Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (10): 262-274.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0408
Previous Articles Next Articles
LIANG Wan-feng1(), ZENG Jing-jing1, HU Ruo-qun1, CAO Jia-yu1, ZHENG Tao2, LI Luan2, QIU Ming-yue1, LIANG Xiao-ying1, CHEN Ying1()
Received:
2024-04-29
Online:
2024-10-26
Published:
2024-11-20
Contact:
CHEN Ying
E-mail:A576428098@163.com;000q020057@fafu.edu.cn
LIANG Wan-feng, ZENG Jing-jing, HU Ruo-qun, CAO Jia-yu, ZHENG Tao, LI Luan, QIU Ming-yue, LIANG Xiao-ying, CHEN Ying. Transcriptional and Metabolomic Analysis of Carotenoid Accumulation in Anoectochilus roxburghii during Different Growth Periods[J]. Biotechnology Bulletin, 2024, 40(10): 262-274.
Gene | Gene ID | Primer sequence(5'-3') | Primer sequence(3'-5') |
---|---|---|---|
Actin | Reference gene | CTGTTTGCAGCCCAAGACAC | CAGCCTCCACAGCTTCAAGA |
crtISO | TRINITY_DN4193_c0_g1 | TGGGAAGGACTTGACCGTCGTAG | ACCAACGCCACATCACACTTCTC |
CYP97C1 | TRINITY_DN4271_c0_g1 | TCTCCATGATCCGACTGCAC | GACCGAAAGTCGAGAGTCTCA |
DWARF27 | TRINITY_DN7678_c0_g1 | GCCTTGCTATGCCAACCTTT | TGCTGGGATTGGCCAAAGAA |
crtB | TRINITY_DN28838_c0_g1 | TAGTGGGTGCAGGTTTCAGC | AATGGCTACATCTCCTGCCG |
CCD8 | TRINITY_DN5697_c0_g1 | AGATTGCCGCACACCGAGTTG | AGCTCACCCTCCCATCGTTCTC |
crtZ | TRINITY_DN67725_c0_g2 | AAGGCGCCAACACAGAATTG | CATGATTGCCGCCACCAAAT |
ABA2 | TRINITY_DN8894_c0_g1 | GGTGTCACTGGCTCGAAAGT | GACACGCTCGCAAGAGAGAT |
ZEP | TRINITY_DN9811_c0_g1 | TACCCGCACTTTAGGGAACG | CGCTAACACCAGTCCACCAA |
Table 1 Primers for RT-qPCR
Gene | Gene ID | Primer sequence(5'-3') | Primer sequence(3'-5') |
---|---|---|---|
Actin | Reference gene | CTGTTTGCAGCCCAAGACAC | CAGCCTCCACAGCTTCAAGA |
crtISO | TRINITY_DN4193_c0_g1 | TGGGAAGGACTTGACCGTCGTAG | ACCAACGCCACATCACACTTCTC |
CYP97C1 | TRINITY_DN4271_c0_g1 | TCTCCATGATCCGACTGCAC | GACCGAAAGTCGAGAGTCTCA |
DWARF27 | TRINITY_DN7678_c0_g1 | GCCTTGCTATGCCAACCTTT | TGCTGGGATTGGCCAAAGAA |
crtB | TRINITY_DN28838_c0_g1 | TAGTGGGTGCAGGTTTCAGC | AATGGCTACATCTCCTGCCG |
CCD8 | TRINITY_DN5697_c0_g1 | AGATTGCCGCACACCGAGTTG | AGCTCACCCTCCCATCGTTCTC |
crtZ | TRINITY_DN67725_c0_g2 | AAGGCGCCAACACAGAATTG | CATGATTGCCGCCACCAAAT |
ABA2 | TRINITY_DN8894_c0_g1 | GGTGTCACTGGCTCGAAAGT | GACACGCTCGCAAGAGAGAT |
ZEP | TRINITY_DN9811_c0_g1 | TACCCGCACTTTAGGGAACG | CGCTAACACCAGTCCACCAA |
Fig. 2 Principal component analysis plot for samples The same color in the figure is a group, and the numerical labels refer to different replicates of the same group, e.g., S3-3 is the third replicate of the 3-month group, the same below
Fig. 3 Heat map of sample correlation The blue, green, and pink colors on the chart represent 3-, 6-, and 10-month, respectively; the darker the blue color in the box, the deeper the correlation
