Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (11): 152-161.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0405
Previous Articles Next Articles
QI Wang(), BI Yi-fan, XUAN Qiang-bing, ZHANG Xin, ZHOU Hui-gang, NIE Yuan-qing, CHENG Biao-biao, ZHANG Yu-shun, WANG Jun-jie, LIANG Wei-hong()
Received:
2024-04-28
Online:
2024-11-26
Published:
2024-12-19
Contact:
LIANG Wei-hong
E-mail:1322496124@qq.com;liangwh@htu.edu.cn
QI Wang, BI Yi-fan, XUAN Qiang-bing, ZHANG Xin, ZHOU Hui-gang, NIE Yuan-qing, CHENG Biao-biao, ZHANG Yu-shun, WANG Jun-jie, LIANG Wei-hong. Overexpression of OsRhoGDI1 Gene Regulates Grain Shape and Seed Vigor in Rice[J]. Biotechnology Bulletin, 2024, 40(11): 152-161.
引物名称 Primer name | 引物序列 Primer sequence(5'-3') | 用途 Purpose | |
---|---|---|---|
OsRhoGDI1-CDS | F1: GAGGTACCCGGGGATCC TCTAGA ATGTCGTCGGCGGTGGATG | R1: ATTAAAGCAGGGCATGC CTGCAG TCAGCTCAACGCCGGCCACTCTC | OsRhoGDI1过表达载体构建及转基因水稻鉴定引物 Primers for the vector construction of OsRhoGDI1 overexpression and for validation of transgenic rice |
Hyg | F2:ACGGTGTCGTCCATCACAGT TTGCC | R2:TTCCGGAAGTGCTTGACATT GGGGA | |
OsRhoGDI1-PCR | F3: GCCATTGCTGGATCCAACC | R3: CCTCCTACGGAGTTCAAATCCA | |
OsRhoGDI1-qPCR | F4: TCAAGGAGGGCTCCCTCTAC | R4: GAGCATCTCCTTGTGGCTGT | |
OsAct1-qPCR | F5: CATGCTATCCCTCGTCTCGACCT | R5: CGCACTTCATGATGGAGTTGTAT | |
GW2 | F6: TTTTCAGTGCCGTCATACC | R6: TTTTCAGTGCCGTCATACC | 粒型调控基因表达水平检测引物 Primers for detecting the expressions of grain-shape-regulating genes |
GW8 | F7: AGGAGTTTGATGAGGCCAAG | R7: GCGTGTAGTATGGGCTCTCC | |
GS2 | F8: TGCGTCCCTTCTTTGATGAGT | R8: ACAGTTGGGTGCCTGAGAATG | |
GS5 | F9: TTTGGCTGAGTATGCCTGGAGCA TCTGCACA | R9: ATTTGCGAAGAATGCACGAT TATGCTGGAA | |
GS6 | F10: TGCGGATACTCAACGCCATCA | R10: ACTCGCCGACTCCGGTGATC | |
GLW7 | F11: TATCCCTTTCAACCTTTTCCA | R11: GACGACGAGCTAGTGCTACTGT | |
OsGA20ox1 | F12: TTCTTCCTCTGCCCGGAGAT | R12: CATGTCGGCCCTGTAGTGG | GA、ABA代谢基因表达水平检测引物 Primers for detecting the expressions of metabolic gene GA and ABA |
OsGA3ox2 | F13: CTTCTGTGACGTGATGGAGGAG | R13:CTCAAGAACAACCTCAGCAACTC | |
OsGA2ox3 | F14: TCGTTGCAGGTTCTGACCAA | R14: TGGCAATGGTGCAATCCTCT | |
OsGA2ox8 | F15: GCATGAATCGCAGGAGATCG | R15: CCACGTCTTGTGCTGGCTAT | |
OsNCED5 | F16:ACATCCGAGCTCCTCGTCGTGAA | R16:TTGGAAGGTGTTTTGGAATGAACCA | |
OsABA8ox2 | F17: CTACTGCTGATGGTGGCTGA | R17: CCCATGGCCTTTGCTTTAT | |
OsABA1 | F18: GAGTTGGTGGGAGATTCTTCAT | R18: CAGCTTAACGGTCTTCCTTCT | |
OsAmy1A | F19: TTTCGGTCCTCATCGTCCTCC | R19: TCCACGACTCCCAGTTGAATC | α-amylase基因表达水平检测引物 Primers for detecting the expression of α-amylase genes |
OsAmy2A | F20: CAGGGGTTCAACTGGGAGTC | R20: CATGTACCCTTGCGTGGAGA | |
OsAmy3A | F21: CTCTTCCAGGGTTTTAACTGGGA | R21: GCATGCTACAAAGAGAAGCGT | |
OsAmy3E | F22: TCACCCTGTGTTGTGTCGTT | R22: AAAGTTGTACCACCCGCCTT |
