生物技术通报 ›› 2018, Vol. 34 ›› Issue (8): 50-57.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0098
刘丽丽1, 朱华1, 闫艳春2, 王晓雯1, 张蓉1, 朱建亚1
收稿日期:
2018-01-26
出版日期:
2018-08-26
发布日期:
2018-09-04
作者简介:
刘丽丽,女,博士,研究方向:水族技术与育种;E-mail:lilyinmay@163.com
基金资助:
LIU Li-li1, ZHU Hua1, YAN Yan-chun2, WANG Xiao-wen1, ZHANG Rong1, ZHU Jian-ya1
Received:
2018-01-26
Published:
2018-08-26
Online:
2018-09-04
摘要: 不同鱼类适应环境温度的能力不同,这是经过长期适应和进化的结果,是遗传信息特异性表达的具化表现,也是鱼类自身生理生化性能差异的反映。当前,对低温下鱼类的生理反应已经有深入研究,同时,对鱼类适应低温环境和耐受低温胁迫的分子生物学机制的研究方兴未艾,引起研究人员的广泛兴趣。高通量测序技术成本的降低和生物信息学技术的应用,允许研究者利用组学方法研究低温胁迫下鱼类的代谢途径和分子信号通路,在生物整体水平上分析鱼类响应低温胁迫的分子机制,挖掘低温耐受功能基因。研究发现,极地鱼类在长期适应环境的过程中,基因组不断进化,通过功能基因的获得、缺失和大规模扩增,适应长期低温环境;在转录调控水平上,低温胁迫下鱼类转录表达谱既表现出多细胞动物的保守性,同时又具有明显的物种特异性和组织特异性。抗冻(糖)蛋白、分子伴侣、代谢酶类和膜通道蛋白等都参与鱼类响应低温胁迫的过程。但是,不同种类蛋白质的编码基因结构与表达、功能与应用研究不尽相同。从进化、遗传表达和表观遗传学角度分别综述鱼类低温耐受的分子机制,总结鱼类低温耐受相关功能基因,预测鱼类低温耐受机制和应用研究热点,旨在为本领域研究人员提供思路。
刘丽丽, 朱华, 闫艳春, 王晓雯, 张蓉, 朱建亚. 鱼类低温耐受机制与功能基因研究进展[J]. 生物技术通报, 2018, 34(8): 50-57.
LIU Li-li, ZHU Hua, YAN Yan-chun, WANG Xiao-wen, ZHANG Rong, ZHU Jian-ya. Research Progress of Cold Tolerance Mechanism and Functional Genes in Fish[J]. Biotechnology Bulletin, 2018, 34(8): 50-57.
[1] Petricorena ZLC, Somero GN.Biochemical adaptations of notothenioid fishes:Comparisons between cold temperate South American and New Zealand species and Antarctic species[J]. Comparative Biochemistry and Physiology, Part A, 2007, 147(3):799-807. [2] Chen L, Devries AL, Cheng CH.Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish[J]. Proceedings of the National Academy of Sciences USA, 1997, 94:3811-3816. [3] Beers JM, Jayasundara N.Antarctic notothenioid fish:what are the future consequences of ‘losses’ and ‘gains’ acquired during long-term evolution at cold and stable temperatures?[J]. Journal of Experimental Biology, 2015, 218(12):1834-1845. [4] Giordano D, Russo R, Coppola D, et al.‘Cool’adaptations to cold environments:globins in Notothenioidei(Actynopterygii, Perciformes)[J]. Hydrobiologia, 2015, 761(1):293-312. [5] Chen Z, Cheng C, Zhang J, et al.Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish[J]. Proceedings of the National Academy of Sciences USA, 2008, 105(35):12944-12949. [6] Shin SC, Ahn D, Kim SJ, et al.The genome sequence of the Antarctic bullhead notothen reveals evolutionary adaptations to a cold environment[J]. Genome Biology, 2014(15):468. [7] Gracey AY, Fraser EJ, Li WZ, et al.Coping with cold:an integrative, multitissue analysis of the transcriptome of a poikilothermic vertebrate[J]. Proceedings of the National Academy of Sciences USA, 2004, 101(48):16970-16975. [8] Shin SC, Kim SJ, Lee JK, et al.Transcriptomics and comparative analysis of three Antarctic notothenioid fishes[J]. PLoS One, 2012, 7(8):e437628. [9] Windisch HS, Frickenhaus S, John U, et al.Stress response or beneficial temperature acclimation:transcriptomic signatures in Antarctic fish(Pachycara brachycephalum)[J]. Molecular Ecology, 2014, 23(14):3469-3482. [10] Long Y, Li L, Li Q, et al.Transcriptomic characterization of temperature stress responses in larval zebrafish[J]. PLoS One, 2012, 7(5):e37209. [11] 王金凤, 胡鹏, 牛虹博, 等. 