生物技术通报 ›› 2022, Vol. 38 ›› Issue (11): 194-201.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0434
罗雅方(), 朱春花, 肖钰婷, 李方全, 张江, 王玉书()
收稿日期:
2022-04-08
出版日期:
2022-11-26
发布日期:
2022-12-01
作者简介:
罗雅方,女,硕士研究生,研究方向:生物化学与分子生物学;E-mail:基金资助:
LUO Ya-fang(), ZHU Chun-hua, XIAO Yu-ting, LI Fang-quan, ZHANG Jiang, WANG Yu-shu()
Received:
2022-04-08
Published:
2022-11-26
Online:
2022-12-01
摘要:
筛选羽衣甘蓝类黄酮糖基转移酶(UDP glycosyltransferase,UGT)基因,研究其在不同材料中的表达模式,为后续的功能研究提供依据。以不同叶色羽衣甘蓝转录组数据为材料,筛选UGT基因并对其进行分析,通过RT-qPCR验证候选UGT基因的表达与花青苷和类黄酮含量的相关性。结果共筛选获得32个UGT基因,32个BoUGT蛋白的C端均含有Motif 1和Motif 2,29个BoUGT蛋白的N端含有Motif 3。其氨基酸数目为222-501个,分子量为24.69-56.53 kD,等电点为4.85-7.19。亚细胞定位预测结果显示,BoUGT以叶绿体定位居多。蛋白聚类分析发现,有21个BoUGT基因编码的蛋白可能参与激素的糖基化修饰过程,11个可能参与类黄酮的糖基化修饰过程。花青素含量与Bol018968、Bol011466和Bol028297表达呈正相关;类黄酮含量与Bol021317、Bol027055和Bol026392表达呈正相关,而与Bol018968负相关。为后续羽衣甘蓝类黄酮物质生物合成途径研究提供了候选基因。
罗雅方, 朱春花, 肖钰婷, 李方全, 张江, 王玉书. 羽衣甘蓝类黄酮糖基转移酶基因的筛选及分析[J]. 生物技术通报, 2022, 38(11): 194-201.
LUO Ya-fang, ZHU Chun-hua, XIAO Yu-ting, LI Fang-quan, ZHANG Jiang, WANG Yu-shu. Screening and Functional Analysis of UGT Genes Involved in the Flavonoid Biosynthesis of Brassica oleracea var. acephala[J]. Biotechnology Bulletin, 2022, 38(11): 194-201.
基因Gene | 正向引物Forward primer(5'-3') | 反向引物Reverse primer(5'-3') |
---|---|---|
Bol021317 | GGGTGTGTTTGTGACGCATTGTG | CTTCCACCGCTCTTCCGTTCAG |
Bol018968 | CCGTTCTTCGCCGATCAGTTGAC | CCTAACCACCGCCTCCACTCTC |
Bol027055 | ATCACGGAGCAACCATCACATACG | GGAGAACCAAGCATAGGACAAGCC |
Bol026392 | GGGAATCGAGAGAGGGAGTTAGGG | AACCTTAGCCACAAGTCCGTCAAC |
Bol011466 | GGAACTGTGGCAACGAGGGTAAC | GCCGACGACGATGAAGGTTACG |
Bol028297 | GCCCGTAACTGTCTTCTCCATCTTC | GGAACTGTGGCAACGAGGGTAAC |
18S RNA | CCAGGTCCAGACATAGTAAG | GTACAAAGGGCAGGGACGTA |
表1 RT-qPCR反应引物序列
Table 1 Primer sequences for RT-qPCR
基因Gene | 正向引物Forward primer(5'-3') | 反向引物Reverse primer(5'-3') |
---|---|---|
Bol021317 | GGGTGTGTTTGTGACGCATTGTG | CTTCCACCGCTCTTCCGTTCAG |
Bol018968 | CCGTTCTTCGCCGATCAGTTGAC | CCTAACCACCGCCTCCACTCTC |
Bol027055 | ATCACGGAGCAACCATCACATACG | GGAGAACCAAGCATAGGACAAGCC |
Bol026392 | GGGAATCGAGAGAGGGAGTTAGGG | AACCTTAGCCACAAGTCCGTCAAC |
Bol011466 | GGAACTGTGGCAACGAGGGTAAC | GCCGACGACGATGAAGGTTACG |
Bol028297 | GCCCGTAACTGTCTTCTCCATCTTC | GGAACTGTGGCAACGAGGGTAAC |
