Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (9): 139-148.doi: 10.13560/j.cnki.biotech.bull.1985.2017-1075
Previous Articles Next Articles
LI Shu-ting1, HE Wan-chong1, HUANG Kun-lun1,2, XU Wen-tao1,2
Received:
2017-12-13
Online:
2018-09-26
Published:
2018-10-10
LI Shu-ting, HE Wan-chong, HUANG Kun-lun, XU Wen-tao. Research Progress on Mesoporous Silica Mediated Functional Nucleic Acids-based Detection Technologies[J]. Biotechnology Bulletin, 2018, 34(9): 139-148.
[1] Tang F, Li L, Chen D.Mesoporous silica nanoparticles:synthesis, biocompatibility and drug delivery[J]. Adv Mater, 2012, 43(20):1504-1534. [2] Zhan S, Wu Y, Wang L, et al.A mini-review on functional nucleic acids-based heavy metal ion detection[J]. Biosensors & Bioelectronics, 2016, 86:353-368. [3] Liu J, Cao Z, Lu Y.Functional nucleic acid sensors[J]. Chem Rev, 2009, 109(5):1948-1998. [4] Abi A, Mohammadpour Z, Zuo X, et al.Nucleic Acid-based electrochemical nanobiosensors[J]. Biosensors & Bioelectronics, 2018, 102:479-489. [5] Keasberry NA, Yapp CW, Idris A.Mesoporous silica nanoparticles as a carrier platform for intracellular delivery of nucleic acids[J]. Biochemistry, 2017, 82(6):655-662. [6] Li X, Zhang J, Gu H.Study on the adsorption mechanism of dna with mesoporous silica nanoparticles in aqueous solution[J]. Langmuir, 2012, 28(5):2827-2834. [7] Bhattarai SR, Muthuswamy E, Wani A, et al.Enhanced gene and siRNA delivery by polycation-modified mesoporous silica nanoparticles loaded with chloroquine[J]. Pharmaceutical Research, 2010, 27(12):2556-2568. [8] Martínez Á, Fuentespaniagua E, Baeza A, et al.Mesoporous silica nanoparticles decorated with carbosilane dendrons as new non-viral oligonucleotide delivery carriers[J]. Chemistry, 2015, 21(44):15651-1566. [9] Chen C, Pu F, Huang Z, et al.Stimuli-responsive controlled-release system using quadruplex DNA-capped silica nanocontainers[J]. Nucleic Acids Res, 2011, 39(4):1638-1644. [10] 赵应香. 基于核酸适配体封堵介孔二氧化硅的ATP响应控制释放研究[D]. 长沙:湖南大学, 2013. [11] Chen L, Di J, Cao C, et al.A pH-driven DNA nanoswitch for responsive controlled release[J]. Chem Commun, 2011, 47(10):2850-2852. [12] Wu SH, Mou CY, Lin HP.Synthesis of mesoporous silica nanoparticles[J]. Chem Soc Rev, 2013, 42(9):3862-3875. [13] Bazmandegan-Shamili A, Shabani AMH, Dadfarnia S, et al.Preparation of magnetic mesoporous silica composite for the solid-phase microextraction of diazinon and malathion before their determination by high-performance liquid chromatography[J]. Journal of Separation Science, 2017, 40(8):1731-1738. [14] Lu M.Bioresponsive-controlled release of methylene blue from magnetic mesoporous silica from the electrochemical detection of telomerase activity[J]. Analyst, 2017, 142(18):3477-3483. [15] Snoussi Y, Bastide S, Abderrabba M, et al.Sonochemical synthesis of Fe3O4@NH2-mesoporous silica@Polypyrrole/Pd:A core/double shell nanocomposite for catalytic applications[J]. Ultrasonics Sonochemistry, 2018, 41:551-561. [16] Bertucci A, Prasetyanto EA, Septiadi D, et al.Combined delivery of temozolomide and anti-miR221 PNA using mesoporous silica