低温胁迫对鱼类PI3K/AKT/GSK-3β信号通路的影响[J]. 生物学杂志, 2016(6):24-28. [12] 何金钊, 陈子桂, 陈诏, 等. 三种品系不同规格红罗非鱼的耐寒性能评价[J]. 淡水渔业, 2017(3):79-83. [13] Scott GR, Johnston IA.Temperature during embryonic development has persistent effects on thermal acclimation capacity in zebrafish.[J]. Proceedings of the National Academy of Sciences USA, 2012, 109(35):14247-14252. [14] Qian B, Xue L.Liver transcriptome sequencing and de novo annotation of the large yellow croaker(Larimichthy crocea)under heat and cold stress[J]. Marine Genomics, 2016, 25:95-102. [15] Mininni AN, Milan M, Ferraresso S, et al.Liver transcriptome analysis in gilthead sea bream upon exposure to low temperature [J]. BMC Genomics, 2014, 1(15):765. [16] Rebl A, Verleih M, Köbis JM, et al.Transcriptome profiling of gill Tissue in regionally rred and rlobally farmed rainbow trout strains reveals rifferent strategies for coping with thermal stress[J]. Marine Biotechnology, 2013, 15(4):445-460. [17] Gerdol M, Buonocore F, Scapigliati G, et al.Analysis and characterization of the head kidney transcriptome from the Antarctic fish Trematomus bernacchii(Teleostea, Notothenioidea):A source for immune relevant genes[J]. Marine Genomics, 2015, 20:13-15. [18] Papetti C, Harms L, Windisch HS, et al.A first insight into the spleen transcriptome of the notothenioid fish Lepidonotothen nudifrons:Resource description and functional overview[J]. Marine Genomics, 2015, 24:237-239. [19] Díaz N, Piferrer F.Lasting effects of early exposure to temperature on the gonadal transcriptome at the time of sex differentiation in the European sea bass, a fish with mixed genetic and environmental sex determination[J]. BMC Genomics, 2015, 16:679. [20] Małachowicz M, Kijewska A, Wenne R.Transcriptome analysis of gill tissue of Atlantic cod Gadus morhua L. from the Baltic Sea[J]. Marine Genomics, 2015, 23:37-40. [21] Hung IC, Hsiao YC, Sun HS, et al.MicroRNAs regulate gene plasticity during cold shock in zebrafish larvae[J]. BMC Genomics, 2016(17):922. [22] Long Y, Song G, Yan J, et al.Transcriptomic characterization of cold acclimation in larval zebrafish[J]. BMC Genomics, 2013 (14):612. [23] Hu P, Liu M, Liu Y, et al.Transcriptome comparison reveals a genetic network regulating the lower temperature limit in fish[J]. Scientific Reports, 2016(6):28952. [24] Hu P, Liu M, Zhang D, et al.Global identification of the genetic networks and cis-regulatory elements of the cold response in zebrafish[J]. Nucleic Acids Research, 2015, 43(19):9198-9213. [25] 朱华平, 卢迈新, 黄樟翰, 等. 低温对罗非鱼基因组DNA甲基化的影响[J]. 