Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (9): 15-28.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0381
Previous Articles Next Articles
TIAN Jing-jing, LUO Yun-bo, XU Wen-tao
Received:
2018-04-23
Online:
2018-09-26
Published:
2018-10-10
TIAN Jing-jing, LUO Yun-bo, XU Wen-tao. Advances in Biosensors Based on Triplex Nucleic Acids[J]. Biotechnology Bulletin, 2018, 34(9): 15-28.
[1] Wang F, Liu X, Willner I.DNA switches:from principles to applications[J]. Angew Chem, 2015, 54(4):1098-1129. [2] Seelig G, Soloveichik D, Zhang DY, et al.Enzyme-free nucleic acid logic circuits[J]. Science, 2006, 314(5805):1585-1588. [3] Qian L, Winfree E, Bruck J.Neural network computation with DNA strand displacement cascades[J]. Nature, 2011, 7356:368-372. [4] Liu X, Lu CH, WIllner I.Switchable reconfiguration of nucleic acid nanostructures by stimuli-responsive DNA machines[J]. Accounts of Chemical Research, 2014, 47(6):1673-1680. [5] Felsenfeld G, Davies DR, Rich A.Formation of a 3-stranded polynucleotide molecule[J]. J Am Chem Soc, 1957, 79(8):2023-2040. [6] Yamagata Y, Emura T, Hidaka K, et al.Triple helix formation in a topologically controlled DNA nanosystem[J]. Chemistry, 2016, 22(16):5494-5498. [7] Porchetta A, Idili A, Vall Eb Lisle A, et al. General strategy to introduce pH-Induced allostery in DNA-based receptors to achieve controlled release of ligands[J]. Nano Lett, 2015, 7:4467-4471. [8] Liao WC, Riutin M, Parak WJ, et al.Programmed pH-responsive microcapsules for the controlled release of CdSe/ZnS quantum dots[J]. ACS Nano, 2016, 10(9):8683-8689. [9] Kahn JS, Freage L, Enkin N, et al.Stimuli-responsive DNA-functionalized metal-organic frameworks(MOFs)[J]. Adv Mater, 2017, 29(6). doi:org/10.1002/adma.201602782. [10] Conde J, Oliva N, Atilano M, et al.Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment[J]. Nat Mater, 2016, 3:353-363. [11] Idili A, Plaxco KW, Vallée-Bélisle A, et al.Thermodynamic basis for engineering high-affinity, high-specificity binding-induced DNA clamp nanoswitches[J]. ACS Nano, 2013, 12:10863-10869. [12] Li Z, Miao X, Xing K, et al.Enhanced electrochemical recognition of double-stranded DNA by using hybridization chain reaction and positively charged gold nanoparticles[J]. Biosensors & Bioelectronics, 2015, 74:687-690. [13] Xi D, Wang X, Ai S, et al.Detection of cancer cells using triplex DNA molecular beacons based on expression of enhanced green fluorescent protein(eGFP)[J]. Chem Commun, 2014, 50(67):9547-9549. [14] Zhu D, Zhu J, Zhu Y, et al.Sensitive detection of transcription factors using an Ag+-stabilized self-assembly triplex DNA molecular switch[J]. Chem Commun, 2014, 50(95):14987-14990. [15] Liu JW, Lu Y.A DNAzyme Catalytic beacon sensor for paramagnetic Cu2+ ions in aqueous solution with high sensitivity and selectivity[J]. J Am Chem Soc, 2007, 32:9838-9839. [16] Xu W, Tian J, Shao X, et al.A rapid and visual aptasensor for Lipopolysaccharides detection based on the bulb-like triplex turn-on switch coupled with HCR-HRP nanostructures[J]. Biosensors & Bioelectronics, 2016, 89(2):795-801. [17] Maher LJ, Dervan PB, Wold BJ.Kinetic analysis of oligodeoxyribo-nucleotide-directed triple-helix formation on DNA[J]. Biochemistry, 1990, 29(37):8820-8826. [18] Idili A, Vall Eb Lisle A, Ricci F. Programmable pH-triggered DNA nanoswitches[J]. J Am Chem Soc, 2014, 16:5836-5839. [19] Trkulja I, H Ner R. Monomeric and heterodimeric triple helical DNA mimics[J]. J Am Chem Soc, 2007, 129(25):7982-7989. [20] Antony T, Thomas T, Sigal LH, et al.A molecular beacon strategy for the thermodynamic characterization of triplex DNA: Triplex Formation at the Promoter Region of Cyclin D1[J]. Development Genes & Evolution, 2001, 212(8):365-373. [21] Antony T, Subramaniam V.A molecular beacon strategy for real-time monitoring