Table 1 Primer sequences used in this study
引物名称 Primer name | 引物序列 Primer sequence(5'-3') | 用途 Purpose | |
---|---|---|---|
OsRhoGDI1-CDS | F1: GAGGTACCCGGGGATCC TCTAGA ATGTCGTCGGCGGTGGATG | R1: ATTAAAGCAGGGCATGC CTGCAG TCAGCTCAACGCCGGCCACTCTC | OsRhoGDI1过表达载体构建及转基因水稻鉴定引物 Primers for the vector construction of OsRhoGDI1 overexpression and for validation of transgenic rice |
Hyg | F2:ACGGTGTCGTCCATCACAGT TTGCC | R2:TTCCGGAAGTGCTTGACATT GGGGA | |
OsRhoGDI1-PCR | F3: GCCATTGCTGGATCCAACC | R3: CCTCCTACGGAGTTCAAATCCA | |
OsRhoGDI1-qPCR | F4: TCAAGGAGGGCTCCCTCTAC | R4: GAGCATCTCCTTGTGGCTGT | |
OsAct1-qPCR | F5: CATGCTATCCCTCGTCTCGACCT | R5: CGCACTTCATGATGGAGTTGTAT | |
GW2 | F6: TTTTCAGTGCCGTCATACC | R6: TTTTCAGTGCCGTCATACC | 粒型调控基因表达水平检测引物 Primers for detecting the expressions of grain-shape-regulating genes |
GW8 | F7: AGGAGTTTGATGAGGCCAAG | R7: GCGTGTAGTATGGGCTCTCC | |
GS2 | F8: TGCGTCCCTTCTTTGATGAGT | R8: ACAGTTGGGTGCCTGAGAATG | |
GS5 | F9: TTTGGCTGAGTATGCCTGGAGCA TCTGCACA | R9: ATTTGCGAAGAATGCACGAT TATGCTGGAA | |
GS6 | F10: TGCGGATACTCAACGCCATCA | R10: ACTCGCCGACTCCGGTGATC | |
GLW7 | F11: TATCCCTTTCAACCTTTTCCA | R11: GACGACGAGCTAGTGCTACTGT | |
OsGA20ox1 | F12: TTCTTCCTCTGCCCGGAGAT | R12: CATGTCGGCCCTGTAGTGG | GA、ABA代谢基因表达水平检测引物 Primers for detecting the expressions of metabolic gene GA and ABA |
OsGA3ox2 | F13: CTTCTGTGACGTGATGGAGGAG | R13:CTCAAGAACAACCTCAGCAACTC | |
OsGA2ox3 | F14: TCGTTGCAGGTTCTGACCAA | R14: TGGCAATGGTGCAATCCTCT | |
OsGA2ox8 | F15: GCATGAATCGCAGGAGATCG | R15: CCACGTCTTGTGCTGGCTAT | |
OsNCED5 | F16:ACATCCGAGCTCCTCGTCGTGAA | R16:TTGGAAGGTGTTTTGGAATGAACCA | |
OsABA8ox2 | F17: CTACTGCTGATGGTGGCTGA | R17: CCCATGGCCTTTGCTTTAT | |
OsABA1 | F18: GAGTTGGTGGGAGATTCTTCAT | R18: CAGCTTAACGGTCTTCCTTCT | |
OsAmy1A | F19: TTTCGGTCCTCATCGTCCTCC | R19: TCCACGACTCCCAGTTGAATC | α-amylase基因表达水平检测引物 Primers for detecting the expression of α-amylase genes |
OsAmy2A | F20: CAGGGGTTCAACTGGGAGTC | R20: CATGTACCCTTGCGTGGAGA | |
OsAmy3A | F21: CTCTTCCAGGGTTTTAACTGGGA | R21: GCATGCTACAAAGAGAAGCGT | |
OsAmy3E | F22: TCACCCTGTGTTGTGTCGTT | R22: AAAGTTGTACCACCCGCCTT |
Fig. 1 Identification of OsRhoGDI1 overexpressed rice in T0 and T1 generation A: Schematic of pCAMBIA1300Actin-OsRhoGDI1 vector(Actin Pro: Actin promoter; OCS ter: OCS terminator). B: Relative expression of OsRhoGDI1 in different transgenic rice in T0 generation. C-E: Relative expression of OsRhoGDI1 in different transgenic rice in T1 generation
Agronomic traits | WT | T1-2 | T1-8 | T1-24 |
---|---|---|---|---|
株高Plant height/cm | 94.68±0.97 | 92.76±0.96 | 89.59±0.80** | 92.89±0.61 |
穗长Panicle length/cm | 20.27±0.68 | 20.67±0.73 | 20.43±0.75 | 19.47±0.38 |
一级枝梗数Number of primary branches | 10.33±0.88 | 10.67±0.88 | 10.33±1.20 | 10.33±1.45 |