水产学报, 2013(10):1460-1467. [26] Duman JG.Animal ice-binding(antifreeze)proteins and glycolipids:an overview with emphasis on physiological function[J]. Journal of Experimental Biology, 2015, 218(Pt 12):1846-1855. [27] Evans CW, Hellman L, Middleditch M, et al.Synthesis and recycling of antifreeze glycoproteins in polar fishes[J]. Antarctic Science, 2012, 24(3):259-268. [28] Hobbs KD.The effect of antifreeze proteins on the cold tolerance of goldfish(Carassius auratus L.)[D]. Ottawa:Memo rial University of Newfoundland, 1999. [29] Fletcher GL, Shears MA, Yaskowiak ES, et al.Gene transfer:potential to enhance the genome of Atlantic salmon for aquaculture[J]. Australian Journal of Experimental Agriculture, 2004, 44(11):1095. [30] Hew C, Poon R, Xiong F, et al.Liver-specific and seasonal expression of transgenic Atlantic salmon harboring the winter flounder antifreeze protein gene[J]. Transgenic Research, 1999, 8:405-414. [31] Evans RP, Fletcher GL.Type I antifreeze proteins expressed in snailfish skin are identical to their plasma counterparts[J]. FEBS J, 2005(272):5327-5336. [32] Hobbs RS, Fletcher GL.Tissue specific expression of antifreeze protein and growth hormone transgenes driven by the ocean pout(Macrozoarces americanus)antifreeze protein OP5a gene promoter in Atlantic salmon(Salmo salar)[J]. Transgenic Research, 2008, 17(1):33-45. [33] Bagis H, Aktoprakligil D, Mercan HO, et al.Stable transmission and transcription of newfoundland ocean pout type III fish antifreeze protein(AFP)gene in transgenic mice and hypothermic storage of transgenic ovary and testis[J]. Molecular Reproduction and Development, 2006, 73(11):1404-1411. [34] Place SP, Hofmann GE.Constitutive expression of a stress-inducible heat shock protein gene, hsp70, in phylogenetically distant Antarctic fish[J]. Polar Biology, 2005, 28(4):261-267. [35] Teigen LE, Orczewska JI, Mclaughlin J, et al.Cold acclimation increases levels of some heat shock protein and sirtuin isoforms in threespine stickleback[J]. Comparative Biochemistry and Physiology, Part A, 2015, 2015(188):139-147. [36] Peng G, Zhao W, Shi Z, et al.Cloning HSP70 and HSP90 genes of kaluga(Huso dauricus)and the effects of temperature and salinity stress on their gene expression[J]. Cell Stress and Chaperones, 2016, 21(2):349-359. [37] Giri SS, Sen SS, Sukumaran V.Role of HSP70 in cytoplasm protection against thermal stress in rohu, Labeo rohita[J]. Fish & Shellfish Immunology, 2014, 41(2):294-299. [38] Chagoyen M, Carrascosa JL, Pazos F, et al.Molecular determinants of the ATP hydrolysis asymmetry of the CCT chaperonin complex[J]. Proteins, 2014, 82(5):703-707. [39] Shimon L, Hynes GM, Mccormack EA, et al.ATP-induced allostery in the eukaryotic chaperonin CCT is abolished by the mutation G345D in CCT4 that renders yeast temperature-sensitive for growth[J]. Journal of Molecular Biology, 2008, 377(2):469-477. [40] 谢建丽, 勇林, 兰曾, 等. 尼罗罗非鱼TCP-1- beta和TCP-1- eta的分子特征及其低温诱导表达[J]. 