生物技术通报 ›› 2021, Vol. 37 ›› Issue (5): 221-230.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0846
收稿日期:
2020-07-10
出版日期:
2021-05-26
发布日期:
2021-06-11
作者简介:
武杞蔓,女,硕士研究生,研究方向:分子生物学;E-mail: 基金资助:
WU Qi-man(), ZHANG Jin-mei, LI Yue-ying, ZHANG Ying()
Received:
2020-07-10
Published:
2021-05-26
Online:
2021-06-11
摘要:
微生物肥料是一种对环境友好的新型生物肥料,可以促进植物生长,提高果实品质,改善土壤质量,通过在植物和微生物之间构建良好的联系,实现环境的可持续发展,形成“可循环经济”,从而有效促进有机农业的整体发展。就有益微生物菌肥改善土壤理化性质、促进植物生长和改善果实品质、提高植物抗逆性和抗病性等方面进行了综述,并简要介绍了微生物与植物相互作用的分子机制,对微生物菌肥在有机农业上的应用前景进行了展望。
武杞蔓, 张金梅, 李玥莹, 张颖. 有益微生物菌肥对农作物的作用机制研究进展[J]. 生物技术通报, 2021, 37(5): 221-230.
WU Qi-man, ZHANG Jin-mei, LI Yue-ying, ZHANG Ying. Recent Advances on the Mechanism of Beneficial Microbial Fertilizers in Crops[J]. Biotechnology Bulletin, 2021, 37(5): 221-230.
物种 Species | 菌株名称 Strain name | 植物变量形态 Plant variable morphology | 生理生化 Physiology and biochemistry | 引用文献Citation |
---|---|---|---|---|
藜麦Quinoa | B.amyloliquefaciens | 茎长↑,根长↑,干鲜质量↑ | [ | |
黄瓜cucumber | P.polymyxa | 株高↑,茎粗↑,叶片 数↑ | 根系活力↑,叶绿素↑,可溶性糖↑,可溶性蛋白↑,维生素C↑ | [ |
黄瓜cucumber | Mix | 株高↑,茎粗↑,产量↑ | 叶绿素↑,维生素C↑,可溶性糖↑,可溶性蛋白↑ | [ |
鹰嘴豆Chickpeas | B.subtilis, B. pumilis | 株高↑,茎粗↑,叶面积↑ | 叶绿素↑,ACC脱氨酶↑,IAA↑ | [ |
番茄tomato | T.viride | 根鲜重↑ | 叶绿素↑,VOCs生物量↑ | [ |
大蒜garlic | Mix | 发芽率↑,株高↑ | 叶绿素↑,N↑,P↑,K↑ | [ |
黄瓜cucumber | C.subaffine | 萌发率↑,根长↑,株高↑,茎 长↑,叶面积↑,干鲜重↑ | IAA↑ | [ |
表1 PGPR对农作物促生长的作用
Table 1 Effect of PGPR on the growth of crops
物种 Species | 菌株名称 Strain name | 植物变量形态 Plant variable morphology | 生理生化 Physiology and biochemistry | 引用文献Citation |
---|---|---|---|---|
藜麦Quinoa | B.amyloliquefaciens | 茎长↑,根长↑,干鲜质量↑ | [ | |
黄瓜cucumber | P.polymyxa | 株高↑,茎粗↑,叶片 数↑ | 根系活力↑,叶绿素↑,可溶性糖↑,可溶性蛋白↑,维生素C↑ | [ |
黄瓜cucumber | Mix | 株高↑,茎粗↑,产量↑ | 叶绿素↑,维生素C↑,可溶性糖↑,可溶性蛋白↑ | [ |
鹰嘴豆Chickpeas | B.subtilis, B. pumilis | 株高↑,茎粗↑,叶面积↑ | 叶绿素↑,ACC脱氨酶↑,IAA↑ | [ |
番茄tomato | T.viride | 根鲜重↑ | 叶绿素↑,VOCs生物量↑ | [ |
大蒜garlic | Mix | 发芽率↑,株高↑ | 叶绿素↑,N↑,P↑,K↑ | [ |
黄瓜cucumber | C.subaffine | 萌发率↑,根长↑,株高↑,茎 长↑,叶面积↑,干鲜重↑ | IAA↑ | [ |
胁迫 Stress | 植株表现 Plant performance | 菌种 Bacterium | 物种 Species | 植物变量形态Plant Variable morphology | 生理生化 Physiology and biochemistry | 基因 Gene | 文献Literature |
---|---|---|---|---|---|---|---|
生物Biological | 枯萎病(Fusarium Wilt) | B. cereus | 黄瓜 Cucumber | 生物量↑ (Biomass ↑) | 抑菌率↑ | [ | |