粒长Grain length/mm | 7.49±0.02 | 7.63±0.02** | 7.61±0.01** | 7.65±0.01** |
粒宽Grain width/mm | 3.38±0.01 | 3.28±0.01** | 3.22±0.01** | 3.27±0.01** |
粒厚Grain thickness/mm | 2.27±0.01 | 2.21±0.02** | 2.16±0.01** | 2.19±0.02** |
千粒重1000-grain weight/g | 26.88±0.12 | 25.25±0.02** | 24.37±0.05** | 25.64±0.3** |
Table 2 Statistical analysis of agronomic traits of OsRhoGDI1 overexpressed rice in T1 generation
Agronomic traits | WT | T1-2 | T1-8 | T1-24 |
---|---|---|---|---|
株高Plant height/cm | 94.68±0.97 | 92.76±0.96 | 89.59±0.80** | 92.89±0.61 |
穗长Panicle length/cm | 20.27±0.68 | 20.67±0.73 | 20.43±0.75 | 19.47±0.38 |
一级枝梗数Number of primary branches | 10.33±0.88 | 10.67±0.88 | 10.33±1.20 | 10.33±1.45 |
粒长Grain length/mm | 7.49±0.02 | 7.63±0.02** | 7.61±0.01** | 7.65±0.01** |
粒宽Grain width/mm | 3.38±0.01 | 3.28±0.01** | 3.22±0.01** | 3.27±0.01** |
粒厚Grain thickness/mm | 2.27±0.01 | 2.21±0.02** | 2.16±0.01** | 2.19±0.02** |
千粒重1000-grain weight/g | 26.88±0.12 | 25.25±0.02** | 24.37±0.05** | 25.64±0.3** |
Fig. 2 Grain phenotypes of OsRhoGDI1-overexpressed rice A: Grain length. B: Grain width. Scale bar is 1 cm. C-F: Grain length(C), grain width(D), grain thickness(E)and 1 000-grain weight(F)in WT and OsRhoGDI1- overexpressed rice. WT: Nipponbare. T1-2, T1-8, T1-24: OsRhoGDI1 transgenic rice lines. n>100. *P<0.05, ** P<0.01. The same below
Fig. 4 Histological comparisons of the spikelet hulls between WT and OsRhoGDI1-overexpressed rice A: Scanning electron micrographs of the outer epidermal from WT and transgenic rice. Scale bar is 100 μm. B-D: Cell number(B), cell length(C)and cell width(D)in the outer layer of the spikelet hull of WT and transgenic rice
Fig. 6 Expressions of metabolic gene GA and ABA in OsRhoGDI1-overexpressed rice seeds A: Expressions of 3 ABA metabolic genes. B: Expressions of 4 GA metabolic genes
Fig. 8 α-amylase activity during the germination of WT and OsRhoGDI1-ove-rexpressed rice seeds A: Qualitative test of α-amylase activity. B: Diameter size of rice seeds. C: Quanti-tative test of α-amylase activity
[1] | Xie LX, Tan ZW, Zhou Y, et al. Identification and fine mapping of quantitative trait loci for seed vigor in germination and seedling establishment in rice[J]. J Integr Plant Biol, 2014, 56(8): 749-759. |
[2] | He W, Wang L, Lin QL, et al. Rice seed storage proteins: Biosynthetic pathways and the effects of environmental factors[J]. J Integr Plant Biol, 2021, 63(12): 1999-2019. |
[3] | Tappiban P, Ying YN, Xu FF, et al. Proteomics and post-translational modifications of starch biosynthesis-related proteins in developing seeds of rice[J]. Int J Mol Sci, 2021, 22(11): 5901. |
[4] | Wang WJ, Huang RZ, Wu GW, et al. Transcriptomic and QTL analysis of seed germination vigor under low temperature in weedy rice WR04-6[J]. Plants, 2023, 12(4): 871. |
