生物技术通报 ›› 2023, Vol. 39 ›› Issue (2): 161-171.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0500
姚晓文1,2,3(), 梁晓2,3, 陈青2,3(), 伍春玲2,3, 刘迎2,3, 刘小强2,3, 税军1,2,3, 乔阳1,2,3, 毛奕茗1, 陈银华1, 张银东1
收稿日期:
2022-04-22
出版日期:
2023-02-26
发布日期:
2023-03-07
作者简介:
姚晓文,男,硕士,研究方向:抗虫种质资源挖掘与创新利用;E-mail: 基金资助:
YAO Xiao-wen1,2,3(), LIANG Xiao2,3, CHEN Qing2,3(), WU Chun-ling2,3, LIU Ying2,3, LIU Xiao-qiang2,3, SHUI Jun1,2,3, QIAO Yang1,2,3, MAO Yi-ming1, CHEN Yin-hua1, ZHANG Yin-dong1
Received:
2022-04-22
Published:
2023-02-26
Online:
2023-03-07
摘要:
木质素是作物防御有害生物的重要理化屏障,但其在木薯抗虫性中的作用机制尚不明确。为了探讨木质素合成途径基因在木薯抗二斑叶螨中的作用,以抗螨木薯品种C1115、缅甸(Myanmar)、SC9和感螨木薯品种SC205、面包(Bread)、BRA900为材料,采用实时荧光定量PCR分析二斑叶螨取食上述木薯品种不同时间后(0、1、4 d)木质素合成途径基因(PAL、4CL、C4H、HCT、CSE、COMT、CCoAOMT、F5H、CCR、CAD)在不同品种间的表达量差异。结果表明,与螨害前相比,抗、感螨木薯品种中C4H、HCT、CSE、F5H、CAD的表达量虽总体上有所提高,但并不是都能够达到显著差异水平,并且相同螨害时间内,这5个基因的表达量在抗、感木薯品种间整体上也未表现出显著差异。与之相反,PAL、4CL、CCoAOMT、CCR这4个基因的表达量在抗螨木薯品种中显著提高,在感螨木薯品种中显著降低或无显著差异,并且在相同的螨害时间内,抗螨木薯品种中这4个基因的表达量普遍高于感螨木薯品种,尤其以螨害4 d 后表达量表现出显著差异,进一步相关性分析发现,这4个基因表达量的提高与木薯抗螨性显著正相关。根据上述结果可以推测,螨害后木质素合成途径基因PAL、4CL、CCoAOMT、CCR表达量的高低可能与木薯品种的抗螨性水平有关。
姚晓文, 梁晓, 陈青, 伍春玲, 刘迎, 刘小强, 税军, 乔阳, 毛奕茗, 陈银华, 张银东. 二斑叶螨抗性木薯木质素合成途径基因表达特性研究[J]. 生物技术通报, 2023, 39(2): 161-171.
YAO Xiao-wen, LIANG Xiao, CHEN Qing, WU Chun-ling, LIU Ying, LIU Xiao-qiang, SHUI Jun, QIAO Yang, MAO Yi-ming, CHEN Yin-hua, ZHANG Yin-dong. Study on the Expression Pattern of Genes in Lignin Biosynthesis Pathway of Cassava Resisting to Tetranychus urticae[J]. Biotechnology Bulletin, 2023, 39(2): 161-171.