of triplex DNA formation kinetics[J]. Antisense & Nucleic Acid Drug Development, 2002, 12(3):145-147. [22] Ihara T, Ishii T, Araki N, et al.Silver ion unusually stabilizes the structure of a parallel-motif DNA triplex[J]. J Am Chem Soc, 2009, 131(11):3826-3827. [23] Han MS, Lyttonjean AK, Mirkin CA.A gold nanoparticle based approach for screening triplex DNA binders[J]. J Am Chem Soc, 2006, 128(15):4954-4955. [24] Patterson A, Caprio F, Vall Eb Lisle A, et al. Using triplex-forming oligonucleotide probes for the reagentless, electrochemical detection of double-stranded DNA[J]. Anal Chem, 2010, 82(21):9109-9115. [25] Zheng J, Li J, Jiang Y, et al.Design of aptamer-based sensing platform using triple-helix molecular switch[J]. Anal Chem, 2011, 83(17):6586-6592. [26] Du Y, Mao Y, He X, et al.A signal on aptamer-based electrochemical sensing platform using a triple-helix molecular switch[J]. Analytical Methods, 2014, 6(16):6294-6300. [27] Ramezani M, Danesh NM, Lavaee P, et al.A novel colorimetric triple-helix molecular switch aptasensor for ultrasensitive detection of tetracycline[J]. Biosens Bioelectron, 2015, 70:181-187. [28] Idili A, Amodio A, Vidonis M, et al.Folding-upon-binding and signal-on electrochemical DNA sensor with high affinity and specificity[J]. Anal Chem, 2014, 86(18):9013-9019. [29] Kandimalla ER, Agrawal S.Hoogsteen DNA duplexes of 3’-3’- and 5’-5’-linked oligonucleotides and trip formation with RNA and DNA pyrimidine single strands:experimental and molecular modeling studies[J]. Biochem, 1996, 48:15332-15339. [30] Betts L, Josey JA, Veal JM, et al.A nucleic acid triple helix formed by a peptide nucleic acid-DNA complex[J]. Science, 1995, 270(5243):1838-1841. [31] Baker ES, Hong JW, Gaylord BS, et al.PNA/dsDNA complexes:site specific binding and dsDNA biosensor applications[J]. J Am Chem Soc, 2006, 128(26):8484-8492. [32] Li K, Liu B.Conjugated polyelectrolyte amplified thiazole orange emission for label free sequence specific DNA detection with single nucleotide polymorphism selectivity[J]. Anal Chem, 2009, 81(10):4099-4105. [33] Tom G, Lars R, Oliver S.Triplex molecular beacons as modular probes for DNA detection[J]. Angew Chem Int Ed Engl, 2007, 46(27):5223-5225. [34] Hamidi-Asl E, Raoof JB, Ojani R, et al.A new peptide nucleotide acid biosensor for electrochemical detection of single nucleotide polymorphism in duplex DNA via triplex structure formation[J]. J Iran Chem Soc, 2013, 10(6):1075-1083. [35] 马小明, 孙密, 林悦, 等. 基于金纳米材料的可视化生物传感器的研究进展[J]. 分析化学, 2018, 1(46):1-10. [36] Jung YH, Lee KB, Kim YG, et al.Proton-fueled, reversible assembly of gold nanoparticles by controlled triplex formation[J]. Angew Chem, 2006, 45(36):5960-5963. [37] Xiong C, Wu C, Zhang H, et al.Gold nanoparticles-based colorimetric investigation of triplex formation under weak alkalic pH environment with the aid of Ag+[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2011, 79(5):956-961. [38] Zheng J, Jiao A, Yang R, et al.Fabricating a reversible and regenerable Raman-active substrate with a biomolecule-controlled DNA nanomachine[J]. J Am Chem Soc, 2012, 134(49):19957-19960. [39] Guerrini L, Mckenzie F, Wark AW, et al.Tuning the interparticle distance in nanoparticle assemblies in suspension via DNA-triplex formation:correlation between plasmonic and surface-enhanced Raman scattering responses[J]. Chem Sci, 2012, 7:2262-2269. [40] Zheng J, Hu Y, Bai J, et al.Universal surface-enhanced Raman scattering amplification detector for ultrasensitive detection of multiple target analytes[J]. Anal Chem, 2014, 4:2205-2212. [41] Cai X, Rivas G, Shirashi H, et al.Electrochemical analysis of formation of polynucleotide complexes in solution and at electrode surfaces[J]. Anal Chim Acta, 1997, 344(1):65-76. [42] Wang X, Jiang A, Hou T, et al.A versatile label-free and