[1] |
Hong SM, Lee YK, Park I, et al. Lactic acidosis caused by repressed lactate dehydrogenase subunit B expression down-regulates mitochondrial oxidative phosphorylation via the pyruvate dehydrogenase(PDH)-PDH kinase axis[J]. Journal of Biological Chemistry, 2019, 294(19): 7810-7820.
doi: 10.1074/jbc.RA118.006095
pmid: 30923124
|
[2] |
吴德俊. 长链非编码RNA LINK-A通过乳酸脱氢酶-A(LDH-A)促进胶质瘤细胞生长和侵袭的研究[D]. 合肥: 安徽医科大学, 2018.
|
|
Wu DJ. Long non-coding RNA LINK-A promotes glioma cell growth and invasion via lactate dehydrogenase A[D]. Hefei: Anhui Medical University, 2018.
|
[3] |
安保光. 水稻D-乳酸脱氢酶基因的克隆和功能分析[D]. 武汉: 武汉大学, 2013.
|
|
An BG. Cloning and function analysis of a D-lactate dehydrogenase gene involved in methyglyoxal pathway in rice[D]. Wuhan: Wuhan University, 2013.
|
[4] |
Chen WC, Wei LL, Zhang Y, et al. Involvement of the two l-lactate dehydrogenase in development and pathogenicity in Fusarium graminearum[J]. Current Genetics, 2019, 65(2): 591-605.
doi: 10.1007/s00294-018-0909-6
|
[5] |
Zhang RY, Hu DD, Zhang YY, et al. Anoxia and anaerobic respiration are involved in “spawn-burning” syndrome for edible mushroom Pleurotus eryngii grown at high temperatures[J]. Scientia Horticulturae, 2016, 199: 75-80.
doi: 10.1016/j.scienta.2015.12.035
URL
|
[6] |
戚元成, 段庆虎, 申晓晔, 等. 高温胁迫对糙皮侧耳菌丝生理生化特性的影响[J]. 食用菌学报, 2012, 19(04): 14-16.
doi: 10.16488/j.cnki.1005-9873.2012.04.009
|
|
Qi YC, Duan QH, Shen XY, et al. Selected biochemical characteristics of Pleurotus ostreatus mycelium grown at 40℃[J]. Acta Edulis Fungi, 2012, 19(04): 14-16.
|
[7] |
Zou YJ, Zhang MJ, Qu JB, et al. iTRAQ-based quantitative proteomic analysis reveals proteomic changes in mycelium of Pleurotus ostreatus in response to heat stress and subsequent recovery[J]. Frontiers in Microbiology, 2018, 9: 2368.
doi: 10.3389/fmicb.2018.02368
URL
|
[8] |
Hou LD, Wang LN, Wu XL, et al. Expression patterns of two pal genes of Pleurotus ostreatus across developmental stages and under heat stress[J]. BMC Microbiology, 2019, 19(1): 231.
doi: 10.1186/s12866-019-1594-4
|
[9] |
侯志浩. 糙皮侧耳Zn2Cys6转录因子家族的表达分析及PoZCP26的功能研究[D]. 北京: 中国农业科学院, 2020.
|
|
Hou ZH. Expression analysis of Zn2Cys6 transcription factor family and functional analysis of PoZCP26 in Pleurotus ostreatus[D]. Beijing: Chinese Academy of Agricultural Sciences Thesis. 2020.
|
[10] |
Yan ZY, Zhao MR, Wu XL, et al. Metabolic response of Pleurotus ostreatus to continuous heat stress[J]. Frontiers in Microbiology, 2020, 10: 3148.
doi: 10.3389/fmicb.2019.03148
URL
|
[11] |
刘秀明, 黄晨阳, 等. 外源海藻糖对高温胁迫下肺形侧耳氧化损伤的缓解效应[J]. 园艺学报, 2013, 40(8): 1501-1508.
|
|
Liu XM, Huang CY, et al. Alleviative effects of exogenous trehalose on oxidative damage metabolism in Pleurotus pulmonarius under heat stress[J]. Acta Horticulturae Sinica, 2013, 40(8): 1501-1508.
|
[12] |
张美敬, 刘秀明, 邹亚杰, 等. 侧耳属食用菌高温胁迫条件优化研究[J]. 菌物学报, 2015, 34(4): 662-669.