代谢物 Metabolite | S3_vs_S6 regulated | S6_vs_S10 regulated | S3_vs_S10 regulated | 分子式Formula | KEGG注释 KEGG annotation |
---|---|---|---|---|---|
1'-羟基-gamma-胡萝卜素葡萄糖苷 1'-Hydroxy-gamma-carotene glucoside | Unchanged | Up | Unchanged | C46H68O6 | C15861 |
脱落酸葡萄糖酯Abscisic acid glucose ester | Up | Unchanged | Unchanged | C21H30O9 | C15970 |
酮基R.g.-Keto III | Up | Unchanged | Up | C42H60O4 | C16278 |
辣椒素Capsorubin | Unchanged | Unchanged | Down | C40H56O4 | C08585 |
羟基螺旋黄质Hydroxyspirilloxanthin | Down | Unchanged | Down | C41H58O2 | C15879 |
新黄质素Neoxanthin | Up | Unchanged | Up | C40H56O4 | C08606 |
葡萄黄素Staphyloxanthin | Unchanged | Up | Up | C51H78O8 | C16148 |
诺吐黄素Nostoxanthin | Unchanged | Up | Up | C40H56O4 | C16284 |
2-酮基螺旋体黄质2-Ketospirilloxanthin | Unchanged | Unchanged | Down | C42H58O3 | C15884 |
羟基氯巴坦Hydroxychlorobactene | Down | Up | Unchanged | C40H54O | C15911 |
3-羟基叶茶烯酮3-Hydroxyechinenone | Unchanged | Up | Unchanged | C40H54O2 | C15966 |
三苯甲内酯 ABC 环Strigolactone ABC-rings | Down | Down | Down | C14H18O3 | C18036 |
8'-羟基琥珀酸酯8'-Hydroxyabscisate | Unchanged | Up | Up | C15H20O5 | C15514 |
脱落酸醛Abscisic aldehyde | Down | Unchanged | Down | C15H20O3 | C13455 |
羟基氯巴坦葡萄糖苷Hydroxychlorobactene glucoside | Down | Unchanged | Down | C46H64O6 | C15914 |
(2'S)-脱氧木酚 2'-alpha-L-岩藻糖苷 (2'S)-Deoxymyxol 2'-alpha-L-fucoside | Down | Unchanged | Down | C46H66O6 | C15940 |
(2'S)-脱氧木酚 2'-(2,4-二-O-甲基-alpha-L-岩藻糖苷) (2'S)-Deoxymyxol 2'-(2,4-di-O-methyl-alpha-L-fucoside) | Up | Down | Unchanged | C48H70O6 | C15935 |
(3R,2'S)-2'-(2,4-二-O-甲基-alpha-L-岩藻糖苷)岩藻醇 (3R,2'S)-Myxol 2'-(2,4-di-O-methyl-alpha-L-fucoside) | Down | Up | Unchanged | C48H70O7 | C15937 |
腓尼基黄质Phoenicoxanthin | Up | Unchanged | Up | C40H52O3 | C15967 |
玉米黄质Zeinoxanthin | Unchanged | Up | Unchanged | C40H56O | C08590 |
腺嘌呤Adonixanthin | Up | Unchanged | Up | C40H54O3 | C15968 |
叶黄素Lutein | Up | Unchanged | Up | C40H56O2 | C08601 |
卡洛黄素Caloxanthin | Up | Unchanged | Unchanged | C40H56O3 | C16282 |
Table 2 Differential carotenoid metabolites in the leaves of A. roxburghii at different growth stages
代谢物 Metabolite | S3_vs_S6 regulated | S6_vs_S10 regulated | S3_vs_S10 regulated | 分子式Formula | KEGG注释 KEGG annotation |
---|---|---|---|---|---|
1'-羟基-gamma-胡萝卜素葡萄糖苷 1'-Hydroxy-gamma-carotene glucoside | Unchanged | Up | Unchanged | C46H68O6 | C15861 |
脱落酸葡萄糖酯Abscisic acid glucose ester | Up | Unchanged | Unchanged | C21H30O9 | C15970 |
酮基R.g.-Keto III | Up | Unchanged | Up | C42H60O4 | C16278 |
辣椒素Capsorubin | Unchanged | Unchanged | Down | C40H56O4 | C08585 |
羟基螺旋黄质Hydroxyspirilloxanthin | Down | Unchanged | Down | C41H58O2 | C15879 |