[5] | Hou DP, Bi JG, Ma L, et al. Effects of soil moisture content on germination and physiological characteristics of rice seeds with different specific gravity[J]. Agronomy, 2022, 12(2): 500. |
[6] | 杨蓉兰, 朱明东, 余应弘. 水稻种子活力的分子遗传与调控机理研究进展[J]. 杂交水稻, 2023, 38(4): 1-11. |
Yang RL, Zhu MD, Yu YH. Research advances in molecular genetics and regulatory mechanisms of rice seed vigor[J]. Hybrid Rice, 2023, 38(4): 1-11. | |
[7] | Zhang H, Wang WQ, Liu SJ, et al. Proteome analysis of poplar seed vigor[J]. PLoS One, 2015, 10(7): e0132509. |
[8] | Wang XM, Tang QY, Mo WW. Seed filling determines seed vigour of superior and inferior spikelets during hybrid rice(Oryza sativa)seed production[J]. Seed Sci Technol, 2020, 48(2): 143-152. |
[9] | Huang M, Zhang RC, Chen JN, et al. Morphological and physiological traits of seeds and seedlings in two rice cultivars with contrasting early vigor[J]. Plant Prod Sci, 2017, 20(1): 95-101. |
[10] | Park JR, Seo J, Park S, et al. Identification of potential QTLs related to grain size in rice[J]. Plants, 2023, 12(9): 1766. |
[11] | Jiang HZ, Zhang AP, Liu XT, et al. Grain size associated genes and the molecular regulatory mechanism in rice[J]. Int J Mol Sci, 2022, 23(6): 3169. |
[12] | Ren DY, Ding CQ, Qian Q, et al. Molecular bases of rice grain size and quality for optimized productivity[J]. Sci Bull, 2023, 68(3): 314-350. |
[13] | 刘迪, 冯连杰, 梁卫红. 水稻粒型调控相关信号通路的鉴定与解析[J]. 中国生物化学与分子生物学报, 2023, 39(2): 212-221. |
Liu D, Feng LJ, Liang WH. Identification and analysis of grain shape related regulation signal pathways in rice[J]. Chin J Biochem Mol Biol, 2023, 39(2): 212-221. | |
[14] | 姚莎莎, 王晶晶, 王俊杰, 等. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
Yao SS, Wang JJ, Wang JJ, et al. Molecular mechanisms of rice grain size regulation related to plant hormone signaling pathways[J]. Biotechnol Bull, 2023, 39(8): 80-90. | |
[15] | Choi BS, Kim YJ, Markkandan K, et al. GW2 functions as an E3 ubiquitin ligase for rice expansin-like 1[J]. Int J Mol Sci, 2018, 19(7): 1904. |
[16] | Wang SK, Li S, Liu Q, et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nat Genet, 2015, 47(8): 949-954. |
[17] | Si LZ, Chen JY, Huang XH, et al. OsSPL13 controls grain size in cultivated rice[J]. Nat Genet, 2016, 48(4): 447-456. |
[18] | Duan PG, Ni S, Wang JM, et al. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice[J]. Nat Plants, 2015, 2: 15203. |
[19] | Hu J, Wang YX, Fang YX, et al. A rare allele of GS2 enhances grain size and grain yield in rice[J]. Mol Plant, 2015, 8(10): 1455-1465. |
[20] | Li YB, Fan CC, Xing YZ, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nat Genet, 2011, 43(12): 1266-1269. |