枯萎病(Fusarium Wilt) | B.amyloliquefaciens | 番茄 Tomato | 抗生素(Antibiotics)bacillomycinL,fengycins,surfactins | Sfp,ituA,fenb | [ | ||
青枯病(Bacterial wilt) | B.amyloliquefaciens | 番茄 Tomato | AUDPC↓,死亡率↓(AUDPC↑,Mortality ↓) | 诱导SAR,ISR 产生抗生素、铁离子POD↑,PPO↑,SOD↑ | PAL↑,PRLA↑,LOX↑ | [ | |
纹枯病(Rhizoctonia) | B. subtilis | 水稻 Rice | 产生抑菌物质 (Produce antibacterial substances) | [ | |||
白粉病(powdery mildew) | C.subaffine | 黄瓜 Cucumber | 病情指数↓,控制效果↑ (Disease index↓,control effect↑) | [ | |||
非生物 Non-biological | 干旱胁迫(Drought stress) | YX2 | 苹果 Apple | MDA↑,光合能力↑,叶绿素降解↓,抗氧化酶↑,相对含水量↑,相对电导率↓ | [ | ||
水分胁迫(Water stress) | P.putida | 拟南芥 Arabidopsis | ABA↑,IAA↑,tZ↑,茎GA↑,根GA↓ | [ | |||
铬胁迫(Chromium stress) | P.aeruginosa | 水稻 Rice | SOD↑,POD↑,CAT↑,MDA↓,O2.-↓,类黄酮↑,总酚↑,根系活力↑,净光合速率↑ | [ | |||
盐胁迫 (Salt stress) | B. pumilus | 甘草 Licorice | 胚乳粗度↑,干重↑,胚乳长度↓(Endosperm thickness↑,dry weight↑,endosperm length↓) | MDA↓,SOD↑,POD↑,CAT↑,H2O2含量↓,O2-产生速率↓ | [ |
表2 PGPR提高农作物的抗性
Table 2 PGPR can improve the resistance of crops
胁迫 Stress | 植株表现 Plant performance | 菌种 Bacterium | 物种 Species | 植物变量形态Plant Variable morphology | 生理生化 Physiology and biochemistry | 基因 Gene | 文献Literature |
---|---|---|---|---|---|---|---|
生物Biological | 枯萎病(Fusarium Wilt) | B. cereus | 黄瓜 Cucumber | 生物量↑ (Biomass ↑) | 抑菌率↑ | [ | |
枯萎病(Fusarium Wilt) | B.amyloliquefaciens | 番茄 Tomato | 抗生素(Antibiotics)bacillomycinL,fengycins,surfactins | Sfp,ituA,fenb | [ | ||
青枯病(Bacterial wilt) | B.amyloliquefaciens | 番茄 Tomato | AUDPC↓,死亡率↓(AUDPC↑,Mortality ↓) | 诱导SAR,ISR 产生抗生素、铁离子POD↑,PPO↑,SOD↑ | PAL↑,PRLA↑,LOX↑ | [ | |
纹枯病(Rhizoctonia) | B. subtilis | 水稻 Rice | 产生抑菌物质 (Produce antibacterial substances) | [ | |||
白粉病(powdery mildew) | C.subaffine | 黄瓜 Cucumber | 病情指数↓,控制效果↑ (Disease index↓,control effect↑) | [ | |||
非生物 Non-biological | 干旱胁迫(Drought stress) | YX2 | 苹果 Apple | MDA↑,光合能力↑,叶绿素降解↓,抗氧化酶↑,相对含水量↑,相对电导率↓ | [ | ||
水分胁迫(Water stress) | P.putida | 拟南芥 Arabidopsis | ABA↑,IAA↑,tZ↑,茎GA↑,根GA↓ | [ | |||
铬胁迫(Chromium stress) | P.aeruginosa | 水稻 Rice | SOD↑,POD↑,CAT↑,MDA↓,O2.-↓,类黄酮↑,总酚↑,根系活力↑,净光合速率↑ | [ | |||
盐胁迫 (Salt stress) | B. pumilus | 甘草 Licorice | 胚乳粗度↑,干重↑,胚乳长度↓(Endosperm thickness↑,dry weight↑,endosperm length↓) | MDA↓,SOD↑,POD↑,CAT↑,H2O2含量↓,O2-产生速率↓ | [ |
[1] | 王涛, 乔卫花, 李玉奇, 等. 轮作和微生物菌肥对黄瓜连作土壤理化性状及生物活性的影响[J]. 土壤通报, 2011,42(3):578-583. |