18S RNA | CCAGGTCCAGACATAGTAAG | GTACAAAGGGCAGGGACGTA |
图2 32个BoUGT的保守基序分析 A:32个BoUGT中motif的分布模式;B:Motif的氨基酸组成
Fig. 2 Conservative motif analysis of 32 BoUGTs A:Distribution pattern of motif in 32 BoUGTs. B:Amino acid composition of Motif
基因登录号Gene ID | 氨基酸数No. of amino acids | 分子量Molecular weight/kD | 等电点pI | 亚细胞定位Subcellular localization |
---|---|---|---|---|
Bol005901 | 448 | 50.49 | 6.38 | 叶绿体Chloroplast |
Bol005786 | 436 | 47.69 | 5.24 | 叶绿体Chloroplast |
Bol010781 | 478 | 52.64 | 5.77 | 细胞核Nucleus |
Bol011466 | 481 | 52.61 | 6.05 | 内质网Endoplasmic reticulum |
Bol013632 | 495 | 55.74 | 5.36 | 细胞质Cytoplasm |
Bol014127 | 456 | 51.22 | 5.63 | 叶绿体Chloroplast |
Bol016956 | 486 | 53.90 | 5.14 | 液泡Vacuoles |
Bol017633 | 464 | 52.12 | 5.32 | 叶绿体Chloroplast |
Bol018968 | 476 | 53.75 | 5.27 | 叶绿体Chloroplast |
Bol021317 | 460 | 50.11 | 5.41 | 叶绿体Chloroplast |
Bol022050 | 468 | 52.98 | 5.46 | 细胞质Cytoplasm |
Bol023225 | 483 | 54.07 | 4.88 | 细胞核Nucleus |
Bol025091 | 501 | 56.53 | 7.19 | 叶绿体Chloroplast |
Bol026363 | 483 | 53.91 | 4.94 | 叶绿体Chloroplast |
Bol026392 | 480 | 53.18 | 6.04 | 过氧化物酶体Peroxisome |
Bol026589 | 466 | 52.31 | 6.01 | 内质网Endoplasmic reticulum |
Bol026592 | 477 | 53.16 | 5.14 | 细胞质Cytoplasm |
Bol026593 | 260 | 29.15 | 4.99 | 细胞质Cytoplasm |
Bol027055 | 457 | 50.14 | 5.20 | 叶绿体Chloroplast |
Bol028297 | 476 | 54.45 | 5.55 | 叶绿体Chloroplast |
Bol029484 | 423 | 47.38 | 5.81 | 叶绿体Chloroplast |
Bol030030 | 450 | 50.57 | 5.76 | 叶绿体Chloroplast |
Bol031911 | 484 | 53.95 | 5.72 | 细胞质Cytoplasm |
Bol036924 | 464 | 51.48 | 5.57 | 内质网Endoplasmic reticulum |
Bol037703 | 496 | 55.69 | 5.34 | 叶绿体Chloroplast |
Bol038332 | 260 | 28.89 | 4.85 | 细胞核Nucleus |
Bol038351 | 222 | 24.69 | 5.58 | 叶绿体Chloroplast |
Bol039726 | 496 | 56.04 | 5.52 | 叶绿体Chloroplast |
Bol040697 | 483 | 52.83 | 5.50 | 叶绿体Chloroplast |
Bol041114 | 477 | 52.89 | 5.06 | 细胞质Cytoplasm |
Bol041115 | 475 | 53.02 | 5.85 | 细胞质Cytoplasm |
Bol043480 | 484 | 54.48 | 5.80 | 叶绿体Chloroplast |
表2 羽衣甘蓝32个BoUGT理化性质、亚细胞定位
Table 2 Physical and chemical characteristics and subcellular localization of 32 BoUGTs in kale
基因登录号Gene ID | 氨基酸数No. of amino acids | 分子量Molecular weight/kD | 等电点pI | 亚细胞定位Subcellular localization |