[21] | Sun LJ, Li XJ, Fu YC, et al. GS6, a member of the GRAS gene family, negatively regulates grain size in rice[J]. J Integr Plant Biol, 2013, 55(10): 938-949. |
[22] | 黎家, 李传友. 新中国成立70年来植物激素研究进展[J]. 中国科学: 生命科学, 2019, 49(10): 1227-1281. |
Li J, Li CY. Seventy-year major research progress in plant hormones by Chinese scholars[J]. Sci Sin Vitae, 2019, 49(10): 1227-1281. | |
[23] | Chen Y, Tan BC. New insight in the gibberellin biosynthesis and signal transduction[J]. Plant Signal Behav, 2015, 10(5): e1000140. |
[24] | Liu Y, Fang J, Xu F, et al. Expression patterns of ABA and GA metabolism genes and hormone levels during rice seed development and imbibition: a comparison of dormant and non-dormant rice cultivars[J]. J Genet Genomics, 2014, 41(6): 327-338. |
[25] | Huang YS, Song JW, Hao QX, et al. WEAK SEED DORMANCY 1, an aminotransferase protein, regulates seed dormancy in rice through the GA and ABA pathways[J]. Plant Physiol Biochem, 2023, 202: 107923. |
[26] | He YG, Zhu MH, Li ZH, et al. IPA1 negatively regulates early rice seedling development by interfering with starch metabolism via the GA and WRKY pathways[J]. Int J Mol Sci, 2021, 22(12): 6605. |
[27] | Liu HL, Huang JQ, Zhang XJ, et al. The RAC/ROP GTPase activator OsRopGEF10 functions in crown root development by regulating cytokinin signaling in rice[J]. Plant Cell, 2023, 35(1): 453-468. |
[28] | Feng QN, Kang H, Song SJ, et al. Arabidopsis RhoGDIs are critical for cellular homeostasis of pollen tubes[J]. Plant Physiol, 2016, 170(2): 841-856. |
[29] | 梁卫红, 唐朝荣, 吴乃虎. 两种水稻GDP解离抑制蛋白基因的分离及特征分析[J]. 中国生物化学与分子生物学报, 2004, 20(6): 785-791. |
Liang WH, Tang CR, Wu NH. Isolation and characterization of two GDP dissociation inhibitor genes from Oryza sativa L.[J]. Chin J Biochem Mol Biol, 2004, 20(6): 785-791. | |
[30] | 刘洪梅, 梁卫红, 毕佳佳. 2种水稻OsRhoGDIs基因在幼穗组织中的原位杂交分析[J]. 河南农业科学, 2009, 38(12): 22-25. |
Liu HM, Liang WH, Bi JJ. In situ hybridization analysis of two rice OsRhoGDIs genes in young panicle[J]. J Henan Agric Sci, 2009, 38(12): 22-25. | |
[31] | 王凯婕, 安文静, 刘亚菲, 等. CRISPR/Cas9技术编辑OsRhoGDI2基因导致水稻半矮化[J]. 生物工程学报, 2020, 36(4): 707-715. |
Wang KJ, An WJ, Liu YF, et al. Disruption of OsRhoGDI2 by CRISPR/Cas9 technology leads to semi-dwarf in rice[J]. Chin J Biotechnol, 2020, 36(4): 707-715. | |
[32] | 徐欢, 周涛, 孙悦, 等. 水稻颖壳类病斑突变体glmm1的鉴定与基因定位[J]. 中国水稻科学, 2023, 37(5): 497-506. |
Xu H, Zhou T, Sun Y, et al. Characterization and gene mapping of a glume lesion mimic mutant glmm1 in rice[J]. Chin J Rice Sci, 2023, 37(5): 497-506. | |
[33] | Cheng YC, Li G, Yin M, et al. Verification and dissection of one quantitative trait locus for grain size and weight on chromosome 1 in rice[J]. Sci Rep, 2021, 11(1): 18252. |
[34] | You J, Chen WB, He ZF, et al. DEGENERATED LEMMA(DEL)regulates lemma development and affects rice grain yield[J]. Physiol Mol Biol Plants, 2023, 29(3): 335-347. |