Wang T, Qiao WH, Li YQ, et al. Effects of crop rotation and microbial fertilizer on soil physical and chemical properties and biological activity of cucumber continuous cropping[J]. Soil Bulletin, 2011,42(3):578-583. | |
[2] | 邱吟霜, 王西娜, 李培富, 等. 不同种类有机肥及用量对当季旱地土壤肥力和玉米产量的影响[J]. 中国土壤与肥料, 2019(6):182-189. |
Qiu YS, Wang XN, Li PF, et al. Effects of different types of organic fertilizers and their amounts on dryland soil fertility and corn yield in current season[J]. Soils and Fertilizers in China, 2019(6):182-189. | |
[3] | 王梦雅, 符云鹏, 贾辉, 等. 不同菌肥对土壤养分、酶活性和微生物功能多样性的影响[J]. 中国烟草科学, 2018,39(1):57-63. |
Wang MY, Fu YP, Jia H, et al. Effects of different bacterial fertilizers on soil nutrients, enzyme activities and microbial functional diversity[J]. China Tobacco Science, 2018,39(1):57-63. | |
[4] | 卢培娜, 刘景辉, 赵宝平, 等. 菌肥对盐碱地土壤特性及燕麦根系分泌物的影响[J]. 作物杂志, 2017(5):85-92. |
Lu PN, Liu JH, Zhao BP, et al. Effects of bacterial manure on saline-alkaline soil characteristics and oat root exudates[J]. Crop Journal, 2017(5):85-92. | |
[5] | 关菁, 史利平. 复合微生物肥和生物有机肥对不同土壤改良作用的机理探究[J]. 现代农业, 2016(1):28. |
Guan J, Shi LP. Research on the mechanism of compound microbial fertilizer and bio-organic fertilizer on different soil improvement[J]. Modern Agriculture, 2016(1):28. | |
[6] | 杨美英, 王春红, 武志海, 等. 不同条件下两株溶磷菌溶磷量及葡萄糖脱氢酶基因表达与酶活分析[J]. 微生物学报, 2016,56(4):651-663. |
Yang MY, Wang CH, Wu ZH, et al. Phosphate solubilization and glucose dehydrogenase gene expression and enzyme activity analysis of two phosphate solubilizing bacteria under different conditions[J]. Acta Microbiology, 2016,56(4):651-663. | |
[7] |
Sashidhar B, Podile AR. Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase[J]. J Appl Microbiol, 2010,109(1):1-12.
doi: 10.1111/jam.2010.109.issue-1 URL |
[8] |
Hauser F, Pessi G, Friberg M, et al. Dissection of the Bradyrhizobium japonicum NifA+sigma54 regulon, and identification of a ferredoxin gene(Fdxn)for symbiotic nitrogen fixation[J]. Mol Genet Genomics, 2007,278(3):255-271.
pmid: 17569992 |
[9] |
Selvakumar G, Yi PH, Lee SH, et al. Hairy vetch, compost and chemical fertilizer management effects on red pepper yield, quality, and soil microbial population[J]. Horticulture, Environment, and Biotechnology, 2018,59(5):607-614.