Gene name | Gene ID | Primer sequence(5'-3') | Tm/℃ | Product size/bp |
---|---|---|---|---|
PAL | MANES_08G008400 | F: AGGCATTTGGAGGAGAACTTGA R: TCGCAGAATCTTGATGGGTGA | 61.2 59.8 | 113 |
C4H | MANES_18G126900 | F: GCTCGCCAACAATCCTGCTC R: CTCCTCCTTCCAACTCCAAACG | 58.7 59.3 | 158 |
4CL | MANES_17G006400 | F: GGACTGTTGTCACTGGGCACTA R: TCTTCGTCAACGCTTGGAGTA | 59.9 58.5 | 133 |
CCR | MANES_04G103200 | F: GTCAATGCTGTTCAAGGCTATGTG R: AAATGTATCGCCCGGAGGC | 61.6 62.2 | 94 |
CAD | MANES_13G117800 | F: ACCAGAGGGAATGTCACCAGAA R: CCCTACTCCTCCAAGCCCTAAT | 60.8 60.9 | 133 |
HCT | MANES_04G101700 | F: GACCTTGTGGTGCCGAGATTC R: CGTCCAGCCATCGGATAGAAC | 61.7 61.9 | 137 |
CSE | MANES_12G157800 | F: TCCAATCGGAACCCAACACG R: AAGAGCAGCCCATACACGAAGAG | 63.6 62.7 | 112 |
CCoAOMT | MANES_10G078800 | F: GCCCACATCAATGGCTTCC R: GCTCCTTCATAGGTTCAGGCTCT | 60.7 61.1 | 152 |
COMT | MANES_01G043700 | F: GGCTGACCACTCAACCATTACC R: GACCGCTCCAGTTCCACCA | 60.9 61.2 | 103 |
F5H | MANES_04G084300 | F: GGTGGCATCGGCAATAGAGTG R: TGCAAGAGGAGTGGGATAGGTG | 62.7 61.6 | 198 |
表1 木薯木质素合成途径候选基因引物
Table 1 Candidate gene primers in the synthesis pathways of cassava(Manihot esculenta Crantz)lignin
Gene name | Gene ID | Primer sequence(5'-3') | Tm/℃ | Product size/bp |
---|---|---|---|---|
PAL | MANES_08G008400 | F: AGGCATTTGGAGGAGAACTTGA R: TCGCAGAATCTTGATGGGTGA | 61.2 59.8 | 113 |
C4H | MANES_18G126900 | F: GCTCGCCAACAATCCTGCTC R: CTCCTCCTTCCAACTCCAAACG | 58.7 59.3 | 158 |
4CL | MANES_17G006400 | F: GGACTGTTGTCACTGGGCACTA R: TCTTCGTCAACGCTTGGAGTA | 59.9 58.5 | 133 |
CCR | MANES_04G103200 | F: GTCAATGCTGTTCAAGGCTATGTG R: AAATGTATCGCCCGGAGGC | 61.6 62.2 | 94 |
CAD | MANES_13G117800 | F: ACCAGAGGGAATGTCACCAGAA R: CCCTACTCCTCCAAGCCCTAAT | 60.8 60.9 | 133 |
HCT | MANES_04G101700 | F: GACCTTGTGGTGCCGAGATTC R: CGTCCAGCCATCGGATAGAAC | 61.7 61.9 | 137 |
CSE | MANES_12G157800 | F: TCCAATCGGAACCCAACACG R: AAGAGCAGCCCATACACGAAGAG | 63.6 62.7 | 112 |
CCoAOMT | MANES_10G078800 | F: GCCCACATCAATGGCTTCC R: GCTCCTTCATAGGTTCAGGCTCT | 60.7 61.1 | 152 |
COMT | MANES_01G043700 | F: GGCTGACCACTCAACCATTACC R: GACCGCTCCAGTTCCACCA | 60.9 61.2 | 103 |
F5H | MANES_04G084300 | F: GGTGGCATCGGCAATAGAGTG R: TGCAAGAGGAGTGGGATAGGTG | 62.7 61.6 | 198 |
图1 螨害前后不同时间各品种PAL基因表达量变化 A:螨害前后各品种内基因表达量变化;B:螨害前后同一时间品种间基因表达量变化。不同小写字母表示螨害不同时间后表达量与螨害前差异显著(P<0.05)。下同
Fig. 1 Changes of PAL gene expressions in different varieties at different times before and after mite infestation A: Changes of gene expressions in various varieties before and after mite infestation. B: Changes of gene expressions between varieties at the same time before and after mite infestation. Different lowercase letters indicate that the expression amount after different time of mite infested is significantly different from that before mite infested(P<0.05). The same below
[1] | 余洁, 郭运玲, 姚庆荣, 等. 生物技术改良木薯品质的研究进展[J]. 分子植物育种, 2007, 5(S1): 149-154. |
Yu J, Guo YL, Yao QR, et al. Improvement of cassava quality by biotechnological approaches[J]. Mol Plant Breed, 2007, 5(S1): 149-154. | |
[2] | 古碧, 李开绵, 张振文, 等. 我国木薯加工产业发展现状及发展趋势[J]. 农业工程技术: 农产品加工业, 2013(11): 25-31. |
Gu B, Li KM, Zhang ZW, et al. The development status and development trend of my country’s cassava processing industry[J]. Agric Eng Technol Agric Prod Process Ind, 2013(11): 25-31. | |
[3] |
Nguyen TL, Gheewala SH, Garivait S. Full chain energy analysis of fuel ethanol from cassava in Thailand[J]. Environ Sci Technol, 2007, 41(11): 4135-4142.