[35] | Wu XB, Liu JX, Li DQ, et al. Rice caryopsis development I: dynamic changes in different cell layers[J]. J Integr Plant Biol, 2016, 58(9): 772-785. |
[36] | Zhao J, Li WJ, Sun S, et al. The rice small Auxin-up RNA gene OsSAUR33 regulates seed vigor via sugar pathway during early seed germination[J]. Int J Mol Sci, 2021, 22(4): 1562. |
[37] | Hu CC, Wu C, Yang MY, et al. Catalase associated with antagonistic changes of abscisic acid and gibberellin response, biosynthesis and catabolism is involved in eugenol-inhibited seed germination in rice[J]. Plant Cell Rep, 2023, 43(1): 10. |
[38] | Teshome S, Kebede M. Analysis of regulatory elements in GA2ox, GA3ox and GA20ox gene families in Arabidopsis thaliana: an important trait[J]. Biotechnol Biotechnol Equip, 2021, 35(1): 1603-1612. |
[39] | Zhang YJ, Liu X, Su R, et al. 9-cis-epoxycarotenoid dioxygenase 1 confers heat stress tolerance in rice seedling plants[J]. Front Plant Sci, 2022, 13: 1092630. |
[40] | Fu K, Song WH, Chen C, et al. Improving pre-harvest sprouting resistance in rice by editing OsABA8ox using CRISPR/Cas9[J]. Plant Cell Rep, 2022, 41(10): 2107-2110. |
[41] | Yang B, Chen MM, Zhan CF, et al. Identification of OsPK5 involved in rice glycolytic metabolism and GA/ABA balance for improving seed germination via genome-wide association study[J]. J Exp Bot, 2022, 73(11): 3446-3461. |
[42] | Damaris RN, Lin ZY, Yang PF, et al. The rice alpha-amylase, conserved regulator of seed maturation and germination[J]. Int J Mol Sci, 2019, 20(2): 450. |
[43] | Liu L, Xia W, Li H, et al. Salinity inhibits rice seed germination by reducing α-amylase activities via decreased bioactive gibberellin content[J]. Front Plant Sci, 2018, 9: 275. |
[1] | LIU Wen-zhi, HE Dan, LI Peng, FU Ying-lin, ZHANG Yi-xin, WEN Hua-jie, YU Wen-qing. Paenibacillus polymyxa New Strain X-11 and Its Growth-promoting Effects on Tomato and Rice [J]. Biotechnology Bulletin, 2024, 40(9): 249-259. |
[2] | LI Qing-mao, PENG Cong-gui, QI Xiao-han, LIU Xing-lei, LI Zhen-yuan, LI Qin-yan, HUANG Li-yu. Screening and Identification of Excellent Strains of Endophytic Bacteria Promoting Rice Iron Absorption from Wild Rice [J]. Biotechnology Bulletin, 2024, 40(8): 255-263. |
[3] | SUN Zhi-yong, DU Huai-dong, LIU Yang, MA Jia-xin, YU Xue-ran, MA Wei, YAO Xin-jie, WANG Min, LI Pei-fu. Genome-wide Association Analysis of γ-aminobutyric Acid in Rice Grains [J]. Biotechnology Bulletin, 2024, 40(8): 53-62. |
[4] | PANG Meng-zhen, XU Han-qin, LIU Hai-yan, SONG Juan, WANG Jia-han, SUN Li-na, JI Pei-mei, YIN Ze-zhi, HU You-chuan, ZHAO Xiao-meng, LIANG Shan-shan, ZHANG Si-ju, LUAN Wei-jiang. Gene Identification and Functional Analysis of Yellowish and Early Heading Mutant hz1 in Rice [J]. Biotechnology Bulletin, 2024, 40(7): 125-136. |
