生物技术通报 ›› 2018, Vol. 34 ›› Issue (11): 70-82.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0331
李聪聪, 赵金艳, 吴姣, 徐秋良
收稿日期:
2018-04-09
出版日期:
2018-11-26
发布日期:
2018-11-28
作者简介:
李聪聪,博士,讲师,研究方向:分子生物学与育种;E-mail:congcong_925520@126.com
基金资助:
LI Cong-cong, ZHAO Jin-yan, WU Jiao, XU Qiu-liang
Received:
2018-04-09
Published:
2018-11-26
Online:
2018-11-28
摘要: microRNAs(miRNAs)是进化上保守且广泛存在于真核生物中的一类非编码单链小RNA,大小约为19-25个核苷酸,主要通过抑制靶基因的表达或翻译来发挥转录后调控作用。miR-155是microRNAs家族中的重要成员,由于其具有多功能的特点而颇受关注,人们对其开展了广泛而又深刻的研究。大量研究结果表明miR-155的功能广泛,它参与机体造血细胞的发育分化、免疫细胞的发育分化、炎症反应、免疫应答、肌肉发育以及脂肪分化等许多生物过程,并在肝癌、淋巴癌、乳腺癌、胰腺癌和肺癌等多种癌组织或细胞株中呈现高表达,与肿瘤的发生、侵袭和转移密切相关,而且,随着研究的不断深入,miR-155极有可能成为一个新的肿瘤标志物以及肿瘤基因治疗的新靶点。miR-155在各种生命过程中扮演着无可替代的角色,并在相关信号通路的调节中发挥着不可或缺的作用,是个典型的重要的多功能miRNA。就miR-155的主要特点以及相关功能研究进展予以综述,旨在讨论miR-155在机体生命活动中发挥的重要作用,为多种疾病的治疗提供新思路和新方法。
李聪聪, 赵金艳, 吴姣, 徐秋良. miR-155研究进展[J]. 生物技术通报, 2018, 34(11): 70-82.
LI Cong-cong, ZHAO Jin-yan, WU Jiao, XU Qiu-liang. Research Progress on miR-155[J]. Biotechnology Bulletin, 2018, 34(11): 70-82.
[1] Faraoni I, Antonetti FR, Cardone J, et al.miR-155 gene:a typical multifunctional microRNA[J]. Biochim Biophys Acta, 2009, 1792(6):497-505. [2] Vigorito E, Kohlhaas S, Lu D, et al.miR-155:an ancient regulator of the immune system[J]. Immunological Reviews, 2013, 253(1):146-157. [3] Sun G, Yan J, Noltner K, et al.SNPs in human miRNA genes affect biogenesis and function[J]. RNA, 2009, 15(9):1640-1651. [4] Tam W, Ben-Yehuda D, Hayward WS. bic, a novel gene activated by proviral insertions in avian leukosis virus-induced lymphomas, is likely to function through its noncoding RNA[J]. Mol Cell Biol, 1997, 17(3):1490-1502. [5] Tam W.Identification and characterization of human BIC, a gene on chromosome 21 that encodes a noncoding RNA[J]. Gene, 2001, 274(1-2):157-167. [6] Li C, He H, Zhu M, et al.Molecular characterisation of porcine miR-155 and its regulatory roles in the TLR3/TLR4 pathways[J]. Developmental and Comparative Immunology, 2013, 39(1-2):110-116. [7] 李聪聪. 猪与小鼠miR-155基因两种单倍型功能研究[D]. 武汉:华中农业大学, 2014. [8] Georgantas RW, Hildreth R, Morisot S, et al.CD34+ hematopoietic stem-progenitor cell microRNA expression and function:a circuit diagram of differentiation control[J]. Proc Natl Acad Sci USA, 2007, 104(8):2750-2755. [9] Masaki S, Ohtsuka R, Abe Y, et al.Expression patterns of microRNAs 155 and 451 during normal human erythropoiesis[J]. Biochem Biophys Res Commun, 2007, 364(3):509-514. [10] Faraoni I, Laterza S, Ardiri D, et al.MiR-424 and miR-155 deregulated expression in cytogenetically normal acute myeloid leukaemia:correlation with NPM1 and FLT3 mutation status[J]. J Hematol Oncol, 2012, 5(1):26. [11] O’Connell RM, Taganov KD, Boldin MP, et al. MicroRNA-155 is induced during the macrophage inflammatory response[J]. Proc Natl Acad Sci USA, 2007, 104(5):1604-1609. [12] Tili E, Michaille JJ, Cimino A, et al.Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock[J]. Journal of Immunology, 2007, 179(8):5082-5089. [13] Ruggiero T, Trabucchi M, De Santa F, et al.LPS induces KH-type splicing regulatory protein-dependent processing of microRNA-155 precursors in macrophages[J]. FASEB Journal:Official Publication of the Federation of American Societies for Experimental Biology, 2009, 23(9):2898-2908. [14] Quinn SR, Mangan NE, Caffrey BE, et al.The Role of Ets2 Transcription Factor in the Induction of MicroRNA-155(miR-155)by Lipopolysaccharide and Its Targeting by Interleukin-10[J]. J Biol Chem, 2014, 289(7):4316-4325. [15] Stanczyk J, Pedrioli DM, Brentano F, et al.Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis[J]. Arthritis Rheum, 2008, 58(4):1001-1009. [16] Li X, Tian F, Wang F.Rheumatoid arthritis-associated microRNA-155 targets SOCS1 and upregulates TNF-alpha and IL-1beta in PBMCs[J]. Int J Mol Sci, 2013, 14(12):23910-23921. [17] Kurowska-Stolarska M, Alivernini S, Ballantine LE, et al.MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis[J]. Proc Natl Acad Sci USA, 2011, 108(27):11193-11198. [18] Bhattacharyya S, Balakathiresan NS, Dalgard C, et al.Elevated miR-155 promotes inflammation in cystic fibrosis by driving hyperexpression of interleukin-8[J]. J Biol Chem, 2011, 286(13):11604-11615. [19] Cremer TJ, Ravneberg DH, Clay CD, et al.MiR-155 induction by F. novicida but not the virulent F. tularensis results in SHIP down-regulation and enhanced pro-inflammatory cytokine response[J]. PLoS One, 2009, 4(12):e8508. [20] Wang P, Hou J, Lin L, et al.Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1[J]. J Immunol, 2010, 185(10):6226-6233. [21] Ceppi M, Pereira PM, Dunand-Sauthier I, et al.MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells[J]. Proc Natl Acad Sci USA, 2009, 106(8):2735-2740. [22] Rodriguez A, Vigorito E, Clare S, et al.Requirement of bic/microRNA-155 for normal immune function[J]. Science, 2007, 316(5824):608-611. [23] Zhou H, Huang X, Cui H, et al.miR-155 and its star-form partner miR-155* cooperatively regulate type I interferon production by human plasmacytoid dendritic cells[J]. Blood, 2010, 116(26):5885-5894. [24] Thai TH, Patterson HC, Pham DH, et al.Deletion of microRNA-155 reduces autoantibody responses and alleviates lupus-like disease in the Faslpr mouse[J]. Proc Natl Acad Sci USA, 2013, 110(50):20194-20199. [25] Leiss H, Salzberger W, Jacobs B, et al.MicroRNA 155-deficiency leads to decreased autoantibody levels and reduced severity of nephritis and pneumonitis in pristane-induced lupus[J]. PLoS One, 2017, 12(7):e0181015. [26] Vigorito E, Perks KL, Abreu-Goodger C, et al.microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells[J]. Immunity, 2007, 27(6):847-859. [27] Teng G, Hakimpour P, Landgraf P, et al.MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase[J]. Immunity, 2008, 28(5):621-629. [28] Dorsett Y, McBride KM, Jankovic M, et al. MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation[J]. Immunity, 2008, 28(5):630-638. [29] Banerjee A, Schambach F, DeJong CS, et al. Micro-RNA-155 inhibits IFN-gamma signaling in CD4+ T cells[J]. Eur J Immunol, 2010, 40(1):225-231. [30] Lu LF, Thai TH, Calado DP, et al.Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein[J]. Immunity, 2009, 30(1):80-91. [31] O’Connell RM, Kahn D, Gibson WS, et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development[J]. Immunity, 2010, 33(4):607-619. [32] Zhang J, Cheng Y, Cui W, et al.MicroRNA-155 modulates Th1 and Th17 cell differentiation and is associated with multiple sclerosis and experimental autoimmune encephalomyelitis[J]. J Neuroimmunol, 2014, 266(1-2):56-63. [33] Gracias DT, Stelekati E, Hope JL, et al.The microRNA miR-155 controls CD8(+)T cell responses by regulating Interferon signaling[J]. Nature Immunology, 2013, 14(6):593-602. [34] Kluiver J, Poppema S, de Jong D, et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas[J]. The Journal of Pathology, 2005, 207(2):243-249. [35] Lee EJ, Gusev Y, Jiang J, et al.Expression profiling identifies microRNA signature in pancreatic cancer[J]. International Journal of Cancer, 2007, 120(5):1046-1054. [36] Iorio MV, Ferracin M, Liu CG, et al.MicroRNA gene expression deregulation in human breast cancer[J]. Cancer Research, 2005, 65(16):7065-7070. [37] Yanaihara N, Caplen N, Bowman E, et al.Unique microRNA molecular profiles in lung cancer diagnosis and prognosis[J]. Cancer Cell, 2006, 9(3):189-198. [38] Zhang YL, Wei W, Cheng N, W et al. Hepatitis C virus-induced up-regulation of microRNA-155 promotes hepatocarcinogenesis by activating Wnt signaling[J]. Hepatology, 2012, 56(5):1631-1640. [39] Zhang XP, Li MQ, Zuo KQ, et al.Upregulated miR-155 in papillary thyroid carcinoma promotes tumor growth by targeting APC and activating Wnt/β-Catenin signaling[J]. The Journal of Clinical Endocrinology and Metabolism, 2013, 98(8):E1305-E1313. [40] Dinami R, Ercolani C, Petti E, et al.miR-155 drives telomere fragility in human breast cancer by targeting TRF1[J]. Cancer Research, 2014, 74(15):4145-4156. [41] Tili E, Michaille JJ, Wernicke D, et al.Mutator activity induced by microRNA-155(miR-155)links inflammation and cancer[J]. Proc Natl Acad Sci USA, 2011, 108(12):4908-4913. [42] Krützfeldt J, Rajewsky N, Braich R, et al.Silencing of microRNAs in vivo with ‘antagomirs’[J]. Nature, 2005, 438(7068):685-689. [43] Meister G, Tuschl T.Mechanisms of gene silencing by double-stranded RNA[J]. Nature, 2004, 431(7006):343-349. [44] Wang J, Chen J, Chang P, et al.MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease[J]. Cancer Prevention Research, 2009, 2(9):807-813. [45] 王晓刚, 童钟, 金钢. 血清miR-155对胰腺癌诊断和预后评估的价值[J]. 中华肝胆外科杂志, 2015, 21(3):189-193. [46] 兰超, 史晓朋, 郭楠楠, 等. 血清miR-155-5p和miR-133a-3p对脓毒症诊断及预后的评估价值[J]. 中华危重病急救医学, 2016, 28(8):694-698. [47] 曹帅丽. miR-155-5p, miR-21-5p和miR-29a作为诊断结核病生物标志的研究[D]. 