doi: 10.1007/s13580-018-0078-z URL |
[10] | 刘燕, 潘婷, 孙萍, 等. 农用微生物菌肥在黄瓜上的应用效果研究[J]. 现代农业科技, 2020(6):60-61. |
Liu Y, Pan T, Sun P, et al. Study on the application effect of agricultural microbial fertilizer on cucumber[J]. Modern Agricultural Science and Technology, 2020(6):60-61. | |
[11] | 王书娟, 齐合玉, 孙超, 等. 微生物菌肥对大棚番茄的影响[J]. 蔬菜, 2020(1):34-37. |
Wang SJ, Qi HY, Sun C, et al. The effect of microbial fertilizer on tomato in greenhouse[J]. Vegetables, 2020(1):34-37. | |
[12] | 黄玉波, 庄秋丽, 李习军. 复合生物菌肥在大豆种植上的应用效果初报[J]. 农业科技通讯, 2014(10):114-115. |
Huang YB, Zhuang QL, Li XJ. Preliminary report on the application effect of compound biological bacterial fertilizer on soybean planting[J]. Bulletin of Agricultural Science and Technology, 2014(10):114-115. | |
[13] | 李小炜, 田丽. 菌肥对西北半干旱区大棚黄瓜生长及产质量的影响[J]. 贵州农业科学, 2019(8):93-96. |
Li XW, Tian L. Effects of bacterial manure on the growth, yield and quality of cucumber in greenhouse in semi-arid area of northwest China[J]. Guizhou Agricultural Sciences, 2019(8):93-96. | |
[14] | 余小兰, 李光义, 邹雨坤, 等. 蚯蚓粪和巨大芽孢杆菌互作对小白菜产量与品质的影响[J]. 中国土壤与肥料, 2020(2):206-212. |
Yu XL, Li GY, Zou YK, et al. The interaction of vermicompost and Bacillus megaterium on the yield and quality of Chinese cabbage[J]. Soils and Fertilizers in China, 2020(2):206-212. | |
[15] | 庞强强, 蔡兴来, 周曼, 等. 微生物菌肥对设施白菜生长、品质和土壤酶活性的影响[J]. 热带农业科学, 2018,38(4):20-23. |
Pang Q, Cai XL, Zhou M, et al. Effects of microbial fertilizer on the growth, quality and soil enzyme activity of cabbage in greenhouse[J]. Tropical Agricultural Sciences, 2018,38(4):20-23. | |
[16] | 赵达, 傅俊范, 裘季燕, 等. 枯草芽孢杆菌在植病生防中的作用机制与应用[J]. 辽宁农业科学, 2007(1):46-48. |
Zhao D, Fu JF, Qiu JY, et al. Mechanism and application of Bacillus subtilis in biocontrol of plant diseases[J]. Liaoning Agricultural Sciences, 2007(1):46-48. | |
[17] |
Lee S, Trinh CS, Lee WJ, et al. Bacillus Subtilis strain L1 promotes nitrate reductase activity in Arabidopsis and elicits enhanced growth performance in Arabidopsis, lettuce, and wheat[J]. J Plant Res, 2020,133(2):231-244.
doi: 10.1007/s10265-019-01160-4 URL |
[18] | 蒋永梅, 高亚敏, 姚拓, 等. 植物根际促生菌(PGPR)对非宿主植物猫尾草和小黑麦生长的促生作用[J]. 草业科学, 2018,35(8):1910-1918. |
Jiang YM, Gao YM, Yao T, et al. Growth-promoting effects of plant rhizosphere growth promoting bacteria(PGPR)on the growth of non-host plants Timothy grass and triticale[J]. Pratacultura Sci, 2018,35(8):1910-1918. | |
[19] | Franco-Sierra ND, Posada LF, Santa-Maria G, et al. Bacillus Subtilis Ea-Cb0575 genome reveals clues for plant growth promotion and potential for sustainable agriculture[J]. Funct Integr Genomics, 2020(20):575-589. |
[20] |
Cakmakci R, Mosber G, Milton AH, et al. The effect of auxin and auxin-producing bacteria on the growth, essential oil yield, and composition in medicinal and aromatic plants[J]. Curr Microbiol, 2020,77(4):564-577.
doi: 10.1007/s00284-020-01917-4 URL |
[21] |
Egorshina AA, Khairullin RM, Sakhabutdinova AR, et al. Involvement of phytohormones in the development of interaction between wheat seedlings and endophytic Bacillus subtilis strain 11bm[J]. Russian J Plant Physiol, 2011,59(1):134-140.
doi: 10.1134/S1021443711050062 URL |
[22] |
Parray JA, Jan S, Kamili AN, et al. Current perspectives on plant growth-promoting rhizobacteria[J]. Journal of Plant Growth Regulation, 2016,35(3):877-902.
doi: 10.1007/s00344-016-9583-4 URL |
[23] |
Vacheron J, Desbrosses G, Bouffaud ML, et al. Plant growth-promoting Rhizobacteria and root system functioning[J]. Front Plant Sci, 2013,4:356.