pmid: 17612202 |
[4] | 程立生. 中国朱砂叶螨各地理种群形态变异研究[J]. 热带作物学报, 1998, 19(1): 83-86. |
Cheng LS. Morphological variations of different geographic populations of Tertanychus cinnabarinus[J]. Chin J Trop Crops, 1998, 19(1): 83-86. | |
[5] | 陈青, 卢芙萍, 黄贵修, 等. 木薯害虫普查及其安全性评估[J]. 热带作物学报, 2010, 31(5): 819-827. |
Chen Q, Lu FP, Huang GX, et al. General survey and safety assessment of cassava pests[J]. Chin J Trop Crops, 2010, 31(5): 819-827. | |
[6] | 李迁, 卢芙萍, 陈青, 等. 木薯种质对朱砂叶螨的抗性评价[J]. 热带作物学报, 2015, 36(1): 143-151. |
Li Q, Lu FP, Chen Q, et al. Evaluation of cassava germplasms for resistance to spider mite Tetranychus cinnabarinus(Acari: Tetranychidae)[J]. Chin J Trop Crops, 2015, 36(1): 143-151. | |
[7] |
War AR, Paulraj MG, Ahmad T, et al. Mechanisms of plant defense against insect herbivores[J]. Plant Signal Behav, 2012, 7(10): 1306-1320.
doi: 10.4161/psb.21663 pmid: 22895106 |
[8] | 刘欣婷, 王娟, 侯献飞, 等. 木质素及其合成基因在作物抗倒伏中的功能及其研究进展[J]. 分子植物育种, 2019, 17(2): 655-662. |
Liu XT, Wang J, Hou XF, et al. Progress of functions of lignin and relevant genes in plant lodging resistance[J]. Mol Plant Breed, 2019, 17(2): 655-662. | |
[9] |
Vanholme R, Morreel K, Ralph J, et al. Lignin engineering[J]. Curr Opin Plant Biol, 2008, 11(3): 278-285.
doi: 10.1016/j.pbi.2008.03.005 pmid: 18434238 |
[10] |
Perveen SS, Qaisrani TM, Bhutta S, et al. HPLC analysis of cotton phenols and their contribution in bollworm resistance[J]. J Biol Sci, 2001, 1(7): 587-590.
doi: 10.3923/jbs.2001.587.590 URL |
[11] |
Yang J, Sun XQ, Yan SY, et al. Interaction of ferulic acid with glutathione S-transferase and carboxylesterase genes in the brown planthopper, Nilaparvata lugens[J]. J Chem Ecol, 2017, 43(7): 693-702.
doi: 10.1007/s10886-017-0859-3 pmid: 28647840 |
[12] |
Usha Rani P, Pratyusha S. Role of castor plant phenolics on performance of its two herbivores and their impact on egg parasitoid behaviour[J]. BioControl, 2014, 59(5): 513-524.