水生生物学报, 2012, 36(4):634-638. [41] He YF, Wang LM, Zhu WB, et al.Effects of salinity on cold tolerance of Malaysian red tilapia[J]. Aquaculture International, 2017, 2017(25):777-792. [42] Kaneko T, Kibayashi K.Mild hypothermia facilitates the expression of cold-inducible RNA-binding protein and heat shock protein 70. 1 in mouse brain[J]. Brain Research, 2012, 1466:128-136. [43] Juan Y, Wu H, Xie W, et al.Cold-inducible RNA-binding protein mediates airway inflammation and mucus hypersecretion through a post-transcriptional regulatory mechanism under cold stress[J]. International Journal of Biochemistry & Cell Biology, 2016, 78:335-348. [44] Leong JS, Jantzen SG, von Schalburg KR, et al. Salmo salar and Esox lucius full-length cDNA sequences reveal changes in evolutionary pressures on a post-tetraploidization genome[J]. BMC Genomics, 2010, 11(1):279. [45] 胡金伟, 尤锋, 王倩, 等. 牙鲆耐寒相关基因CIRP、HMGB1的克隆及表达特征分析[J]. 海洋科学, 2015(1):29-38. [46] 苗亮, 李明云, 陈莹莹, 等. 大黄鱼冷诱导结合蛋白(CIRP)基因cDNA克隆及低温胁迫对其时空表达的影响[J]. 水产学报, 2017, 41(4):481-489. [47] Zhang H, Zhang X, Wang Z, et al.Effects of dietary energy level on lipid metabolism-related gene expression in subcutaneous adipose tissue of Yellow breed × Simmental cattle[J]. Animal Science Journal, 2015, 86(4):392-400. [48] Hsieh SL, Kuo CM.Stearoyl-CoA desaturase expression and fatty acid composition in milkfish(Chanos chanos)and grass carp(Ctenopharyngodon idella)during cold acclimation[J]. Comparative Biochemistry and Physiology, Part B. 2005, 141(1):95-101. [49] Zerai DB, Fitzsimmons KM, Collier RJ.Transcriptional response of delta-9-desaturase gene to acute and chronic cold Stress in Nile tilapia, Oreochromis niloticus[J]. Journal of the World Aquaculture Society, 2010, 41(5):800-806. [50] Tiku PE, Gracey AY, Macartney AI, et al.Cold-induced expression of delta 9-desaturase in carp by transcriptional and posttranslational mechanisms[J]. Science, 1996, 271(5250):815-818. [51] Xu H, Zhang DL, Yu DH, et al.Molecular cloning and expression analysis of scd1 gene from large yellow croaker Larimichthys crocea under cold stress[J]. Gene, 2015, 568(1):100-108. [52] Heinemann FS, Ozols J.Stearoyl-CoA desaturase, a short-lived protein of endoplasmic reticulum with multiple control mechanisms[J]. Prostaglandins, Leukotrienes and Essential Fatty Acids, 2003, 68(2):123-133. [53] 刘明丽, 王金凤, 张东, 等. 鳞头犬牙南极鱼atp6v0c基因在HeLa细胞中抗寒功能的研究[J]. 大连海洋大学学报, 2016(1):7-12. [54] Vergauwen L, Benoot D, Blust R, et al.Long-term warm or cold acclimation elicits a specific transcriptional response and affects energy metabolism in zebrafish[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 2010, 157(2):149-157. [55] 王倩, 尤锋, 辛梦娇, 等. 斑马鱼GSTM单核苷酸多态性与低温耐受性的相关分析[J]. 