---|---|---|---|---|
Bol005901 | 448 | 50.49 | 6.38 | 叶绿体Chloroplast |
Bol005786 | 436 | 47.69 | 5.24 | 叶绿体Chloroplast |
Bol010781 | 478 | 52.64 | 5.77 | 细胞核Nucleus |
Bol011466 | 481 | 52.61 | 6.05 | 内质网Endoplasmic reticulum |
Bol013632 | 495 | 55.74 | 5.36 | 细胞质Cytoplasm |
Bol014127 | 456 | 51.22 | 5.63 | 叶绿体Chloroplast |
Bol016956 | 486 | 53.90 | 5.14 | 液泡Vacuoles |
Bol017633 | 464 | 52.12 | 5.32 | 叶绿体Chloroplast |
Bol018968 | 476 | 53.75 | 5.27 | 叶绿体Chloroplast |
Bol021317 | 460 | 50.11 | 5.41 | 叶绿体Chloroplast |
Bol022050 | 468 | 52.98 | 5.46 | 细胞质Cytoplasm |
Bol023225 | 483 | 54.07 | 4.88 | 细胞核Nucleus |
Bol025091 | 501 | 56.53 | 7.19 | 叶绿体Chloroplast |
Bol026363 | 483 | 53.91 | 4.94 | 叶绿体Chloroplast |
Bol026392 | 480 | 53.18 | 6.04 | 过氧化物酶体Peroxisome |
Bol026589 | 466 | 52.31 | 6.01 | 内质网Endoplasmic reticulum |
Bol026592 | 477 | 53.16 | 5.14 | 细胞质Cytoplasm |
Bol026593 | 260 | 29.15 | 4.99 | 细胞质Cytoplasm |
Bol027055 | 457 | 50.14 | 5.20 | 叶绿体Chloroplast |
Bol028297 | 476 | 54.45 | 5.55 | 叶绿体Chloroplast |
Bol029484 | 423 | 47.38 | 5.81 | 叶绿体Chloroplast |
Bol030030 | 450 | 50.57 | 5.76 | 叶绿体Chloroplast |
Bol031911 | 484 | 53.95 | 5.72 | 细胞质Cytoplasm |
Bol036924 | 464 | 51.48 | 5.57 | 内质网Endoplasmic reticulum |
Bol037703 | 496 | 55.69 | 5.34 | 叶绿体Chloroplast |
Bol038332 | 260 | 28.89 | 4.85 | 细胞核Nucleus |
Bol038351 | 222 | 24.69 | 5.58 | 叶绿体Chloroplast |
Bol039726 | 496 | 56.04 | 5.52 | 叶绿体Chloroplast |
Bol040697 | 483 | 52.83 | 5.50 | 叶绿体Chloroplast |
Bol041114 | 477 | 52.89 | 5.06 | 细胞质Cytoplasm |
Bol041115 | 475 | 53.02 | 5.85 | 细胞质Cytoplasm |
Bol043480 | 484 | 54.48 | 5.80 | 叶绿体Chloroplast |
试材 Test materials | 花青素含量Anthocyanin content/(mg·g-1) | 类黄酮含量Flavonoid content/(mg·g-1) |
---|---|---|
W05 | 1.429±0.413a | 0.125±0.048c |
W09 | 0.979±0.287ab | 0.149±0.037c |
D07 | 0.595±0.169bc | 0.268±0.059c |
W08 | - | 15.083±1.958a |
D06 | - | 12.216±2.065b |
表3 5个试材心叶花青素和类黄酮含量
Table 3 Contents of anthocyanins and flavonoids in the 5 test materials
试材 Test materials | 花青素含量Anthocyanin content/(mg·g-1) | 类黄酮含量Flavonoid content/(mg·g-1) |
---|---|---|
W05 | 1.429±0.413a | 0.125±0.048c |
W09 | 0.979±0.287ab | 0.149±0.037c |
D07 | 0.595±0.169bc | 0.268±0.059c |
W08 | - | 15.083±1.958a |
