genetics, 2008, 4(11): e1000255. [56] Ochman H, Worobey M, Kuo CH, et al. Evolutionary relationships of wild hominids recapitulated by gut microbial communities[J]. PLoS Biology, 2010, 8(11): e1000546. [57] Thum C, Cookson AL, Otter DE, et al. Can nutritional modulation of maternal intestinal microbiota influence the development of the infant gastrointestinal tract?[J]. The Journal of Nutrition, 2012, 142(11): 1921-1928. [58] Sanz Y. Gut microbiota and probiotics in maternal and infant health[J]. The American journal of clinical Nutrition, 2011, 94(6 Suppl. ): 2000S-2005S. [59] Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(26): 11971-11975. [60] German JB, Freeman SL, Lebrilla CB, et al. Human milk oligosaccharides: evolution, structures and bioselectivity as substrates for intestinal bacteria[J]. Nestle Nutrition Workshop Series Paediatric Programme, 2008, 62: 205-218;discussion 218-222. [61] Palmer C, Bik EM, DiGiulio DB, et al. Development of the Human Infant Intestinal Microbiota[J]. PLoS Biology, 2007, 5(7): e177. [62] Hill DA, Artis D. Intestinal bacteria and the regulation of immune cell homeostasis[J]. Annual Review of Immunology, 2010, 28: 623-667. [63] Lozupone CA, Stombaugh JI, Gordon JI, et al. Diversity, stability and resilience of the human gut microbiota[J]. Nature, 2012, 489(7415): 220-230. [64] Kant AK. Consumption of energy-dense, nutrient-poor foods by adult Americans: nutritional and health implications. The third National Health and Nutrition Examination Survey, 1988-1994[J]. The American Journal of Clinical Nutrition, 2000, 72(4): 929-936. [65] Cauci S, Driussi S, De Santo D, et al. Prevalence of bacterial vaginosis and vaginal flora changes in peri- and postmenopausal women[J]. Journal of Clinical Microbiology, 2002, 40(6): 2147-2152. [66] Osborne NG, Wright RC, Grubin L. Genital bacteriology: a comparative study of premenopausal women with postmenopausal women[J]. American Journal of Obstetrics & Gynecology, 1979, 135(2): 195-198. [67] The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome[J]. Nature, 2012, 486(7402): 207-214. [68] Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead[J]. Gastroenterology, 2014, 146(6): 1489-1499. [69] Schnabl B, Brenner DA. Interactions between the intestinal microbiome and liver diseases[J]. Gastroenterology, 2014, 146(6): 1513-1524. [70] Uchiyama T, Miyazaki K. Functional metagenomics for enzyme discovery: challenges to efficient screening[J]. Current Opinion in Biotechnology, 2009, 20(6): 616-622. [71] Sogin ML, Morrison HG, Huber JA, et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(32): 12115-12120. [72] Venter JC, Remington K, Heidelberg JF, et al. Environmental genome shotgun sequencing of the Sargasso Sea[J]. Science, 2004, 304(5667): 66-74. [73] Martín-Cuadrado AB, López-García P, Alba JC, et al. Metagenomics of the deep mediterranean, a warm bathypelagic habitat[J]. PLoS One, 2007, 2(9): e914. [74] Junior NA, Meirelles PM, de Oliveira Santos E, et al. Microbial community diversity and physical-chemical features of the Southwestern Atlantic Ocean[J]. Archives of Microbiology, 2015, 197(2): 165-179. [75] Tseng CH, Chiang PW, Lai HC, et al. Prokaryotic