[5] | TIAN Sheng-ni, ZHANG Qin, DONG Yu-fei, DING Zhou, YE Ai-hua, ZHANG Ming-zhu. Effects of Acid Mine Drainage on Physicochemical Factors and Nitrogen-fixing Microorganisms in the Root Zone of Mature Rice [J]. Biotechnology Bulletin, 2024, 40(6): 271-280. |
[6] | WANG Yu-shu, ZHAO Lin-lin, ZHAO Shuang, HU Qi, BAI Hui-xia, WANG Huan, CAO Ye-ping, FAN Zhen-yu. Cloning and Expression Analysis of BrCYP83B1 Gene in Chinese Cabbage [J]. Biotechnology Bulletin, 2024, 40(6): 152-160. |
[7] | KONG De-ting, QI Xiao-han, LIU Xing-lei, LI Li-ping, HU Feng-yi, HUANG Li-yu, QIN Shi-wen. Comparison and Analysis of Endophytic Bacterial Communities in Different Perennial Rice Varieties [J]. Biotechnology Bulletin, 2024, 40(5): 225-236. |
[8] | YANG Qi, WEI Zi-di, SONG Juan, TONG Kun, YANG Liu, WANG Jia-han, LIU Hai-yan, LUAN Wei-jiang, MA Xuan. Construction and Transcriptomic Analysis of Rice Histone H1 Triple Mutant [J]. Biotechnology Bulletin, 2024, 40(4): 85-96. |
[9] | LI Xing-rong, TAN Zhi-bing, ZHAO Yan, LI Yao-kui, ZHAO Bing-ran, TANG Li. Cloning and Functional Analysis of OsLCT3, a Low-affinity Cation Transporter Gene of Rice [J]. Biotechnology Bulletin, 2024, 40(4): 97-109. |
[10] | LIU Jia-ning, LI Meng, YANG Xin-sen, WU Wei, PEI Xin-wu, YUAN Qian-hua. Impact of Different Water Management Cultivation Methods on the Rhizosphere Bacteria Community of Shanlan Upland Rice [J]. Biotechnology Bulletin, 2024, 40(3): 242-250. |
[11] | LI Xue, LI Rong-ou, KONG Mei-yi, HUANG Lei. The Growth Promoting Effect of Bacillus amyloliquefaciens SQ-2 on Rice [J]. Biotechnology Bulletin, 2024, 40(2): 109-119. |
[12] | XU Yang, ZHANG Rui-ying, DAI Liang-xiang, ZHANG Guan-chu, DING Hong, ZHANG Zhi-meng. Regulation of Nitrogen Application on Peanut Seed Germination and Spermosphere Bacterial Community Structure Under Salt Stress [J]. Biotechnology Bulletin, 2024, 40(2): 253-265. |
[13] | ZHANG Chao, WANG Zi-rui, SUN Ya-li, MAO Xin-chen, TANG Jia-qi, YU Heng-xiu. Functional Study of Vitamin B1 Synthesis-related Gene OsTHIC in Rice [J]. Biotechnology Bulletin, 2024, 40(2): 99-108. |
[14] | XIONG Xin-yi, LIU Li-ping, FENG Jie, ZHANG Jin-song, LI De-shun, LIU Peng, LIU Yan-fang. Effect and Mechanism of Cordyceps militaris Extract on Lowering Uric Acid in Hyperuricemia Rats [J]. Biotechnology Bulletin, 2024, 40(11): 34-46. |
[15] | QIAO Cheng-bin, SONG Jia-wei, YANG Hui, DUAN Kai-rong, RAN Jie, KONG Wei-ru, FENG Pei-yuan, LUO Cheng-ke, LI Pei-fu, TIAN Lei. Advances in the Mechanism of Leaf Width Regulation and Related Genes in Rice [J]. Biotechnology Bulletin, 2024, 40(11): 88-102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||