nanoparticles induces apoptosis in resistant glioma cells[J]. Small, 2015, 11(42):5687-5695. [17] Li Z, Zhang L, Tang C, et al. Co-delivery of doxorubicin and survivin shRNA-expressing plasmid via microenvironment-responsive dendritic mesoporous silica nanoparticles for synergistic cancer therapy[J]. Pharmaceutical Research, 2017:34(12:2829-2841. [18] Li T, Shen X, Geng Y, et al.Folate-functionalized magnetic-mesoporous silica nanoparticles for drug/gene codelivery to potentiate the antitumor efficacy[J]. ACS Appl Mater Interfaces, 2016, 8(22):13748-13758. [19] Zhang X, Zhang J, Quan G, et al.The Serum-resistant transfection evaluation and long-term stability of gene delivery dry powder based on mesoporous silica nanoparticles and polyethyleneimine by freezing-drying[J]. AAPS PharmSciTech, 2017, 18(5):1536-1543. [20] Pu F, Liu Z, Ren J, et al.Nucleic acid-mesoporous silica nanoparticle conjugates for keypad lock security operation[J]. Chem Commun, 2013, 49(23):2305-2307. [21] 高蕾, 王青, 羊小海, 等. 核酸适配体封盖的介孔二氧化硅纳米颗粒用于肌红蛋白的检测[J]. 高等学校化学学报, 2017, 38(2):187-192. [22] Castillo RR, Baeza A, Vallet-Regí M.Recent applications of the combination of mesoporous silica nanoparticles with nucleic acids:development of bioresponsive devices, carriers and sensors[J]. Biomaterials Science, 2017, 5(3):353-377. [23] Climent E, Marcos MD, Rurack K.Selective, highly sensitive, and rapid detection of genomic DNA by using gated materials:Mycoplasma detection[J]. Angew Chem Int Ed Engl, 2013, 52(34):8938-8942. [24] Wang Z, Yang X, Feng J, et al.Label-free detection of DNA by combining gated mesoporous silica and catalytic signal amplification of platinum nanoparticles[J]. Analyst, 2014, 139(23):6088. [25] Wang Y, Yu Z, Zhang Z, et al.Orderly nucleic acid aggregates by electrostatic self-assembly in single cells for miRNA detection and visualizing[J]. Analyst, 2016, 141(10):2861-2864. [26] Borsa BA, Tuna BG, Hernandez FJ, et al.Staphylococcus aureus, detection in blood samples by silica nanoparticle-oligonucleotides conjugates[J]. Biosensors & Bioelectronics, 2016, 86:27-32. [27] Chen Z, Sun M, Luo F, et al.Stimulus-response click chemistry based aptamer-functionalized mesoporous silica nanoparticles for fluorescence detection of thrombin[J]. Talanta, 2018, 178:563-568. [28] Liu P, Pang J, Yin H, et al.G-quadruplex functionalized nano mesoporous silica for assay of the DNA methyltransferase activity.[J]. Anal Chim Acta, 2015, 879:34-40. [29] Gan C, Wang B, Huang J, et al.Multiple amplified enzyme-free electrochemical immunosensor based on G-quadruplex/hemin functionalized mesoporous silica with redox-active intercalators for microcystin-LR detection[J]. Biosens Bioelectron, 2017, 98:126-133. [30] Zhao C, Hu R, Liu T, et al.A non-enzymatic electrochemical immunosensor for microcystin-LR rapid detection based on Ag@MSN nanoparticles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 490:336-342. [31] Wang Y, Jiang L, Chu L, et al.Electrochemical detection of glutathione by using thymine-rich DNA-gated switch functionalized mesoporous silica nanoparticles[J]. Biosensors & Bioelectronics, 2017, 87:459-465. [32] Chen Z, Tan Y, Xu K, et al.Stimulus-response mesoporous silica nanoparticle-based chemiluminescence biosensor for cocaine determination[J]. Biosens Bioelectron, 2016, 75:8-14. [33] He D, He X, Wang K, et al.Regenerable multifunctional mesoporous silica nanocomposites for simultaneous detection and removal of mercury(II)[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2013, 29(19):5896-5904. [34] Xiong Y, Deng C, Zhang X, et al.Designed synthesis of aptamer-immobilized magnetic mesoporous silica/Au nanocomposites for highly selective enrichment and detection of insulin[J]. ACS Appl Mater Interfaces, 2015, 7(16):8451-8456. [35] Wang Y, Shang X, Liu J, et al.ATP mediated rolling circle amplification and opening DNA-gate for drug delivery to cell[J]. Talanta, 2018, 176:652-658. [36] 隗予荣. 基于核酸适配体功能化的近红外光响应性纳米材料在生物医学及分析检测中的应用[D]. 武汉:湖北大学, 2016. [37] Pascual L, Cerqueira-Coutinho C, García-Fernández A, et al.MUC1 aptamer-capped mesoporous silica nanoparticles for controlled drug delivery and radio-imaging applications[J]. Nanomedicine, 2017, 13(8):2495-2505. [38] Freitas LBDO, Corgosinho LDM, Santos VMD, et al.Multifunctional mesoporous silica nanoparticles for cancer-targeted, controlled drug delivery and imaging[J]. Microporous & Mesoporous Materials, 2017, 242:271-283. [39] Hsiao SM, Peng BY, Tseng YS, et al.Preparation and characterization of multifunctional mesoporous silica nanoparticles for dual magnetic resonance and fluorescence imaging in targeted cancer therapy[J]. Microporous and Mesoporous Materials, 2017, 250:210-220. [40] Shi J, Sun X, Zheng S, et al.A new near-infrared persistent luminescence nanoparticle as a multifunctional nanoplatform for multimodal imaging and cancer therapy[J]. Biomaterials, 2018, 152:15-23. [41] Wang HQ, Hu PF, Zheng Y, et al.Construction of ICG encapsulated W18O49@MSN as a fluorescence carrier for real-time tracked photothermal therapy[J]. Mater Sci Eng C Mater Biol Appl, 2017, 80:102-109. [42] An J, Yang XQ, Cheng K, et al.In vivo CT/Photoacoustic imaging and NIR-Triggered chemo-photothermal combined therapy based on a gold nanostar, mesoporous silica and thermo-sensitive liposomes composited nanoprobe[J]. ACS Appl Mater Interfaces, 2017, 9:41748-41759. [43] Quanan Z, Hanfeng X, Shengqin Z, et al.Genotoxicity of mesoporous silica nanoparticles in human embryonic kidney 293 cells[J]. Drug Testing & Analysis, 2015, 7(9):787-796. [44] Niu M, Zhong H, Shao H, et al.Shape-dependent genotoxicity of mesoporous silica nanoparticles and cellular mechanisms[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(3):2313-2318. [45] Knežević NŽ, Durand JO.Large pore mesoporous silica nanomaterials for application in delivery of biomolecules[J]. Nanoscale, 2015, 7(6):2199-2209. |
[1] | XUE Ning, WANG Jin, LI Shi-xin, LIU Ye, CHENG Hai-jiao, ZHANG Yue, MAO Yu-feng, WANG Meng. Construction of L-phenylalanine High-producing Corynebacterium glutamicum Engineered Strains via Multi-gene Simultaneous Regulation Combined with High-throughput Screening [J]. Biotechnology Bulletin, 2023, 39(9): 268-280. |