assemblages and metagenomes in pelagic zones of the South China Sea[J]. BMC Genomics, 2015, 16: 219. [76] Spang A, Saw JH, Jorgensen SL, et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes[J]. Nature, 2015, 521(7551): 173-179. [77] Engebrecht J, Simon M, Silverman M. Measuring gene expression with light[J]. Science, 1985, 227(4692): 1345-1347. [78] Kulwiec M, Richardson TH, Chang WH, et al. A biodiversity-based approach to development of performance enzymes: Applied metagenomics and directed evolution[J]. Genetic Engineering News, 2006, 26(4): 16-19. [79] Rajendhran J, Gunasekaran P. Strategies for accessing soil metagenome for desired applications[J]. Biotechnology Advances, 2008, 26(6): 576-590. [80] Knapp CW, Dolfing J, Ehlert PA, et al. Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940[J]. Environmental Science & Technology, 2010, 44(2): 580-587. [81] Ma L, Li B, Zhang T. Abundant rifampin resistance genes and significant correlations of antibiotic resistance genes and plasmids in various environments revealed by metagenomic analysis[J]. Applied Microbiology and Biotechnology, 2014, 98(11): 5195-5204. [82] Su JQ, Wei B, Xu CY, et al. Functional metagenomic characteriza-tion of antibiotic resistance genes in agricultural soils from China[J]. Environment International, 2014, 65: 9-15. [83] Courtois S, Cappellano CM, Ball M, et al. Recombinant environm-ental libraries provide access to microbial diversity for drug disco-very from natural products[J]. Applied and Environmental Micr-obiology, 2003, 69(1): 49-55. [84] Uchiyama T, Abe T, Ikemura T, et al. Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes[J]. Nature Biotechnology, 2005, 23(1): 88-93. |
[1] | 张路阳, 韩文龙, 徐晓雯, 姚健, 李芳芳, 田效园, 张智强. 烟草TCP基因家族的鉴定及表达分析[J]. 生物技术通报, 2023, 39(6): 248-258. |
[2] | 李敬蕊, 王育博, 解紫薇, 李畅, 吴晓蕾, 宫彬彬, 高洪波. 甜瓜PIN基因家族的鉴定及高温胁迫表达分析[J]. 生物技术通报, 2023, 39(5): 192-204. |
[3] | 郭三保, 宋美玲, 李灵心, 尧子钊, 桂明明, 黄胜和. 斑地锦查尔酮合酶基因及启动子的克隆与分析[J]. 生物技术通报, 2023, 39(4): 148-156. |
[4] | 王艺清, 王涛, 韦朝领, 戴浩民, 曹士先, 孙威江, 曾雯. 茶树SMAS基因家族的鉴定及互作分析[J]. 生物技术通报, 2023, 39(4): 246-258. |
[5] | 杨岚, 张晨曦, 樊学伟, 王阳光, 王春秀, 李文婷. 鸡 BMP15 基因克隆、表达模式及启动子活性分析[J]. 生物技术通报, 2023, 39(4): 304-312. |
[6] | 陈强, 邹明康, 宋家敏, 张冲, 吴隆坤. 甜瓜LBD基因家族的鉴定和果实发育进程中的表达分析[J]. 生物技术通报, 2023, 39(3): 176-183. |
[7] | 平怀磊, 郭雪, 余潇, 宋静, 杜春, 王娟, 张怀璧. 滇牡丹PdANS的克隆、表达及与花青素含量的相关性[J]. 生物技术通报, 2023, 39(3): 206-217. |
[8] | 孙海航, 官会林, 王旭, 王童, 李泓霖, 彭文洁, 刘柏桢, 樊芳玲. 生物炭对三七连作土壤性质及真菌群落的影响[J]. 生物技术通报, 2023, 39(2): 221-231. |
[9] | 邢媛, 宋健, 李俊怡, 郑婷婷, 刘思辰, 乔治军. 谷子AP基因家族鉴定及其对非生物胁迫的响应分析[J]. 生物技术通报, 2023, 39(11): 238-251. |
[10] | 陈楚怡, 杨小梅, 陈胜艳, 陈斌, 岳莉然. ABA和干旱胁迫下菊花脑ZF-HD基因家族的表达分析[J]. 生物技术通报, 2023, 39(11): 270-282. |
[11] | 杨敏, 龙雨青, 曾娟, 曾梅, 周新茹, 王玲, 付学森, 周日宝, 刘湘丹. 灰毡毛忍冬UGTPg17、UGTPg36基因克隆及功能研究[J]. 生物技术通报, 2023, 39(10): 256-267. |
[12] | 鲁兆祥, 王夕冉, 连新磊, 廖晓萍, 刘雅红, 孙坚. 基于功能宏基因组学挖掘抗生素耐药基因研究进展[J]. 生物技术通报, 2022, 38(9): 17-27. |
[13] | 郭志浩, 金泽鑫, 刘琦, 高利. 小麦矮腥黑粉菌效应蛋白g11335的生物信息学分析、亚细胞定位及毒性验证[J]. 生物技术通报, 2022, 38(8): 110-117. |
[14] | 王子夜, 王志刚, 阎爱华. 不同树龄桑根际土壤原生生物群落组成多样性[J]. 生物技术通报, 2022, 38(8): 206-215. |
[15] | 陈天赐, 武少兰, 杨国辉, 江丹霞, 江玉姬, 陈炳智. 无柄灵芝醇提物对小鼠睡眠及肠道菌群的影响[J]. 生物技术通报, 2022, 38(8): 225-232. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||