doi: 10.1007/s10526-014-9590-y URL |
[13] |
Bi JL, Murphy JB, Felton GW. Antinutritive and oxidative components as mechanisms of induced resistance in cotton to Helicoverpa zea[J]. J Chem Ecol, 1997, 23(1): 97-117.
doi: 10.1023/B:JOEC.0000006348.62578.fd URL |
[14] |
Saguez J, Attoumbré J, Giordanengo P, et al. Biological activities of lignans and neolignans on the aphid Myzus persicae(Sulzer)[J]. Arthropod Plant Interact, 2013, 7(2): 225-233.
doi: 10.1007/s11829-012-9236-x URL |
[15] |
Liu QQ, Luo L, Zheng LQ. Lignins: biosynthesis and biological functions in plants[J]. Int J Mol Sci, 2018, 19(2): 335.
doi: 10.3390/ijms19020335 URL |
[16] |
Voelker SL, Lachenbruch B, Meinzer FC, et al. Reduced wood stiffness and strength, and altered stem form, in young antisense 4CL transgenic poplars with reduced lignin contents[J]. New Phytol, 2011, 189(4): 1096-1109.
doi: 10.1111/j.1469-8137.2010.03572.x pmid: 21158867 |
[17] |
Prashant S, Srilakshmi Sunita M, Pramod S, et al. Down-regulation of Leucaena leucocephala cinnamoyl CoA reductase(LlCCR)gene induces significant changes in phenotype, soluble phenolic pools and lignin in transgenic tobacco[J]. Plant Cell Rep, 2011, 30(12): 2215-2231.
doi: 10.1007/s00299-011-1127-6 pmid: 21847621 |
[18] |
Perez-Fons L, Bohorquez-Chaux A, Irigoyen ML, et al. A metabolomics characterisation of natural variation in the resistance of cassava to whitefly[J]. BMC Plant Biol, 2019, 19(1): 518.
doi: 10.1186/s12870-019-2107-1 pmid: 31775619 |
[19] |
Chen Q, Liang X, Wu CL, et al. Density threshold-based acaricide application for the two-spotted spider mite Tetranychus urticae on cassava: from laboratory to the field[J]. Pest Manag Sci, 2019, 75(10): 2634-2641.
doi: 10.1002/ps.5366 URL |
[20] |
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[21] |
Boerjan W, Ralph J, Baucher M. Lignin biosynthesis[J]. Annu Rev Plant Biol, 2003, 54: 519-546.
pmid: 14503002 |
[22] | Pandey PK, Singh R, Shrotria PK. Reversed-phase HPLC separation of phenolic acids in sorghum and their relation to shootfly(Atherigona soccata Rond.)resistance[J]. Indian J Entomology, 2005, 67(2):170-174. |
[23] |
Mao JQ, Burt AJ, Ramputh AI, et al. Diverted secondary metabolism and improved resistance to European corn borer(Ostrinia nubilalis)in maize(Zea mays L.)transformed with wheat oxalate oxidase[J]. J Agric Food Chem, 2007, 55(7): 2582-2589.
doi: 10.1021/jf063030f URL |
[24] | 王斌, 张楠, 闫冲冲, 等. 套袋对砀山酥梨果实石细胞发育及木质素代谢的影响[J]. 园艺学报, 2013, 40(3): 531-539. |
Wang B, Zhang N, Yan CC, et al. Bagging for the development of stone cell and metabolism of lignin in Pyrus bretschneideri‘Dangshan suli’[J]. Acta Hortic Sin, 2013, 40(3): 531-539. | |
[25] |
宋修鹏, 黄杏, 莫凤连, 等. 甘蔗苯丙氨酸解氨酶基因(PAL)的克隆和表达分析[J]. 中国农业科学, 2013, 46(14): 2856-2868.