新黄质素Neoxanthin | Up | Unchanged | Up | C40H56O4 | C08606 |
葡萄黄素Staphyloxanthin | Unchanged | Up | Up | C51H78O8 | C16148 |
诺吐黄素Nostoxanthin | Unchanged | Up | Up | C40H56O4 | C16284 |
2-酮基螺旋体黄质2-Ketospirilloxanthin | Unchanged | Unchanged | Down | C42H58O3 | C15884 |
羟基氯巴坦Hydroxychlorobactene | Down | Up | Unchanged | C40H54O | C15911 |
3-羟基叶茶烯酮3-Hydroxyechinenone | Unchanged | Up | Unchanged | C40H54O2 | C15966 |
三苯甲内酯 ABC 环Strigolactone ABC-rings | Down | Down | Down | C14H18O3 | C18036 |
8'-羟基琥珀酸酯8'-Hydroxyabscisate | Unchanged | Up | Up | C15H20O5 | C15514 |
脱落酸醛Abscisic aldehyde | Down | Unchanged | Down | C15H20O3 | C13455 |
羟基氯巴坦葡萄糖苷Hydroxychlorobactene glucoside | Down | Unchanged | Down | C46H64O6 | C15914 |
(2'S)-脱氧木酚 2'-alpha-L-岩藻糖苷 (2'S)-Deoxymyxol 2'-alpha-L-fucoside | Down | Unchanged | Down | C46H66O6 | C15940 |
(2'S)-脱氧木酚 2'-(2,4-二-O-甲基-alpha-L-岩藻糖苷) (2'S)-Deoxymyxol 2'-(2,4-di-O-methyl-alpha-L-fucoside) | Up | Down | Unchanged | C48H70O6 | C15935 |
(3R,2'S)-2'-(2,4-二-O-甲基-alpha-L-岩藻糖苷)岩藻醇 (3R,2'S)-Myxol 2'-(2,4-di-O-methyl-alpha-L-fucoside) | Down | Up | Unchanged | C48H70O7 | C15937 |
腓尼基黄质Phoenicoxanthin | Up | Unchanged | Up | C40H52O3 | C15967 |
玉米黄质Zeinoxanthin | Unchanged | Up | Unchanged | C40H56O | C08590 |
腺嘌呤Adonixanthin | Up | Unchanged | Up | C40H54O3 | C15968 |
叶黄素Lutein | Up | Unchanged | Up | C40H56O2 | C08601 |
卡洛黄素Caloxanthin | Up | Unchanged | Unchanged | C40H56O3 | C16282 |
Fig. 5 Proportion of changes in the metabolites of different carotenoids in the leaves of A. roxburghii at different growth stages Light yellow bars indicate the comparison between 3-month and 6-month, pink bars indicate the comparison between 3-month and 10-month, and brown bars indicate the comparison between 6-month and 10-month. The longer the bar, the greater the change, and the numbers in the box indicate multiples of the change
基因 Gene | ID | S3 VS S6 DESeq regulated | S6 VS S10 DESeq regulated | S3 VS S10 DESeq regulated | 对应酶 Corresponding enzyme | 酶KO Enzyme KO |
---|---|---|---|---|---|---|
CCD8 | TRINITY_DN1716_c0_g1 | Down | Normal | Normal | [EC:1.13.11.68] | K17912 |
TRINITY_DN5697_c0_g1 | Down | Normal | Down | [EC:1.13.11.69 1.13.11.70] | K17913 | |
TRINITY_DN8190_c0_g1 | Down | Normal | Down | [EC:1.13.11.69 1.13.11.70] | K02293 | |
PDS | TRINITY_DN9_c1_g1 | Normal | Normal | Up | [EC:1.3.5.5] | K02293 |
NCED | TRINITY_DN11998_c0_g1 | Up | Normal | Up | [EC:1.13.11.51] | K09840 |
TRINITY_DN9005_c0_g1 | Up | Up | Up | [EC:1.13.11.51] | K15746 | |
crtISO | TRINITY_DN4193_c0_g1 | Up | Normal | Normal | [EC:5.2.1.13] | K09835 |
TRINITY_DN1162_c2_g1 | Down | Normal | Normal | [EC:5.2.1.13] | K09843 | |