D06 | - | 12.216±2.065b |
基因Gene | 花青素Anthocyanin | 类黄酮Flavonoid |
---|---|---|
Bol021317 | -0.821 | 0.939* |
Bol018968 | 0.935* | -0.919* |
Bol027055 | -0.743 | 0.973* |
Bol026392 | -0.933* | 0.941* |
Bol011466 | 0.995** | -0.877 |
Bol028297 | 0.994** | -0.854 |
表4 花青素、类黄酮含量与不同基因表达之间相关系数
Table 4 Correlation coefficient between anthocyanin and flavonoid content and different gene expressions
基因Gene | 花青素Anthocyanin | 类黄酮Flavonoid |
---|---|---|
Bol021317 | -0.821 | 0.939* |
Bol018968 | 0.935* | -0.919* |
Bol027055 | -0.743 | 0.973* |
Bol026392 | -0.933* | 0.941* |
Bol011466 | 0.995** | -0.877 |
Bol028297 | 0.994** | -0.854 |
[1] |
Hou BK, Lim EK, Higgins GS, et al. N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana[J]. J Biol Chem, 2004, 279(46):47822-47832.
doi: 10.1074/jbc.M409569200 URL |
[2] | 吴一凡, 张睿琪, 董泽安, 等. 植物糖基转移酶的分类、分布及在果实发育中作用研究进展[J]. 食品科技, 2021, 46(7):1-6. |
Wu YF, Zhang RQ, Dong ZA, et al. Classification and distribution of glycosyltransferases in plant and its roles in the fruit development[J]. Food Sci Technol, 2021, 46(7):1-6.
doi: 10.1016/j.tifs.2015.07.006 URL |
|
[3] | 解林峰, 任传宏, 张波, 等. 植物类黄酮生物合成相关UDP-糖基转移酶研究进展[J]. 园艺学报, 2019, 46(9):1655-1669. |
Xie LF, Ren CH, Zhang B, et al. Plant UDP-glycosyltransferases in flavonoids biosynthesis[J]. Acta Hortic Sin, 2019, 46(9):1655-1669. | |
[4] | Wu BP, Gao LX, Gao J, et al. Genome-wide identification, expression patterns, and functional analysis of UDP glycosyltransferase family in peach(Prunus persica L. batsch)[J]. Front Plant Sci, 2017, 8:389. |
[5] | 王玉书, 赵爽, 张琳, 等. 羽衣甘蓝花青素的定位及含量成分测定[J]. 中国农业大学学报, 2020, 25(11):45-53. |
Wang YS, Zhao S, Zhang L, et al. Location, content and composition determination of anthocyanin in kale[J]. J China Agric Univ, 2020, 25(11):45-53. | |
[6] | 王玉书, 王欢, 范震宇, 等. 基于转录组测序的羽衣甘蓝叶色相关基因分析[J]. 基因组学与应用生物学, 2020, 39(1):200-206. |
Wang YS, Wang H, Fan ZY, et al. Identifying genes associated with leaf color in kale(Brassica oleracea l. var. acephala DC. )based on transcriptome analysis[J]. Genom Appl Biol, 2020, 39(1):200-206. | |
[7] |
Tian L, Blount JW, Dixon RA. Phenylpropanoid glycosyltransferases from osage orange(Maclura pomifera)fruit[J]. FEBS Lett, 2006, 580(30):6915-6920.