doi: 10.3864/j.issn.0578-1752.2013.14.002 |
Song XP, Huang X, Mo FL, et al. Cloning and expression analysis of sugarcane phenylalanin ammonia-lyase(PAL)gene[J]. Sci Agric Sin, 2013, 46(14): 2856-2868. | |
[26] | Korth KL, Blount JW, Chen F, et al. Changes in phenylpropanoid metabolites associated with homology-dependent silencing of phenylalanine ammonia-lyase and its somatic reversion in tobacco[J]. Physiol Plant, 2001, 111(2): 137-143. |
[27] |
Sewalt V, Ni W, Blount JW, et al. Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of L-phenylalanine ammonia-lyase or cinnamate 4-hydroxylase[J]. Plant Physiol, 1997, 115(1): 41-50.
doi: 10.1104/pp.115.1.41 pmid: 12223790 |
[28] |
Blee K, Choi JW, O’Connell AP, et al. Antisense and sense expression of cDNA coding for CYP73A15, a class II cinnamate 4-hydroxylase, leads to a delayed and reduced production of lignin in tobacco[J]. Phytochemistry, 2001, 57(7): 1159-1166.
pmid: 11430988 |
[29] | 赵亚梅, 陈蕾, 吴春梅, 等. 阳桃R2R3-MYB家族成员鉴定及其在木质素合成过程中的表达[J]. 植物遗传资源学报, 2021, 22(6): 1746-1761. |
Zhao YM, Chen L, Wu CM, et al. Identification of the R2R3-MYB family members in Averrhoa carambola and their expression involved in lignin biosynthesis[J]. J Plant Genet Resour, 2021, 22(6): 1746-1761. | |
[30] |
Lu J, Shi Y, Li W, et al. RcPAL, a key gene in lignin biosynthesis in Ricinus communis L[J]. BMC Plant Biol, 2019, 19(1): 181.
doi: 10.1186/s12870-019-1777-z URL |
[31] | 金庆超, 叶华智, 张敏. 苯丙氨酸解氨酶活性与玉米对纹枯病抗性的关系[J]. 四川农业大学学报, 2003, 21(2): 116-118. |
Jin QC, Ye HZ, Zhang M. Relationship between the activity of PAL and resistance of corn to maize sheath blight[J]. J Sichuan Agric Univ, 2003, 21(2): 116-118. | |
[32] | 王海华, 谭新中, 彭喜旭, 等. 外质体H2O2和木质素积累在镍诱导的水稻对白叶枯病系统抗性中的作用[J]. 中国农业科学, 2010, 43(5): 949-956. |
Wang HH, Tan XZ, Peng XX, et al. The role of apoplastic hydrogen peroxide and lignin accumulation in the systemic resistance of rice to bacterial blight induced by nickel[J]. Sci Agric Sin, 2010, 43(5): 949-956. | |
[33] | 周势超. 华中五味子不同时期木质素和木脂素含量变化及其合成关键酶CCR基因的研究[D]. 西安: 陕西师范大学, 2018. |
Zhou SC. Changes of lignin and lignan content in Schisandra chinensis and its synthesis key enzyme CCR gene in different periods. Xi'an: Shaanxi Normal University, 2018. | |
[34] | 吕国胜. 木质素与多头切花菊弯颈及蚜虫抗性的相关性研究[D]. 南京: 南京农业大学, 2011. |
Lv GS. Studies on the relationship between lignin and bent neck and aphid resistance in spray cut Chrysanthemum[D]. Nanjing: Nanjing Agricultural University, 2011. | |
[35] |
Duan CX, Yu JJ, Bai JY, et al. Induced defense responses in rice plants against small brown planthopper infestation[J]. Crop J, 2014, 2(1): 55-62.
doi: 10.1016/j.cj.2013.12.001 |
[36] |
Tzin V, Fernandez-Pozo N, Richter A, et al. Dynamic maize responses to aphid feeding are revealed by a time series of transcriptomic and metabolomic assays[J]. Plant Physiol, 2015, 169(3): 1727-1743.