crtZ | TRINITY_DN6176_c0_g1 | Up | Normal | Normal | [EC:1.14.15.24] | K15746 |
TRINITY_DN67725_c0_g2 | Down | Up | Normal | [EC:1.14.15.24] | K09838 | |
crtB | TRINITY_DN28838_c0_g1 | Up | Up | Normal | [EC:2.5.1.32] | K02291 |
TRINITY_DN4528_c0_g1 | Down | Down | Normal | [EC:2.5.1.32] | K09841 | |
CYP97C1 | TRINITY_DN5659_c0_g1 | Down | Normal | Down | [EC:1.14.14.137] | K09843 |
TRINITY_DN4271_c0_g1 | Down | Normal | Down | [EC:1.14.14.137] | K14595 | |
TRINITY_DN586_c0_g1 | Down | Down | Normal | [EC:1.14.14.158] | K09837 | |
ZEP | TRINITY_DN9811_c0_g1 | Up | Normal | Normal | [EC:1.14.15.21] | K09838 |
LUT5, CYP97A3 | TRINITY_DN2395_c0_g1 | Up | Normal | Normal | [EC:1.14.15.21] | K02293 |
DWARF27 | TRINITY_DN7678_c0_g1 | Up | Up | Normal | [EC:5.2.1.14] | K17911 |
ABA2 | TRINITY_DN8894_c0_g1 | Down | Normal | Normal | [EC:1.1.1.28] | K09841 |
crtL2 | TRINITY_DN7101_c0_g1 | Up | Normal | Up | [EC:5.5.1.18] | K06444 |
AOG | TRINITY_DN13229_c0_g1 | Down | Down | Normal | [EC:2.4.1.26] | K14595 |
Table 3 Differential carotenoid enzyme genes in A. roxburghii leaves at different growth stages
基因 Gene | ID | S3 VS S6 DESeq regulated | S6 VS S10 DESeq regulated | S3 VS S10 DESeq regulated | 对应酶 Corresponding enzyme | 酶KO Enzyme KO |
---|---|---|---|---|---|---|
CCD8 | TRINITY_DN1716_c0_g1 | Down | Normal | Normal | [EC:1.13.11.68] | K17912 |
TRINITY_DN5697_c0_g1 | Down | Normal | Down | [EC:1.13.11.69 1.13.11.70] | K17913 | |
TRINITY_DN8190_c0_g1 | Down | Normal | Down | [EC:1.13.11.69 1.13.11.70] | K02293 | |
PDS | TRINITY_DN9_c1_g1 | Normal | Normal | Up | [EC:1.3.5.5] | K02293 |
NCED | TRINITY_DN11998_c0_g1 | Up | Normal | Up | [EC:1.13.11.51] | K09840 |
TRINITY_DN9005_c0_g1 | Up | Up | Up | [EC:1.13.11.51] | K15746 | |
crtISO | TRINITY_DN4193_c0_g1 | Up | Normal | Normal | [EC:5.2.1.13] | K09835 |
TRINITY_DN1162_c2_g1 | Down | Normal | Normal | [EC:5.2.1.13] | K09843 | |
crtZ | TRINITY_DN6176_c0_g1 | Up | Normal | Normal | [EC:1.14.15.24] | K15746 |
TRINITY_DN67725_c0_g2 | Down | Up | Normal | [EC:1.14.15.24] | K09838 | |
crtB | TRINITY_DN28838_c0_g1 | Up | Up | Normal | [EC:2.5.1.32] | K02291 |
TRINITY_DN4528_c0_g1 | Down | Down | Normal | [EC:2.5.1.32] | K09841 | |
CYP97C1 | TRINITY_DN5659_c0_g1 | Down | Normal | Down | [EC:1.14.14.137] | K09843 |
TRINITY_DN4271_c0_g1 | Down | Normal | Down | [EC:1.14.14.137] | K14595 | |
TRINITY_DN586_c0_g1 | Down | Down | Normal | [EC:1.14.14.158] | K09837 | |
ZEP | TRINITY_DN9811_c0_g1 | Up | Normal | Normal | [EC:1.14.15.21] | K09838 |
LUT5, CYP97A3 | TRINITY_DN2395_c0_g1 | Up | Normal | Normal | [EC:1.14.15.21] | K02293 |
DWARF27 | TRINITY_DN7678_c0_g1 | Up | Up | Normal | [EC:5.2.1.14] | K17911 |