pmid: 17157841 |
[8] |
Masada S, Terasaka K, Oguchi Y, et al. Functional and structural characterization of a flavonoid glucoside 1, 6-glucosyltransferase from Catharanthus roseus[J]. Plant Cell Physiol, 2009, 50(8):1401-1415.
doi: 10.1093/pcp/pcp088 URL |
[9] |
Priest DM, Ambrose SJ, Vaistij FE, et al. Use of the glucosyltransferase UGT71B6 to disturb abscisic acid homeostasis in Arabidopsis thaliana[J]. Plant J, 2006, 46(3):492-502.
pmid: 16623908 |
[10] |
Husar S, Berthiller F, Fujioka S, et al. Overexpression of the UGT73C6 alters brassinosteroid glucoside formation in Arabidopsis thaliana[J]. BMC Plant Biol, 2011, 11:51.
doi: 10.1186/1471-2229-11-51 URL |
[11] |
Noutoshi Y, Okazaki M, Kida T, et al. Novel plant immune-priming compounds identified via high-throughput chemical screening target salicylic acid glucosyltransferases in Arabidopsis[J]. Plant Cell, 2012, 24(9):3795-3804.
doi: 10.1105/tpc.112.098343 URL |
[12] |
Tognetti VB, van Aken O, Morreel K, et al. Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance[J]. Plant Cell, 2010, 22(8):2660-2679.
doi: 10.1105/tpc.109.071316 URL |
[13] |
Wang J, Ma XM, Kojima M, et al. N-glucosyltransferase UGT76C2 is involved in cytokinin homeostasis and cytokinin response in Arabidopsis thaliana[J]. Plant Cell Physiol, 2011, 52(12):2200-2213.
doi: 10.1093/pcp/pcr152 pmid: 22051886 |
[14] |
张桂芝, 林继山, 李燕洁, 等. 植物激素糖基化修饰研究进展[J]. 植物学报, 2014, 49(5):515-523.
doi: 10.3724/SP.J.1259.2014.00515 |
Zhang GZ, Lin JS, Li YJ, et al. Research advances in the glycosylation of plant hormones[J]. Chin Bull Bot, 2014, 49(5):515-523. | |
[15] | 安建平, 宋来庆, 赵玲玲, 等. 苹果细胞分裂素O-糖基转移酶基因MdZOG1的分离与功能鉴定[J]. 园艺学报, 2016, 43(8):1429-1436. |
An JP, Song LQ, Zhao LL, et al. Molecular cloning and functional characterization of a cytokinin O-glycosyltransferase gene MdZOG1 in apple[J]. Acta Hortic Sin, 2016, 43(8):1429-1436. | |
[16] |
Lim EK, Doucet CJ, Hou BK, et al. Resolution of(+)-abscisic acid using an Arabidopsis glycosyltransferase[J]. Tetrahedron Asymmetry, 2005, 16(1):143-147.
doi: 10.1016/j.tetasy.2004.11.062 URL |
[17] |
Ma YL, Cao J, Chen QQ, et al. Abscisic acid receptors maintain abscisic acid homeostasis by modulating UGT71C5 glycosylation activity[J]. J Integr Plant Biol, 2021, 63(3):543-552.
doi: 10.1111/jipb.13030 |
[18] |
Bowles D, Lim EK, Poppenberger B, et al. Glycosyltransferases of lipophilic small molecules[J]. Annu Rev Plant Biol, 2006, 57:567-597.
pmid: 16669774 |
[19] |
Pollastri S, Tattini M. Flavonols:old compounds for old roles[J]. Ann Bot, 2011, 108(7):1225-1233.
doi: 10.1093/aob/mcr234 URL |
[20] |
Liu XG, Lin CL, Ma XD, et al. Functional characterization of a flavonoid glycosyltransferase in sweet orange(Citrus sinensis)[J]. Front Plant Sci, 2018, 9:166.