海洋科学, 2015(1):1-7. [56] Maksimov EG, Mironov KS, Trofimova MS, et al.Membrane fluidity controls redox-regulated cold stress responses in cyanobacteria[J]. Photosynthesis Research, 2017, 133(1-3):215-223. [57] Buemi M, Floccari F, Di Pasquale G, et al.AQP1 in red blood cells of uremic patients during hemodialytic treatment[J]. Nephron, 2002, 92(4):846-852. [58] Knepper MA.The aquaporin family of molecular water channels[J]. Proceedings of the National Academy of Sciences USA, 1994, 91(14):6255-6258. [59] 朱华平, 刘玉姣, 刘志刚, 等. 低温胁迫对尼罗罗非鱼水通道蛋白基因(AQP1)表达的影响[J]. 中国水产科学, 2014(6):1181-1189. [60] Zbikowska HM.Fish can be first - advances in fish transgenesis for commercial applications[J]. Transgenic Research, 2003, 12(4):379-389. [61] Wang JH.A comprehensive evaluation of the effects and mechanisms of antifreeze proteins during low-temperature preservation[J]. Cryobiology, 2000, 41(1):1-9. [62] Bang J, Lee J, Murugan R, et al.Antifreeze peptides and glycopeptides, and their derivatives:potential uses in biotechnology[J]. Marine Drugs, 2013, 11(6):2013-2041. [63] Wu S, Hwang P, Hew C, et al.Effect of antifreeze protein on cold tolerance in juvenile tilapia(Oreochromis mossambicus Peters)and milkfish(Chanos chanos Forsskal)[J]. Zoological Studies, 1998, 1(37):39-44. [64] Luo S, Wang W, Cai L, et al.Effects of a Dissostichus mawsoni-CaM recombinant proteins feed additive on the juvenile orange-spotted grouper(Epinephelus coioides)under the acute low temperature challenge[J]. Fish Physiology and Biochemistry, 2015, 41(5):1345-1358. |
[1] | 陈晓, 于茗兰, 吴隆坤, 郑晓明, 逄洪波. 植物lncRNA及其对低温胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(7): 1-12. |
[2] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
[3] | 蒋路园, 丰美静, 杜雨晴, 邸葆, 陈段芬, 邱德有, 杨艳芳. 红豆杉低温半致死温度和低温胁迫下紫杉烷含量[J]. 生物技术通报, 2023, 39(3): 232-242. |
[4] | 张晓燕, 杨淑华, 丁杨林. 植物感知和传递低温信号的分子机制[J]. 生物技术通报, 2023, 39(11): 28-35. |
[5] | 邢媛, 宋健, 李俊怡, 郑婷婷, 刘思辰, 乔治军. 谷子AP基因家族鉴定及其对非生物胁迫的响应分析[J]. 生物技术通报, 2023, 39(11): 238-251. |
[6] | 毛可欣, 王海荣, 安淼, 刘腾飞, 王世金, 李健, 李国田. 中华猕猴桃GRAS基因家族鉴定及低温胁迫表达分析[J]. 生物技术通报, 2023, 39(11): 297-307. |
[7] | 尤垂淮, 谢津津, 张婷, 崔天真, 孙欣路, 臧守建, 武奕凝, 孙梦瑶, 阙友雄, 苏亚春. 钩吻脂氧合酶基因 GeLOX1 的鉴定及低温胁迫表达分析[J]. 生物技术通报, 2023, 39(11): 318-327. |
[8] | 于晓玲, 李文彬, 李智博, 阮孟斌. 木薯MeMYC2.2基因耐低温功能研究[J]. 生物技术通报, 2023, 39(1): 224-231. |
[9] | 金姣姣, 刘自刚, 米文博, 徐明霞, 邹娅, 徐春梅, 赵彩霞. 利用RNA-Seq鉴定调控甘蓝型油菜叶片光合特性的低温胁迫应答基因[J]. 生物技术通报, 2022, 38(4): 126-142. |
[10] | 崔洁冰, 张萌, 张莹婷, 徐进. 低温胁迫对柳杉不同无性系的影响及抗寒性评价[J]. 生物技术通报, 2022, 38(3): 31-40. |
[11] | 乌凤章, 王贺新. 蛋白质泛素化介导的植物低温胁迫反应[J]. 生物技术通报, 2021, 37(6): 225-235. |
[12] | 刘亚苓, 于营, 鲁海坤, 雷慧霞, 隋昕, 郭靖. 侧孢短芽孢杆菌S2-31拮抗下细辛叶枯病菌转录组差异表达分析[J]. 生物技术通报, 2021, 37(2): 111-121. |
[13] | 孔春艳, 陈永坤, 王莎莎, 郝大海, 杨宇, 龚明. 小桐子低温胁迫下microRNA实时荧光定量PCR内参的筛选与比较[J]. 生物技术通报, 2019, 35(7): 25-32. |
[14] | 张保青, 邵敏, 黄玉新, 黄杏, 宋修鹏, 陈虎, 王盛, 谭秦亮, 杨丽涛, 李杨瑞. 甘蔗抗坏血酸过氧化物酶基因ScAPX1的克隆和表达分析[J]. 生物技术通报, 2019, 35(12): 31-37. |
[15] | 夏洪丽, 程俊, 喻大鹏, 陈文捷, 鲁义善. 鱼类肽聚糖识别蛋白的研究进展[J]. 生物技术通报, 2018, 34(8): 58-66. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 796
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 705
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||