ABA2 | TRINITY_DN8894_c0_g1 | Down | Normal | Normal | [EC:1.1.1.28] | K09841 |
crtL2 | TRINITY_DN7101_c0_g1 | Up | Normal | Up | [EC:5.5.1.18] | K06444 |
AOG | TRINITY_DN13229_c0_g1 | Down | Down | Normal | [EC:2.4.1.26] | K14595 |
Fig. 6 Heat map of carotenoid synthesis-related differential gene clustering In the heat map, orange indicates high expression level and purple indicates low expression level. The darker the color, the deeper the degree
Fig. 7 Co-analysis map of carotenoid transcript metabolism Solid and dashed boxes indicate major pathways and non-major, respectively; orange English and green Chinese are differential genes and differential metabolites, where red-blue indicates differential metabolites expressed from high to low in the heat map, and orange-purple indicates differential transcribed genes expressed from high to low in the heat map
Fig. 8 Regulation correlation between transcription factors and enzyme genes in carotenoid transcription and metabolism Green graph indicates enzyme genes, purple graph indicates transcription factors, solid and dashed lines indicate positive and negative correlations, respectively; the thicker the line, the stronger the correlation
Fig. 9 RT-qPCR analysis of different enzymes genes in A. roxburghii leaves at different growth stages Light yellow bars and S3 indicate 3 months of age, pink bars and S6 indicate 6 months of age, and brown bars and S10 indicate 10 months of age. Different letters indicate significant differences at the 0.05 level(P < 0.05)
[1] | 郑丽香. 金线莲的资源调查及生药学研究[D]. 福州: 福建中医药大学, 2018. |
Zheng LX. Resource investigation and pharmacognosy study of anoectochilus roxburghii[D]. Fuzhou: Fujian University of Traditional Chinese Medicine, 2018. | |
[2] | 李荣峰. 金线莲研究进展[J]. 安徽农学通报, 2018, 24(24): 27-29. |
Li RF. The research progress about Anoectochilus roxburghii[J]. Anhui Agric Sci Bull, 2018, 24(24): 27-29. | |
[3] | Miki W. Biological functions and activities of animal carotenoids[J]. Pure Appl Chem, 1991, 63(1): 141-146. |
[4] | 董彩英. 辣椒果实类胡萝卜素的积累特点及其与果色的关系研究[D]. 扬州: 扬州大学, 2009. |
Dong CY. Studies on the accumulation characteristics of carotenoids in pepper fruits and their relationship with fruit color[D]. Yangzhou: Yangzhou University, 2009. | |
[5] |
Nagao A. Absorption and function of dietary carotenoids[J]. Forum Nutr, 2009, 61: 55-63.
doi: 10.1159/000212738 pmid: 19367110 |
[6] |
Fraser P. The biosynthesis and nutritional uses of carotenoids[J]. Prog Lipid Res, 2004, 43(3): 228-265.
doi: 10.1016/j.plipres.2003.10.002 pmid: 15003396 |
[7] |
Nishino H, Murakoshi M, et al. Cancer prevention by carotenoids[J]. Arch Biochem Biophys, 2009, 483(2): 165-168.