doi: 10.3389/fpls.2013.00356 pmid: 24062756 |
[24] |
Argueso CT, Hansen M, Kieber JJ. Regulation of ethylene biosynjournal[J]. J Plant Growth Regul, 2007,26(2):92-105.
doi: 10.1007/s00344-007-0013-5 URL |
[25] |
Glick BR. Modulation of plant ethylene levels by the bacterial enzyme Acc deaminase[J]. FEMS Microbiol Lett, 2005,251(1):1-7.
doi: 10.1016/j.femsle.2005.07.030 URL |
[26] |
Glick BR. Bacteria with Acc deaminase can promote plant growth and help to feed the world[J]. Microbiol Res, 2014,169(1):30-39.
doi: 10.1016/j.micres.2013.09.009 URL |
[27] | 徐瑛, 郭晓农, 蔡德育. 解淀粉芽孢杆菌11B91对藜麦生长影响的初探[J]. 大麦与谷类科学, 2019,36(5):10-14. |
Xu Y, Guo XN, Cai DY. The effect of Bacillus amyloliquefaciens 11B91 on the growth of quinoa[J]. Barley and Cereal Sciences, 2019,36(5):10-14. | |
[28] | 李英楠, 曹正, 杜南山, 等. 三种PGPR菌株对黄瓜生长及根际土壤环境的影响[J]. 北方园艺, 2019(24):21-27. |
Li YN, Cao Z, Du NS, et al. Effects of three PGPR strains on cucumber growth and rhizosphere soil environment[J]. Northern Horticulture, 2019(24):21-27. | |
[29] | 吕鹏超, 王成慧, 林悦香, 等. 复合微生物菌剂对温室黄瓜生长和品质的影响[J]. 安徽农学通报, 2020,26(17):47-49, 131. |
Lv PC, Wang CH, Lin YX, et al. Effect of compound microbial inoculants on the growth and quality of cucumber in greenhouse[J]. Anhui Agricultural Science Bulletin, 2020,26(17):47-49, 131. | |
[30] |
Pandey S, Gupta S, Ramawat N. Unravelling the potential of microbes isolated from rhizospheric soil of chickpea(Cicer Arietinum)as plant growth promoter[J]. 3 Biotech, 2019,9(7):277.
doi: 10.1007/s13205-019-1809-2 URL |
[31] |
Lee S, Yap M, Behringer G, et al. Volatile organic compounds emitted by trichoderma species mediate plant growth[J]. Fungal Biol Biotechnol, 2016,3:7.
doi: 10.1186/s40694-016-0025-7 URL |
[32] | 吕俊, 付春, 肖析蒙, 等. 植物根际促生菌对大蒜的促生、抗病作用研究[J]. 中国农学通报, 2020,36(24):146-153. |
Lv J, Fu C, Xiao XM, et al. Research on the growth-promoting and disease-resistant effects of plant rhizosphere growth-promoting bacteria on garlic[J]. Chinese Agricultural Science Bulletin, 2020,36(24):146-153. | |
[33] | 刘彩云, 赵静. 生防菌株LB-1培养液对黄瓜的抑病促生作用[J]. 植物病理学报, 2020,50(6):731-738. |
Liu CY, Zhao J. The anti-disease and growth-promoting effects of biocontrol strain LB-1 on cucumber[J]. Chinese Journal of Phytopathology, 2020,50(6):731-738. | |
[34] | 董春娟, 李亮, 曹宁, 等. 苯丙氨酸解氨酶在诱导黄瓜幼苗抗寒性中的作用[J]. 应用生态学报, 2015,26(7):2041-2049. |
Dong CJ, Li L, Cao N, et al. The role of phenylalanine ammonia lyase in inducing cold resistance of cucumber seedlings[J]. Chinese Journal of Applied Ecology, 2015,26(7):2041-2049. | |
[35] |
Holzapfel C, Shahrokh P, Kafkewitz D. Polyphenol oxidase activity in the roots of seedlings of bromus(poaceae)and other grass genera[J]. Am J Bot, 2010,97(7):1195-1199.
doi: 10.3732/ajb.0900337 pmid: 21616870 |
[36] |
Vogt T. Phenylpropanoid biosynjournal[J]. Mol Plant, 2010,3(1):2-20.