石河子:石河子大学, 2015. [48] Zheng L, Zhuang C, Wang X, et al.Serum miR-146a, miR-155, and miR-210 as potential markers of Graves’disease[J]. J Clin Lab Anal, 2018, 32(2):e22266. [49] Seok HY, Tatsuguchi M, Callis TE, et al.miR-155 inhibits expression of the MEF2A protein to repress skeletal muscle differentiation[J]. J Biol Chem, 2011, 286(41):35339-35346. [50] 熊燕, 王禹, 卫宁, 等. 过表达miR-155抑制C2C12成肌分化[J]. 生物工程学报, 2014, 30(2):182-193. [51] Zhao S, Zhang J, Hou X, et al.OLFML3 expression is decreased during prenatal muscle development and regulated by microRNA-155 in pigs[J]. International Journal of Biological Sciences, 2012, 8(4):459-469. [52] Liu Sh, Yang Y, Wu JR.Tnfα-induced up-regulation of mir-155 inhibits adipogenesis by down-regulating early adipogenic transcription factors[J]. Biochemical and Biophysical Research Communications, 2011, 414(3):618-624. [53] Chen Y, Siegel F, Kipschull S, et al.miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit[J]. Nature Communications, 2013, 4:1769. [54] Yin Q, McBride J, Fewell C, et al. MicroRNA-155 is an epstein-barr virus-induced gene that modulates epstein-barr virus-regulated gene expression pathways[J]. Journal of Virology, 2008, 82(11):5295-5306. [55] Zhang L, Wang W, Li X, et al.MicroRNA-155 promotes tumor growth of human hepatocellular carcinoma by targeting ARID2[J]. International Journal of Oncology, 2016, 48(6):2425-2434. [56] O’Connell RM, Rao DS, Chaudhuri AA, et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder[J]. The Journal of Experimental Medicine, 2008, 205(3):585-594. [57] Curtis AM, Fagundes CT, Yang G, et al.Circadian control of innate immunity in macrophages by miR-155 targeting Bmal .[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(23):7231-7236. [58] Gottwein E, Mukherjee N, Sachse C, et al.Cullen BR. A viral microRNA functions as an orthologue of cellular miR-155[J]. Nature, 2007, 450(7172):1096-1099. [59] Meier J, Hovestadt V, Zapatka M, et al.Genome-wide identification of translationally inhibited and degraded miR-155 targets using RNA-interacting protein-IP[J]. RNA Biology, 2013, 10(6):1018-1029. [60] Nazari-Jahantigh M, Wei Y, Noels H, et al.MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages[J]. Journal of Clinical Investigation, 2012, 122(11):4190-4202. [61] Wei Y, Zhu M, Corbalán-Campos J, et al.Regulation of Csf1r and Bcl6 in macrophages mediates the stage-specific effects of MicroRNA-155 on atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2015, 35:1-8. [62] Wang H, Yu X, Liu Z, et al.Deregulated miR-155 promotes Fas-mediated apoptosis in human intervertebral disc degeneration by targeting FADD and caspase-3[J]. The Journal of Pathology, 2011, 225(2):232-242. [63] Dunandsauthier I, Santiagoraber M, Capponi L, et al.Silencing of c-Fos expression by microRNA-155 is critical for dendritic cell maturation and function[J]. Blood, 2011, 117(17):4490-4500. [64] Lössner C, Meier J, Warnken U, et al.Quantitative