signal-on electrochemical biosensing platform based on triplex-forming oligonucleotide probe[J]. Anal Chim Acta, 2015, 890:91-97. [43] Amodio A, Zhao B, Porchetta A, et al.Rational design of pH-controlled DNA strand displacement[J]. J Am Chem Soc, 2014, 136(47):16469-16472. [44] Idili A, Porchetta A, Amodio A, et al.Controlling hybridization chain reactions with pH[J]. Nano Lett, 2015, 8:5539-5544. [45] Chen Y, Lee SH, Mao C.A DNA nanomachine based on a duplex-triplex transition[J]. Angew Chem, 2010, 43(40):5335-5338. [46] Yang M, Zhang X, Liu H, et al.Stable DNA nanomachine based on duplex-triplex transition for ratiometric imaging instantaneous pH changes in living cells[J]. Anal Chem, 2015, 12:5854-5859. [47] Erica DG, Anne-Marie D, Alexis VB, et al.Enzyme-operated DNA-based nanodevices[J]. Nano Lett, 2015, 15(12):8407-8411. [48] Chen Y, Mao C. pH-induced reversible expansion/contraction of gold nanoparticle aggregates[J]. Small, 2010, 12:2191-2194. [49] Wu N, Willner I. pH-stimulated reconfiguration and structural isomerization of origami dimer and trimer systems[J]. Nano Lett, 2016, 16(10):6650-6655. [50] Hu Y, Ren J, Lu CH, et al.Programmed pH-driven reversible association and dissociation of interconnected circular DNA dimer nanostructures[J]. Nano Lett, 2016, 16(7):4590-4594. [51] Fu TJ, Seeman NC.DNA double-crossover molecules[J]. Biochemistry, 1993, 32(13):3211-3220. [52] Rothemund PW, Ekani-Nkodo A, Papadakis N, et al.Design and characterization of programmable DNA nanotubes[J]. J Am Chem Soc, 2004, 126(50):16344-16352. [53] Amodio A, Adedeji AF, Castronovo M, et al.pH-controlled assembly of DNA tiles[J]. J Am Chem Soc, 2016, 138(39):12735-12738. [54] Green LN, Amodio A, Hkk S, et al.pH-driven reversible self-assembly of micron-scale DNA scaffolds[J]. Nano Lett, 2017, 17(12):7283-7288. [55] Ye S, Wu Y, Zhang W, et al.A sensitive SERS assay for detecting proteins and nucleic acids using a triple-helix molecular switch for cascade signal amplification[J]. Chem Commun, 2014, 50(66):9409-9412. [56] Li Y, Miao X, Ling L.Triplex DNA:A new platform for polymerase chain reaction-based biosensor[J]. Sci Rep, 2015, 5:13010-13013. [57] Ren J, Hu Y, Lu C H, et al.pH-responsive and switchable triplex-based DNA hydrogels[J]. Chem Sci, 2015, 6(7):4190-4195. [58] Hu Y, Lu CH, Guo W, et al.A shape memory acrylamide/DNA hydrogel exhibiting switchable dual pH-responsiveness[J]. Adv Funct Mater, 2016, 25(44):6867-6874. [59] Hu Y, Guo W, Kahn JS, et al.A Shape-memory DNA-based hydrogel exhibiting two internal memories[J]. Angew Chem Int Ed Engl, 2016, 55(13):4210-4214. [60] Yamagata Y, Emura T, Hidaka K, et al.Triple helix formation in a topologically controlled DNA nanosystem[J]. Chemistry, 2016, 22(16):5494-5498. [61] Del GE, Idili A, Porchetta A, et al.A modular clamp-like mechan-ism to regulate the activity of nucleic-acid target-responsive nanos-witches with external activators[J]. Nanoscale, 2016, 8(42):18057-18061. [62] Zheng H, Ma X, CHen L, et al.Label-free electrochemical impedance biosensor for sequence-specific recognition of double-stranded DNA[J]. Analytical Methods, 2013, 19:5005-5009. [63] Xiong E, Li Z, Zhang X, et al.A triple-helix molecular switch electrochemical ratiometric biosensor for ultrasensitive detection of nucleic acids[J]. Anal Chem, 2017, 89(17):8830-8835. [64] Tang P, Zheng J, Tang J, et al.Programmable DNA triple-helix molecular switch in biosensing applications:from in homogenous solutions to in living cells[J]. Chem Commun, 2017, 53(16):2507-2510. [65] Xiong Y, Lin L, Zhang X, et al.Label-free electrochemiluminescent detection of transcription factors with hybridization chain reaction amplification[J]. RSC Advances, 2016, 6(44):37681-37688. [66] Liu J, Lu Y.A DNAzyme catalytic beacon sensor for paramagnetic Cu2+ ions in aqueous solution with high sensitivity and selectivity[J]. J Am Chem Soc, 2007, 129(32):9838-9939. [67] Wang H, Zhang Y, Ma H, et al.Electrochemical DNA probe for Hg2+ detection based on a triple-helix DNA and Multistage Signal Amplification Strategy[J]. Biosensors & Bioelectronics, 2016, 86:907-912. |