doi: 10.1093/mp/ssp106 URL |
[37] | 谢东锋, 王国强, 谢荣, 等. 不同微生物菌肥处理连作土壤对黄瓜生长及防御性酶的影响[J]. 福建农业学报, 2018,33(7):696-701. |
Xie DF, Wang GQ, Xie R, et al. Effects of continuous cropping soil treated with different microbial fertilizers on cucumber growth and defensive enzymes[J]. Fujian Journal of Agricultural Sciences, 2018,33(7):696-701. | |
[38] | 周游, 杨腊英, 汪军, 等. 枯草芽孢杆菌和绿色木霉协同促进芹菜生长的研究[J]. 中国土壤与肥料, 2020(2):213-219. |
Zhou Y, Yang LY, Wang J, et al. Synergistic promotion of celery growth by Bacillus subtilis and Trichoderma viride[J]. Soils and Fertilizers in China, 2020(2):213-219. | |
[39] | 台莲梅, 郭永霞, 张亚玲, 等. 木霉生防菌对大豆幼苗的促生作用及对根腐病的防治效果[J]. 安徽农业科学, 2013,41(11):4820-4821. |
Tai LM, Guo YX, Zhang YL, et al. Growth-promoting effects of Trichoderma biocontrol bacteria on soybean seedlings and root rot control[J]. Journal of Anhui Agricultural Sciences, 2013,41(11):4820-4821. | |
[40] | 成瑢, 董铮, 李魏, 等. 大豆根腐病研究进展[J]. 中国农学通报, 2016,32(8):58-62. |
Cheng R, Dong Z, Li Wei, et al. Research progress on soybean root rot[J]. Chinese Agricultural Science Bulletin, 2016,32(8):58-62. | |
[41] | 高同国, 李术娜, 张冬冬, 等. 大豆根腐病生防细菌优势菌株的筛选、鉴定及生防效果验证[J]. 大豆科学, 2015,34(4):661-665. |
Gao TG, Li SN, Zhang D, et al. Screening, identification and verification of dominant bacterial strains for biocontrol of soybean root rot[J]. Soybean Science, 2015,34(4):661-665. | |
[42] | 张淑梅, 王玉霞, 赵晓宇, 等. 生物拌种剂防治大豆根腐病效果和机制[J]. 大豆科学, 2009,28(5):863-868, 874. |
Zhang SM, Wang YX, Zhao XY, et al. The effect and mechanism of biological seed dressing agent on preventing and controlling soybean root rot[J]. Soybean Science, 2009,28(5):863-868, 874. | |
[43] |
Chen Y, Xu Y, Zhou T, et al. Biocontrol of fusarium Wilt disease in strawberries using bioorganic fertilizer fortified with Bacillus Licheniformis X-1 and Bacillus Methylotrophicus Z-1[J]. 3 Biotech, 2020,10(2):80.
doi: 10.1007/s13205-020-2060-6 pmid: 32099731 |
[44] |
Xu SJ, Park DH, Kim JY, et al. Biological control of gray mold and growth promotion of tomato using Bacillus spp. isolated from soil[J]. Tropical Plant Pathology, 2016,41(3):169-176.
doi: 10.1007/s40858-016-0082-8 URL |
[45] |
Sotoyama K, Akutsu K, Nakajima M. Suppression of bacterial wilt of Tomato by soil amendment with mushroom compost containing Bacillus Amyloliquefaciens Iumc7[J]. Journal of General Plant Pathology, 2016,83(1):51-55.
doi: 10.1007/s10327-016-0690-7 URL |
[46] | 卢冬雪, 杨美英, 岳胜天, 等. 植物根际促生菌的促生作用及促生机制研究进展[C]. 全国植物生物技术发展与植物逆境生理研究前沿动态研讨会. 海口, 2017. |
Lu DX, Yang MH, Yue ST, et al. Research progress on growth-promoting effects and growth-promoting mechanisms of plant rhizosphere growth-promoting bacteria[C]. National Symposium on the Frontiers of Plant Biotechnology Development and Plant Stress Physiology. Haikou, 2017. | |
[47] |
Chi F, Shen SH, Cheng HP, et al. Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology[J]. Appl Environ Microbiol, 2005,71(11):7271-7278.
doi: 10.1128/AEM.71.11.7271-7278.2005 URL |
[48] |
James EK, Gyaneshwar P, Reddy PM, et al. Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67[J]. Molecular Plant-Microbe Interactions, 2002,15(9):894-906.