doi: 10.3389/fpls.2018.00166 URL |
[21] |
Devaiah SP, Tolliver BM, Zhang C, et al. Mutational analysis of substrate specificity in a Citrus paradisi flavonol 3-O-glucosyltransferase[J]. J Plant Biochem Biotechnol, 2018, 27(1):13-27.
doi: 10.1007/s13562-017-0411-0 URL |
[22] | 赵倩倩, 宋艳红, 宋盼, 等. 森林草莓糖基转移酶基因家族生物信息学及其表达分析[J]. 南方农业学报, 2021, 52(6):1615-1624. |
Zhao QQ, Song YH, Song P, et al. Analysis of bioinformatics and gene expression of glycosyltransferase gene family in Fragaria vesca[J]. J South Agric, 2021, 52(6):1615-1624. |
[1] | 林红妍, 郭晓蕊, 刘迪, 李慧, 陆海. 转录组分析转录因子AtbHLH68调控细胞壁发育的分子机制[J]. 生物技术通报, 2023, 39(9): 105-116. |
[2] | 王腾辉, 葛雯冬, 罗雅方, 范震宇, 王玉书. 基于极端混合池(BSA)全基因组重测序的羽衣甘蓝白色叶基因定位[J]. 生物技术通报, 2023, 39(9): 176-182. |
[3] | 苗永美, 苗翠苹, 于庆才. 枯草芽孢杆菌BBs-27发酵液性质及脂肽对黄色镰刀菌的抑菌作用[J]. 生物技术通报, 2023, 39(9): 255-267. |
[4] | 李博, 刘合霞, 陈宇玲, 周兴文, 朱宇林. 金花茶CnbHLH79转录因子的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 241-250. |
[5] | 付钰, 贾瑞瑞, 何荷, 王良桂, 杨秀莲. 两种砧木楸树嫁接苗生长差异及转录组比较分析[J]. 生物技术通报, 2023, 39(8): 251-261. |
[6] | 赵金玲, 安磊, 任晓亮. 单细胞转录组测序技术及其在秀丽隐杆线虫中的应用[J]. 生物技术通报, 2023, 39(6): 158-170. |
[7] | 孔德真, 段震宇, 王刚, 张鑫, 席琳乔. 盐、碱胁迫下高丹草苗期生理特征及转录组学分析[J]. 生物技术通报, 2023, 39(6): 199-207. |
[8] | 刘辉, 卢扬, 叶夕苗, 周帅, 李俊, 唐健波, 陈恩发. 外源硫诱导苦荞镉胁迫响应的比较转录组学分析[J]. 生物技术通报, 2023, 39(5): 177-191. |
[9] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
[10] | 张和臣, 袁欣, 高杰, 王校晨, 王慧娟, 李艳敏, 王利民, 符真珠, 李保印. 植物花瓣呈色机理及花色分子育种[J]. 生物技术通报, 2023, 39(5): 23-31. |
[11] | 马芳芳, 刘冠闻, 庞冰, 蒋春美, 师俊玲. 强化细胞外排提高工程菌类黄酮产量的策略[J]. 生物技术通报, 2023, 39(5): 63-76. |
[12] | 谢洋, 邢雨蒙, 周国彦, 刘美妍, 银珊珊, 闫立英. 黄瓜二倍体及其同源四倍体果实转录组分析[J]. 生物技术通报, 2023, 39(3): 152-162. |
[13] | 平怀磊, 郭雪, 余潇, 宋静, 杜春, 王娟, 张怀璧. 滇牡丹PdANS的克隆、表达及与花青素含量的相关性[J]. 生物技术通报, 2023, 39(3): 206-217. |
[14] | 扈丽丽, 林柏荣, 王宏洪, 陈建松, 廖金铃, 卓侃. 最短尾短体线虫转录组及潜在效应蛋白分析[J]. 生物技术通报, 2023, 39(3): 254-266. |
[15] | 孙言秋, 谢采芸, 汤岳琴. 耐高温酿酒酵母的构建与高温耐受机制解析[J]. 生物技术通报, 2023, 39(11): 226-237. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||