[2] | LI Tian-shun, LI Chen-wei, WANG Jia, ZHU Long-Jiao, XU Wen-tao. Efficient Generation of Secondary Libraries During Functional Nucleic Acids Screening [J]. Biotechnology Bulletin, 2023, 39(3): 116-122. |
[3] | LI Ren-han, ZHANG Le-le, LIU Chun-li, LIU Xiu-xia, BAI Zhong-hu, YANG Yan-kun, LI Ye. Development of an L-tryptophan Biosensor Based on the Violacein Biosynthesis Pathway [J]. Biotechnology Bulletin, 2023, 39(10): 80-92. |
[4] | CHEN Xiao-lin, LIU Yang-er, XU Wen-tao, GUO Ming-zhang, LIU Hui-lin. Application of Synthetic Biology Based Whole-cell Biosensor Technology in the Rapid Detection of Food Safety [J]. Biotechnology Bulletin, 2023, 39(1): 137-149. |
[5] | LU Xin-hua, SUN De-quan, ZHANG Xiu-mei. Genetic Transformation of Plant Cells Mediated by Mesoporous Silica Nanoparticles [J]. Biotechnology Bulletin, 2022, 38(7): 194-204. |
[6] | GAO Cong, XIAO Chu-jian, LU Shuai, WANG Su-rong, YUAN Hui-hua, CAO Yun-ying. Promoting Effect of Graphene Oxide on the Root Growth of Arabidopsis thaliana [J]. Biotechnology Bulletin, 2022, 38(6): 120-128. |
[7] | SUN De-quan, LU Xin-hua, LI Wei-ming, HU Yu-lin, DUAN Ya-jie, PANG Zhen-cai, HU Hui-gang. Application of Mesoporous Silica Nanoparticles in Agriculture [J]. Biotechnology Bulletin, 2022, 38(5): 228-239. |
[8] | ZHOU Zi-qi, ZHANG Yang-zi, LAN Xin-yue, LIU Yang-er, ZHU Long-jiao, XU Wen-tao. Selection and Application of Light-up Nucleic Acid Aptamers [J]. Biotechnology Bulletin, 2022, 38(5): 240-247. |
[9] | WANG Peng-fei, YANG Min, ZHU Long-jiao, XU Wen-tao. Advances in Biosensors Based on Platinum Nanoclusters [J]. Biotechnology Bulletin, 2021, 37(12): 235-242. |
[10] | ZHAO Ying, WANG Nan, LU An-xiang, FENG Xiao-yuan, GUO Xiao-jun, LUAN Yun-xia. Application in the Detection of Fungal Toxins by Nucleic Acid Aptamer Lateral Flow Chromatography Analysis Technique [J]. Biotechnology Bulletin, 2020, 36(8): 217-227. |
[11] | FANG Shun-yan, SONG Dan, LIU Yan-ping, XU Wen-juan, LIU Jia-yao, HAN Xiang-zhi, LONG Feng. Study on Evanescent Wave Fluorescence Aptasensor for Direct and Rapid Detection of Escherichia coli O157∶H7 [J]. Biotechnology Bulletin, 2020, 36(7): 228-234. |
[12] | YE Jian-wen, CHEN Jiang-nan, ZHANG Xu, Wu Fu-qing, CHEN Guo-qiang. Dynamic Control:An Efficient Strategy for Metabolically Engineering Microbial Cell Factories [J]. Biotechnology Bulletin, 2020, 36(6): 1-12. |
[13] | YANG Min, LI Shu-ting, YANG Wen-ping, LI Xiang-yang, XU Wen-tao. Research Progress on Functional Nucleic Acid Biosensors Mediated by DNA/Silver Nanoclusters [J]. Biotechnology Bulletin, 2020, 36(6): 245-254. |
[14] | LIU Su-yue, TIAN Jing-jing, TIAN Hong-tao, XU Wen-tao. Terbium(III)and Its Complexes:from Luminescent Properties to Sensing and Bioimaging Applications [J]. Biotechnology Bulletin, 2020, 36(4): 192-207. |
[15] | SUN Yu-ge, LI Chen-wei, DU Zai-hui, XU Wen-tao. Research Progress on FEN1-mediated Functional Nucleic Acid Biosensors [J]. Biotechnology Bulletin, 2020, 36(4): 208-224. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||