doi: 10.1094/MPMI.2002.15.9.894 URL |
[49] |
Spaepen S, Vanderleyden J, Remans R. Indole-3-Acetic acid in microbial and microorganism-plant signaling[J]. FEMS Microbiol Rev, 2007,31(4):425-448.
pmid: 17509086 |
[50] | 崔薇薇. 植物根际促生菌的研究进展[J]. 辽宁农业科学, 2010(2):35-39. |
Cui W. Research progress of plant rhizosphere growth-promoting bacteria[J]. Liaoning Agricultural Sciences, 2010(2):35-39. | |
[51] | 刘邮洲, Lu SE, Baird SM, 等. 绿针假单胞菌Yl-1抗细菌活性相关基因的克隆和分析[J]. 植物病理学报, 2015,45(3):307-316. |
Liu YZ, Lu SE, Baird SM, et al. Cloning and analysis of genes related to antibacterial activity of Pseudomonas chlorophylla Yl-1[J]. Acta Phytopathology, 2015,45(3):307-316. | |
[52] | 向亚萍, 周华飞, 刘永锋, 等. 解淀粉芽孢杆菌B1619脂肽类抗生素的分离鉴定及其对番茄枯萎病菌的抑制作用[J]. 中国农业科学, 2016,49(15):2935-2944. |
Xiang YP, Zhou HF, Liu YF, et al. Isolation and identification of Bacillus amyloliquefaciens B1619 lipopeptide antibiotics and their inhibitory effects on tomato Fusarium wilt[J]. China Agricultural Sciences, 2016,49(15):2935-2944. | |
[53] | 黄伟红, 丁延芹, 姚良同, 等. Pseudomonas mosselii E1铁载体合成相关基因cysI的克隆与功能初步分析[J]. 微生物学报, 2007(5):910-913. |
Huang WH, Ding YQ, Yao LT, et al. Cloning and preliminary function analysis of Pseudomonas mosselii E1 siderophore synjournal-related gene cysI[J]. Acta Microbiology, 2007(5):910-913. | |
[54] | 陈香, 唐彤彤, 孙星, 等. 对黄瓜枯萎病具防效的海洋源芽孢杆菌Y3F的鉴定[J]. 微生物学通报, 2017,44(10):2370-2379. |
Chen X, Tang T, Sun X, et al. Identification of marine-derived Bacillus Y3F that is effective against cucumber Fusarium wilt[J]. Microbiology Bulletin, 2017,44(10):2370-2379. | |
[55] |
Huang CN, Lin CP, Hsieh FC, et al. Characterization and evaluation of Bacillus amyloliquefaciens strain Wf02 regarding its biocontrol activities and genetic responses against bacterial wilt in two different resistant tomato cultivars[J]. World J Microbiol Biotechnol, 2016,32(11):183.
doi: 10.1007/s11274-016-2143-z URL |
[56] | 李德全, 陈志谊, 聂亚锋. 生防菌BS-916及高效突变菌株抗菌物质及其对水稻抗性诱导作用的研究[J]. 植物病理学报, 2008,38(2):192-198. |
Li DQ, Chen ZY, Nie YF. Biocontrol bacteria BS-916 and highly efficient mutant strain antibacterial substances and their resistance induction effects on rice[J]. Acta Phytopathology, 2008,38(2):192-198. | |
[57] | 徐雪东, 张超, 秦成, 等. 干旱下接种根际促生细菌对苹果实生苗光合和生理生态特性的影响[J]. 应用生态学报, 2019,30(10):3501-3508. |
Xu XD, Zhang C, Qin C, et al. Effects of rhizosphere growth-promoting bacteria inoculation on photosynthetic and physiological and ecological characteristics of apple seedlings under drought[J]. Chinese Journal of Applied Ecology, 2019,30(10):3501-3508. | |