proteomics identify novel miR-155 target proteins[J]. PLoS One, 2011, 6(7):e22146. [65] Sonkoly E, Janson P, Majuri ML, et al.MiR-155 is overexpressed in patients with atopic dermatitis and modulates T-cell proliferative responses by targeting cytotoxic T lymphocyte-associated antigen 4[J]. The Journal of Allergy and Clinical Immunology, 2010, 126(3):581-589. [66] Robertson ED, Wasylyk C, Ye T, et al.The oncogenic MicroRNA Hsa-miR-155-5p targets the transcription factor ELK3 and links it to the hypoxia response[J]. PLoS One, 2014, 9(11):e113050. [67] Romania P, Lulli V, Pelosi E, et al.MicroRNA 155 modulates megakaryopoiesis at progenitor and precursor level by targeting Ets-1 and Meis1 transcription factors[J]. British Journal of Haematology, 2008, 143(4):570-580. [68] Na SY, Park MJ, Park S, et al.MicroRNA-155 regulates the Th17 immune response by targeting Ets-1 in Behçet's disease[J]. Clin Exp Rheumatol, 2016, 34(6):S56-S63. [69] Huang J, Jiao J, Xu W, et al.miR-155 is upregulated in patients with active tuberculosis and inhibits apoptosis of monocytes by targeting FOXO3[J]. Molecular Medicine Reports, 2015, 12(5):7102-7108. [70] Ling N, Gu J, Lei Z, et al.microRNA-155 regulates cell proliferation and invasion by targeting FOXO3a in glioma[J]. Oncology Reports, 2013, 30(5):2111-2118. [71] Tian FJ, An LN, Wang GK, et al.Elevated microRNA-155 promotes foam cell formation by targeting HBP1 in atherogenesis[J]. Cardiovascular Research, 2014, 103(1):100-110. [72] Wan YC, Li T, Han YD, et al.MicroRNA-155 enhances the activation of Wnt/beta-catenin signaling in colorectal carcinoma by suppressing HMG-box transcription factor 1[J]. Molecular Medicine Reports, 2016, 13(3):2221-2228. [73] Lu F, Weidmer A, Liu C G, et al.Epstein-Barr Virus-induced miR-155 attenuates NF-κB signaling and stabilizes latent virus persistence[J]. Journal of Virology, 2008, 82(21):10436-10443. [74] Escobar TM, Kanellopoulou C, Kugler DG, et al.miR-155 activates cytokine gene expression in Th17 cells by regulating the DNA-binding protein Jarid2 to relieve polycomb-mediated repression[J]. Immunity, 2014, 40(6):865-879. [75] Pottier N, Maurin T, Chevalier B, et al.Identification of keratinocyte growth factor as a target of microRNA-155 in lung fibroblasts:implication in epithelial-mesenchymal interactions[J]. PLoS One, 2009, 4(8):e6718. [76] Lu C, Huang X, Zhang X, et al.miR-221 and miR-155 regulate human dendritic cell development, apoptosis, and IL-12 production through targeting of p27kip1, KPC1, and SOCS-1[J]. Blood, 2011, 117(16):4293-4303. [77] Zhu MY.Hyperlipidemia-induced MicroRNA155-5p improves β-cell Function by targeting Mafb[D]. LMU München:Medizinische Fakultät. 