doi: 10.1016/j.abb.2008.09.011 pmid: 18848517 |
[8] | 陶俊, 张上隆, 等. 类胡萝卜素合成的相关基因及其基因工程[J]. 生物工程学报, 2002, 18(3): 276-281. |
Tao J, Zhang SL, et al. Gene and gene engineering of carotenoid biosynthesis[J]. Chin J Biotechnol, 2002, 18(3): 276-281. | |
[9] |
Ito M, Yamano Y, et al. Carotenoid synthesis: retrospect and recent progress[J]. Arch Biochem Biophys, 2009, 483(2): 224-228.
doi: 10.1016/j.abb.2008.11.021 pmid: 19068206 |
[10] |
赵艳侠, 张晶莹, 等. ‘重瓣红’玫瑰不同花发育阶段转录和代谢差异分析[J]. 生物技术通报, 2023, 39(3): 184-195.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0729 |
Zhao YX, Zhang JY, et al. Analyses of transcription and metabolic differential in the flower development processes of ‘Rose rugosa cv.Plena’[J]. Biotechnol Bull, 2023, 39(3): 184-195. | |
[11] | 杨程, 刘小玉, 周丽霞, 等. 油棕外果皮类胡萝卜素合成的转录代谢联合分析[J/OL]. 分子植物育种, 2024: 1-16. |
Yang C, Liu XY, Zhou LX, et al. Joint transcriptional-metabolic analysis of carotenoid synthesis in oil palm exocarp[J/OL]. Molecular Plant Breeding, 2024: 1-16. | |
[12] | 高雪倩, 贾云彭, 李昕悦, 等. 建兰不同花器官花香代谢差异的转录组分析[J/OL]. 分子植物育种, 2024: 1-11. |
Gao XQ, Jia YP, Li XY, et al. Transcriptome analysis of differences in floral flavor metabolism of different floral organs in Jianlan[J/OL]. Molecular Plant Breeding, 2024: 1-11. | |
[13] | 王露凡, 杨晓涵, 等. 桃果实冷害形成过程关键代谢途径的转录组学研究[J]. 食品与生物技术学报, 2024, 43(3): 66-75. |
Wang LF, Yang XH, et al. Transcriptomics of key metabolic pathways during cold damage formation in peach fruit[J]. Journal of Food Science and Biotechnology, 2024, 43(3): 66-75. | |
[14] | 但英, 陈若, 李翠新, 等. 组培福建金线莲生物活性成分提升分析[J/OL]. 分子植物育种, 2023:1-19. |
Dan Y, Chen R, Li CX, et al. Analysis on the lmprovement of bioactive constituents in tissue culture of Anoectochilus roxburghi[J/OL]. Molecular Plant Breeding, 2023:1-19. | |
[15] | 周媛媛, 赵目聪, 陈蕾, 等. 金线莲降血糖作用及作用机制研究进展[J]. 广州化工, 2023, 51(13): 21-24. |
Zhou YY, Zhao MC, Chen L, et al. Research progress on hypoglycemic effect and mechanism of Anoectochilus roxburghii[J]. Guangzhou Chem Ind, 2023, 51(13): 21-24. | |
[16] | 邵玲, 关玉媛, 郭林洁, 等. DA-6与椰汁对金线莲组培苗壮苗生根的影响[J]. 中药材, 2023, 46(7): 1603-1607. |
Shao L, Guan YY, Guo LJ, et al. Effects of DA-6 and coconut juice on rooting of tissue culture seedlings of Anoectochilus roxburghii[J]. J Chin Med Mater, 2023, 46(7): 1603-1607. | |
[17] | Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biol, 2014, 15(12): 550. |
[18] | Han YJ, Wang XH, Chen WC, et al. Differential expression of carotenoid-related genes determines diversified carotenoid coloration in flower petal of Osmanthus fragrans[J]. Tree Genet Genomes, 2014, 10(2): 329-338. |
[19] | Wang YG, Zhang C, Dong B, et al. Carotenoid accumulation and its contribution to flower coloration of Osmanthus fragrans[J]. Front Plant Sci, 2018, 9: 1499. |
[20] |
应震, 张晶, 殷恒福, 等. 茶花红叶芽变品种‘金华美女’叶色突变相关主要化学成分含量变化[J]. 园艺学报, 2017, 44(4): 723-732.