[58] | Ghosh D, Gupta A, Mohapatra S. Dynamics of endogenous hormone regulation in plants by phytohormone secreting rhizobacteria under water-stress[J]. Symbiosis, 2019(77):265-278. |
[59] | 汪敦飞, 郑新宇, 肖清铁, 等. 铜绿假单胞菌对镉胁迫苗期水稻根系活力及叶片生理特性的影响[J]. 应用生态学报, 2019,30(8):2767-2774. |
Wang DF, Zheng XY, Xiao QT, et al. Effects of Pseudomonas aeruginosa on root vigor and leaf physiological characteristics of rice seedlings under cadmium stress[J]. The Journal of Applied Ecology, 2019,30(8):2767-2774. | |
[60] | 张晓佳, 解植彩, 张文晋, 等. 短小芽孢杆菌对盐胁迫下甘草生长及抗氧化系统的影响[J]. 时珍国医国药, 2019,30(3):688-691. |
Zhang XJ, Xie ZC, Zhang WJ, et al. Effects of Bacillus pumilus on the growth and antioxidant system of licorice under salt stress[J]. Lishizhen Medicine and Materia Medica Research, 2019,30(3):688-691. | |
[61] | 王世平. 试析有机农业种植土壤培肥技术[J]. 农业与技术, 2020,40(8):95-96. |
Wang SP. Analysis on soil fertility improvement techniques for organic agriculture planting[J]. Agriculture & Technology, 2020,40(8):95-96. |
[1] | 王天依, 王荣焕, 王夏青, 张如养, 徐瑞斌, 焦炎炎, 孙轩, 王继东, 宋伟, 赵久然. 玉米矮秆基因与矮秆育种研究[J]. 生物技术通报, 2023, 39(8): 43-51. |
[2] | 张蓓, 任福森, 赵洋, 郭志伟, 孙强, 刘贺娟, 甄俊琦, 王童童, 程相杰. 辣椒响应热胁迫机制的研究进展[J]. 生物技术通报, 2023, 39(7): 37-47. |
[3] | 张和臣, 袁欣, 高杰, 王校晨, 王慧娟, 李艳敏, 王利民, 符真珠, 李保印. 植物花瓣呈色机理及花色分子育种[J]. 生物技术通报, 2023, 39(5): 23-31. |
[4] | 齐方婷, 黄河. 观赏植物花斑形成调控机制的研究进展[J]. 生物技术通报, 2023, 39(10): 17-28. |
[5] | 马赛买, 李同源, 马燕军, 韩富军, 彭海, 孔维宝. 几丁质酶在农作物病虫害生物防治中的研究进展[J]. 生物技术通报, 2023, 39(10): 29-40. |
[6] | 林鹰, 杨文莉, 周玲艳, 姜大刚. 农业转基因核酸标准物质研究进展[J]. 生物技术通报, 2022, 38(8): 52-59. |
[7] | 刘自然, 甄珍, 陈强, 李玥莹, 王泽, 逄洪波. 植物响应Cd胁迫研究进展[J]. 生物技术通报, 2022, 38(6): 13-26. |
[8] | 祝静, 于存. 长枝木霉菌肥对玉米生长、土壤肥力和根际微生物的影响[J]. 生物技术通报, 2022, 38(4): 230-241. |
[9] | 雷春霞, 李灿辉, 陈永坤, 龚明. 马铃薯块茎形成的生理生化基础和分子机制[J]. 生物技术通报, 2022, 38(4): 44-57. |
[10] | 伊帕热·帕尔哈提, 祖力胡玛尔·肉孜, 田永芝, 朱艳蕾, 李远婷, 马晓林. 荒漠植物内生菌多样性及其增强农作物抗旱和耐盐性的研究进展[J]. 生物技术通报, 2022, 38(12): 88-99. |
[11] | 武杞蔓, 田诗涵, 李昀烨, 潘英杰, 张颖. 微生物菌肥对设施黄瓜生长、产量及品质的影响[J]. 生物技术通报, 2022, 38(1): 125-131. |
[12] | 李倩, 江文波, 王玉祥, 张博, 庞永珍. 苜蓿抗旱性分子研究进展[J]. 生物技术通报, 2021, 37(8): 243-252. |
[13] | 刘海光, 罗振, 董合忠. 植物硝态氮吸收和转运的调控研究进展[J]. 生物技术通报, 2021, 37(6): 192-201. |
[14] | 冯连杰, 安文静, 刘迪, 刘亚菲, 王凯婕, 梁卫红. 水稻表皮毛发育相关基因研究进展[J]. 生物技术通报, 2021, 37(6): 236-243. |
[15] | 付严松, 李宇聪, 徐志辉, 邵佳慧, 刘云鹏, 宣伟, 张瑞福. 根际促生菌调控植物根系发育的信号与分子机制研究进展[J]. 生物技术通报, 2020, 36(9): 42-48. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||