2017. [78] Zhu J, Chen T, Yang L, et al.Regulation of MicroRNA-155 in atherosclerotic inflammatory responses by targeting MAP3K10[J]. PLoS One, 2012, 7(11):e46551. [79] Fabani MM, Abreu-Goodger C, Williams D, et al.Efficient inhibition of miR-155 function in vivo by peptide nucleic acids[J]. Nucleic Acids Res, 2010, 38(13):4466-4475. [80] Zhang J, Zhao H, Chen J, et al.Interferon-beta-induced miR-155 inhibits osteoclast differentiation by targeting SOCS1 and MITF[J]. FEBS Letters, 2012, 586(19):3255-3262. [81] Tang B, Xiao B, Liu Z, et al.Identification of MyD88 as a novel target of miR-155, involved in negative regulation of Helicobacter pylori-induced inflammation[J]. FEBS Letters, 2010, 584(8):1481-1486. [82] Weber M, Kim S, Patterson N, et al.MiRNA-155 targets myosin light chain kinase and modulates actin cytoskeleton organization in endothelial cells[J]. American Journal of Physiology-heart and Circulatory Physiology, 2014, 306(8):H1192-1203. [83] Fu S, Chen HH, Cheng P, et al.MiR-155 regulates oral squamous cell carcinoma Tca8113 cell proliferation, cycle, and apoptosis via regulating p27Kip1[J]. European Review for Medical and Pharmacological Sciences, 2017, 21(5):937-944. [84] Huang X, Shen Y, Liu M, et al.Quantitative proteomics reveals that miR-155 regulates the PI3K-AKT pathway in diffuse large B-Cell lymphoma[J]. The American Journal of Pathology, 2012, 181(1):26-33. [85] Gatto G, Rossi A, Rossi D, et al.Epstein-Barr virus latent membrane protein 1 trans-activates miR-155 transcription through the NF-kappaB pathway[J]. Nucleic Acids Research, 2008, 36(20):6608-6619. [86] Gasparini P, Lovat F, Fassan M, et al.Protective role of miR-155 in breast cancer through RAD51 targeting impairs homologous recombination after irradiation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(12):4536-4541. [87] Yang K, Wu M, Li M, et al.miR-155 Suppresses bacterial clearance in Pseudomonas aeruginosa-induced keratitis by targeting rheb[J]. The Journal of Infectious Diseases, 2014, 210(1):89-98. [88] Kong W, Yang H, He L, et al.MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA[J]. Molecular and Cellular Biology, 2008, 28(22):6773-6784. [89] Zhang Z, Wang Z, Zhang B, et al.Downregulation of microRNA155 by preoperative administration of valproic acid prevents postoperative seizures by upregulating SCN1A[J]. Molecular Medicine Reports, 2018, 17(1):1375-1381. [90] O’Connell RM, Chaudhuri AA, Rao DS, et al. Inositol phosphatase SHIP1 is a primary target of miR-155[J]. Proc Natl Acade Sci, 2009, 106(17):7113-7118. [91] Pedersen IM, Otero D, Kao E, et al.Onco-miR-155 targets SHIP1 to promote TNFα-dependent growth of B cell lymphomas[J]. EMBO Molecular Medicine, 2009, 1(5):288-295. [92] Louafi F, Martinez-Nunez RT, Sanchez-Elsner T.MicroRNA-155 targets SMAD2 and modulates the response of macrophages to transforming growth factor-{beta}[J]. The Journal of Biological Chemistry, 2010, 285(53):41328-41336. [93] Rai D, Kim SW, McKeller MR, et al. Targeting of SMAD5 links microRNA-155 to the TGF-beta pathway and lymphomagenesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(7):3111-3116. [94] Zhang