|
|
Zhang MJ, Liu XM, Zou YJ, et al. Optimization of heat stress for Pleurotus spp. cultivation[J]. Mycosystema, 2015, 34(4): 662-669.
|
[13] |
Richardson RS, Noyszewski EA, Leigh JS, et al. Lactate efflux from exercising human skeletal muscle: role of intracellular Po-2[J]. Journal of Applied Physiology, 1998, 85(2): 627-634.
pmid: 9688741
|
[14] |
Hirschhaeuser F, Sattler UGA, Mueller-Klieser W. Lactate: a metabolic Key Player in Cancer[J]. Cancer Research, 2011, 71(22): 6921-6925.
doi: 10.1158/0008-5472.CAN-11-1457
pmid: 22084445
|
[15] |
Yang S, Wu H, He K, et al. Response of AMP-activated protein kinase and lactate metabolism of largemouth bass(Micropterus salmoides)under acute hypoxic stress[J]. Science of the Total Environment, 2019, 666: 1071-1079.
doi: 10.1016/j.scitotenv.2019.02.236
|
[16] |
Jain M, Aggarwal S, Nagar P, et al. A D-lactate dehydrogenase from rice is involved in conferring tolerance to multiple abiotic stresses by maintaining cellular homeostasis[J]. Scientific Reports, 2020, 10(1): 12835.
doi: 10.1038/s41598-020-69742-0
pmid: 32732944
|
[17] |
许黎明, 蒋国凤, 伍新龄, 等. 鼠李糖乳杆菌L-乳酸脱氢酶的生物信息学分析和基因克隆[J]. 食品工业科技, 2022, 1-16.
|
|
Xu LM, Jiang GF, et al. Bioinformatics analysis and gene cloning of L-lactate dehydrogenase from Lactobacillus rhamnosus[J]. Science and Technology of Food Industry, 2022, 1-16.
|
[18] |
Kasai T, Suzuki Y, Kouzuma A, et al. Roles of D-lactate dehydrogenases in the anaerobic growth of Shewanella oneidensis MR-1 on sugars[J]. Applied and Environmental Microbiology, 2019, 85(3): e02668-18.
|
[19] |
Bleckwedel J, Mohamed F, Mozzi F, et al. Major role of lactate dehydrogenase D-LDH1 for the synthesis of lactic acid in Fructobacillus tropaeoli CRL 2034[J]. Applied Microbiology and Biotechnology, 2020, 104(17): 7409-7426.
doi: 10.1007/s00253-020-10776-9
pmid: 32666186
|
[20] |
Lodi T, O'Connor D, Goffrini P, et al. Carbon catabolite repression in Kluyveromyces lactis: isolation and characterization of the KIDLD gene encoding the mitochondrial enzyme D-lactate ferricytochrome c oxidoreductase[J]. Molecular and General Genetics, 1994, 244(6): 622-629.
pmid: 7969031
|
[21] |
Engqvist M, Drincovich MF, Flugge UI, et al. Two D-2-hydroxy-acid dehydrogenases in Arabidopsis thaliana with catalytic capacities to participate in the last reactions of the methylglyoxal and β-oxidation pathways[J]. Journal of Biological Chemistry, 2009, 284(37): 25026-25037.
doi: 10.1074/jbc.M109.021253
pmid: 19586914
|
[22] |
Gu SA, Jun C, Joo JC, et al. Higher thermostability of L-lactate dehydrogenases is a key factor in decreasing the optical purity of D-lactic acid produced from Lactobacillus coryniformis[J]. Enzyme and Microbial Technology, 2014, 58-59: 29-35.
|
[23] |
Sun LF, Zhang CL, Lyu PC, et al. Contributory roles of two L-lactate dehydrogenases for L-lactic acid production in thermotolerant Bacillus coagulans[J]. Scientific Reports, 2016, 6: 37916.
doi: 10.1038/srep37916
|
[24] |
王金鹏. L-乳酸脱氢酶介导木糖葡萄球菌多重耐药机制的研究[D]. 哈尔滨: 东北农业大学, 2020.
|
|
Wang JP. Study of L-lactate dehydrogenase multidrug resistance mechanism on Staphylococcus xylosus[D]. Haerbin:Northeast Agricultural University, 2020.
|