[1] | XUE Ning, WANG Jin, LI Shi-xin, LIU Ye, CHENG Hai-jiao, ZHANG Yue, MAO Yu-feng, WANG Meng. Construction of L-phenylalanine High-producing Corynebacterium glutamicum Engineered Strains via Multi-gene Simultaneous Regulation Combined with High-throughput Screening [J]. Biotechnology Bulletin, 2023, 39(9): 268-280. |
[2] | LI Ren-han, ZHANG Le-le, LIU Chun-li, LIU Xiu-xia, BAI Zhong-hu, YANG Yan-kun, LI Ye. Development of an L-tryptophan Biosensor Based on the Violacein Biosynthesis Pathway [J]. Biotechnology Bulletin, 2023, 39(10): 80-92. |
[3] | CHEN Xiao-lin, LIU Yang-er, XU Wen-tao, GUO Ming-zhang, LIU Hui-lin. Application of Synthetic Biology Based Whole-cell Biosensor Technology in the Rapid Detection of Food Safety [J]. Biotechnology Bulletin, 2023, 39(1): 137-149. |
[4] | WANG Peng-fei, YANG Min, ZHU Long-jiao, XU Wen-tao. Advances in Biosensors Based on Platinum Nanoclusters [J]. Biotechnology Bulletin, 2021, 37(12): 235-242. |
[5] | ZHAO Ying, WANG Nan, LU An-xiang, FENG Xiao-yuan, GUO Xiao-jun, LUAN Yun-xia. Application in the Detection of Fungal Toxins by Nucleic Acid Aptamer Lateral Flow Chromatography Analysis Technique [J]. Biotechnology Bulletin, 2020, 36(8): 217-227. |
[6] | FANG Shun-yan, SONG Dan, LIU Yan-ping, XU Wen-juan, LIU Jia-yao, HAN Xiang-zhi, LONG Feng. Study on Evanescent Wave Fluorescence Aptasensor for Direct and Rapid Detection of Escherichia coli O157∶H7 [J]. Biotechnology Bulletin, 2020, 36(7): 228-234. |
[7] | YE Jian-wen, CHEN Jiang-nan, ZHANG Xu, Wu Fu-qing, CHEN Guo-qiang. Dynamic Control:An Efficient Strategy for Metabolically Engineering Microbial Cell Factories [J]. Biotechnology Bulletin, 2020, 36(6): 1-12. |
[8] | YANG Min, LI Shu-ting, YANG Wen-ping, LI Xiang-yang, XU Wen-tao. Research Progress on Functional Nucleic Acid Biosensors Mediated by DNA/Silver Nanoclusters [J]. Biotechnology Bulletin, 2020, 36(6): 245-254. |
[9] | LIU Su-yue, TIAN Jing-jing, TIAN Hong-tao, XU Wen-tao. Terbium(III)and Its Complexes:from Luminescent Properties to Sensing and Bioimaging Applications [J]. Biotechnology Bulletin, 2020, 36(4): 192-207. |
[10] | SUN Yu-ge, LI Chen-wei, DU Zai-hui, XU Wen-tao. Research Progress on FEN1-mediated Functional Nucleic Acid Biosensors [J]. Biotechnology Bulletin, 2020, 36(4): 208-224. |
[11] | WU Ya, XU Zhi-hui, ZHANG Biao, ZHAO Dong-fang, CAO Wen-xin, ZHANG Xing-ping. Research Progress of Nucleic Acid Aptamer Optical Biosensor in Kanamycin Detection [J]. Biotechnology Bulletin, 2020, 36(1): 193-201. |
[12] | XIAO Bing, LUO Yun-bo, HUANG Kun-lun, ZHANG Yuan, XU Wen-tao. Research Progress in the Quantitative and Unitive Detecting Technologies Based on Functional Nucleic Acid and Labeled Fluorescence [J]. Biotechnology Bulletin, 2019, 35(7): 213-221. |
[13] | XIE Yin-xia, WANG Wei-ran, CHENG Nan, XU Wen-tao. Research Progress on Electrical Signal Molecules in Electrochemical Functional Nucleic Acids Biosensors [J]. Biotechnology Bulletin, 2019, 35(5): 157-169. |
[14] | XIAO Bing, LIU Bang, LUO Yun-bo, HUANG Kun-lun, ZHANG Yuan, LI Xia-ying, ZHANG Xiu-jie, XU Wen-tao, ZHOU Xiang. Research Progress in Quantitative and Unitive Detecting Technologies of Functional Nucleic Acid and Label-Free Fluorescence [J]. Biotechnology Bulletin, 2019, 35(3): 194-202. |
[15] | LI Chen-wei, DU Zai-hui, LIN Shao-hua, LUO Yun-bo, XU Wen-tao. Research Progress on Functional Nucleic Acids for Detecting Pb2+ [J]. Biotechnology Bulletin, 2019, 35(1): 131-139. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||