doi: 10.1104/pp.15.01039 pmid: 26378100 |
[1] | 杨志晓, 侯骞, 刘国权, 卢志刚, 曹毅, 芶剑渝, 王轶, 林英超. 不同抗性烟草品系Rubisco及其活化酶对赤星病胁迫的响应[J]. 生物技术通报, 2023, 39(9): 202-212. |
[2] | 肖亮, 吴正丹, 陆柳英, 施平丽, 尚小红, 曹升, 曾文丹, 严华兵. 木薯重要性状基因的研究进展[J]. 生物技术通报, 2023, 39(6): 31-48. |
[3] | 李帜奇, 袁月, 苗荣庆, 庞秋颖, 张爱琴. 盐胁迫盐芥和拟南芥褪黑素含量及合成相关基因表达模式分析[J]. 生物技术通报, 2023, 39(5): 142-151. |
[4] | 刘奎, 李兴芬, 杨沛欣, 仲昭晨, 曹一博, 张凌云. 青杄转录共激活因子PwMBF1c的功能研究与验证[J]. 生物技术通报, 2023, 39(5): 205-216. |
[5] | 赖瑞联, 冯新, 高敏霞, 路喻丹, 刘晓驰, 吴如健, 陈义挺. 猕猴桃过氧化氢酶基因家族全基因组鉴定与表达分析[J]. 生物技术通报, 2023, 39(4): 136-147. |
[6] | 郭三保, 宋美玲, 李灵心, 尧子钊, 桂明明, 黄胜和. 斑地锦查尔酮合酶基因及启动子的克隆与分析[J]. 生物技术通报, 2023, 39(4): 148-156. |
[7] | 陈强, 邹明康, 宋家敏, 张冲, 吴隆坤. 甜瓜LBD基因家族的鉴定和果实发育进程中的表达分析[J]. 生物技术通报, 2023, 39(3): 176-183. |
[8] | 李彦霞, 王晋鹏, 冯芬, 包斌武, 董益闻, 王兴平, 罗仍卓么. 大肠杆菌型奶牛乳房炎对产奶性状相关基因表达的影响[J]. 生物技术通报, 2023, 39(2): 274-282. |
[9] | 冯策婷, 江律, 刘鑫颖, 罗乐, 潘会堂, 张启翔, 于超. 单叶蔷薇NAC基因家族鉴定及干旱胁迫响应分析[J]. 生物技术通报, 2023, 39(11): 283-296. |
[10] | 吴柏增, 何琪, 姚方杰, 赵梦然. 糙皮侧耳乳酸脱氢酶鉴定及其菌丝高温胁迫下表达特征分析[J]. 生物技术通报, 2023, 39(11): 350-359. |
[11] | 姜南, 石杨, 赵志慧, 李斌, 赵熠辉, 杨俊彪, 闫家铭, 靳雨璠, 陈稷, 黄进. 镉胁迫下水稻OsPT1的表达及功能分析[J]. 生物技术通报, 2023, 39(1): 166-174. |
[12] | 段敏杰, 李怡斐, 杨小苗, 王春萍, 黄启中, 黄任中, 张世才. 辣椒锌指蛋白DnaJ-Like基因家族鉴定及对高温胁迫的表达响应[J]. 生物技术通报, 2023, 39(1): 187-198. |
[13] | 于晓玲, 李文彬, 李智博, 阮孟斌. 木薯MeMYC2.2基因耐低温功能研究[J]. 生物技术通报, 2023, 39(1): 224-231. |
[14] | 袁星, 郭彩华, 刘金明, 亢超, 全绍文, 牛建新. 核桃CONSTANS-Like基因家族全基因组鉴定及表达分析[J]. 生物技术通报, 2022, 38(9): 167-179. |
[15] | 郭宾会, 宋丽. 大豆孢囊线虫侵染对乙烯合成及信号传导基因表达调控的研究[J]. 生物技术通报, 2022, 38(8): 150-158. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||