M, Zhang Q, Liu F, et al.MicroRNA-155 may affect allograft survival by regulating the expression of suppressor of cytokine signaling 1[J]. Medical Hypotheses, 2011, 77(4):682-684. [95] Zhang Y, Wei W, Cheng N, et al.Hepatitis C virus-induced up-regulation of microRNA-155 promotes hepatocarcinogenesis by activating Wnt signaling[J]. Hepatology, 2012, 56(5):1631-1640. [96] Imaizumi T, Tanaka H, Tajima A, et al.IFN-gamma and TNF-alpha synergistically induce microRNA-155 which regulates TAB2/IP-10 expression in human mesangial cells[J]. American Journal of Nephrology, 2010, 32(5):462-468. [97] Xu C, Ren G, Cao G, et al.miR-155 regulates immune modulatory properties of mesenchymal stem cells by targeting TAK1-binding protein 2[J]. The Journal of Biological Chemistry, 2013, 288(16):11074-11079. [98] Zhang CM, Zhao J, Deng HY.MiR-155 promotes proliferation of human breast cancer MCF-7 cells through targeting tumor protein 53-induced nuclear protein 1[J]. Journal of Biomedical Science, 2013, 20:79. [99] Zhang J, Cheng C, Yuan X, et al.microRNA-155 acts as an oncogene by targeting the tumor protein 53-induced nuclear protein 1 in esophageal squamous cell carcinoma[J]. International Journal of Clinical and Experimental Pathology, 2014, 7(2):602-610. [100] Liu F, Kong X, Lv L, et al.MiR-155 targets TP53INP1 to regulate liver cancer stem cell acquisition and self-renewal[J]. FEBS Letters, 2015, 589(4):500-506. |
[1] | 康凌云, 韩露露, 韩德平, 陈建胜, 甘瀚凌, 邢凯, 马友记, 崔凯. 褪黑素缓解空肠黏膜上皮细胞氧化损伤的效果研究[J]. 生物技术通报, 2023, 39(9): 291-299. |
[2] | 沙珊珊, 董世荣, 杨玉菊. 肠道菌群及代谢物调控宿主肠道免疫的研究进展[J]. 生物技术通报, 2023, 39(8): 126-136. |
[3] | 陈彩萍, 任昊, 龙腾飞, 何冰, 鲁兆祥, 孙坚. 大肠杆菌Nissle 1917对炎症性肠病治疗作用的研究进展[J]. 生物技术通报, 2023, 39(6): 109-118. |
[4] | 钱榜, 刘振东, 赵印, 李静, PRAJAPATI Meera, 李彦敏, 孙跃峰, 窦永喜. 小反刍兽疫病毒H蛋白抗体化学发光免疫分析检测方法的建立[J]. 生物技术通报, 2023, 39(5): 120-129. |
[5] | 张新博, 崔浩亮, 史佩华, 高锦春, 赵顺然, 陶晨雨. 低起始量的免疫共沉淀技术研究进展[J]. 生物技术通报, 2023, 39(4): 227-235. |
[6] | 郭文博, 路杨, 隋丽, 赵宇, 邹晓威, 张正坤, 李启云. 球孢白僵菌真菌病毒BbPmV-4外壳蛋白多克隆抗体制备及应用[J]. 生物技术通报, 2023, 39(10): 58-67. |
[7] | 王祥锟, 宋学宏, 刘金龙, 郭培红, 庄晓峰, 韦良孟, 周凡, 张树宇, 高攀攀, 魏凯. 新型冠状病毒亚单位疫苗研制及其高效免疫增强剂的筛选[J]. 生物技术通报, 2023, 39(1): 305-314. |
[8] | 索青青, 吴楠, 杨慧, 李莉, 王锡锋. 水稻咖啡酰辅酶A-O-甲基转移酶基因的原核表达、抗体制备和应用[J]. 生物技术通报, 2022, 38(8): 135-141. |
[9] | 陈英, 王艺磊, 邹鹏飞. 大黄鱼TRAF6的克隆及表达分析[J]. 生物技术通报, 2022, 38(8): 233-243. |
[10] | 周雪敏, 康丽鹃, 郭永妮, 杨笑含, 蒋易龙, 王泽龙, 孙倩, 康波. 不同日龄鸭肌肉组织多胺代谢和肌肉发育相关基因表达的规律[J]. 生物技术通报, 2022, 38(8): 244-251. |
[11] | 蒋贤哲, 博彦, 海玲, 新盟, 王炳. 肠肝轴在动物营养代谢和免疫中的作用[J]. 生物技术通报, 2022, 38(7): 128-135. |
[12] | 陈桂芳, 杨佳怡, 高运华, 任歌. 染色质免疫共沉淀测序技术研究进展[J]. 生物技术通报, 2022, 38(7): 40-50. |
[13] | 石佳, 朱秀梅, 薛梦雨, 余超, 魏一鸣, 杨凤环, 陈华民. 基于水稻原生质体的染色质免疫共沉淀技术优化及应用[J]. 生物技术通报, 2022, 38(7): 62-69. |
[14] | 丁亚群, 丁宁, 谢深民, 黄梦娜, 张昱, 张勤, 姜力. Vps28基因敲除小鼠模型的构建及其对泌乳和免疫性状影响的研究[J]. 生物技术通报, 2022, 38(3): 164-172. |
[15] | 郑向, 段左平, 张杰, 潘素君, 戴良英, 刘世名, 李魏. 大豆疫霉菌效应子研究进展[J]. 生物技术通报, 2022, 38(11): 10-20. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||