doi: 10.16420/j.issn.0513-353x.2016-0714 |
Ying Z, Zhang J, Yin HF, et al. Content change of main chemical component relating to the red leaf of bud mutation camellia variety‘Jinhua Meinu’[J]. Acta Horticulturae Sinica, 2017, 44(4): 723-732. | |
[21] | 王贵一, 孟嘉珺, 许文静, 等. 不同品种芒果的营养成分及风味物质分析[J]. 食品工业科技, 2022, 43(1): 71-79. |
Wang GY, Meng JJ, Xu WJ, et al. Analysis of nutritional components and flavor substances of different varieties of mangoes[J]. Sci Technol Food Ind, 2022, 43(1): 71-79. | |
[22] | Yu YG, Chen XP, Zheng Q. Metabolomic profiling of carotenoid constituents in Physalis peruviana during different growth stages by LC-MS/MS technology[J]. J Food Sci, 2019, 84(12): 3608-3613. |
[23] |
Huang H, Lu CF, Ma S, et al. Different colored Chrysanthemum × morifolium cultivars represent distinct plastid transformation and carotenoid deposit patterns[J]. Protoplasma, 2019, 256(6): 1629-1645.
doi: 10.1007/s00709-019-01406-x pmid: 31267226 |
[24] |
Aharoni A, De Vos CH, et al. The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco[J]. Plant J, 2001, 28(3): 319-332.
doi: 10.1046/j.1365-313x.2001.01154.x pmid: 11722774 |
[25] | 房强. 香雪兰类胡萝卜素裂解双加氧酶(FhCCDs)基因克隆与功能鉴定[D]. 长春: 东北师范大学, 2020. |
Fang Q. Cloning and functional identification of carotenoid-cleaving dioxygenase(FhCCDs)gene from Ceylon[D]. Changchun: Northeast Normal University, 2020. | |
[26] | Yao YX, Jia L, Cheng Y, et al. Evolutionary origin of the carotenoid cleavage oxygenase family in plants and expression of pepper genes in response to abiotic stresses[J]. Front Plant Sci, 2022, 12: 792832. |
[27] |
Diao QN, Tian SB, Cao YY, et al. Transcriptome analysis reveals association of carotenoid metabolism pathway with fruit color in melon[J]. Sci Rep, 2023, 13(1): 5004.
doi: 10.1038/s41598-023-31432-y pmid: 36973323 |
[28] | Arango J, Jourdan M, Geoffriau E, et al. Carotene hydroxylase activity determines the levels of both α-carotene and total carotenoids in orange carrots[J]. Plant Cell, 2014, 26(5): 2223-2233. |
[29] |
Gonzalez-Jorge S, Mehrshahi P, et al. ZEAXANTHIN EPOXIDASE activity potentiates carotenoid degradation in maturing seed[J]. Plant Physiol, 2016, 171(3): 1837-1851.
doi: 10.1104/pp.16.00604 pmid: 27208224 |
[30] | Ma XW, Zheng B, et al. Carotenoid accumulation and expression of carotenoid biosynthesis genes in mango flesh during fruit development and ripening[J]. Sci Hortic, 2018, 237: 201-206. |
[31] | Liu HY, Mao JH, Yan SJ, et al. Evaluation of carotenoid biosynthesis, accumulation and antioxidant activities in sweetcorn(Zea mays L.) during kernel development[J]. Int J Food Sci Tech, 2018, 53(2): 381-388. |
[32] | Liang MH, Li XY. Involvement of transcription factors and regulatory proteins in the regulation of carotenoid accumulation in plants and algae[J]. J Agric Food Chem, 2023, 71(48): 18660-18673. |
[33] | He Y, Li MR, Wang YH, et al. The R2R3-MYB transcription factor MYB44 modulates carotenoid biosynthesis in Ulva prolifera[J]. Algal Res, 2022, 62: 102578. |
[34] | Owji H, Hajiebrahimi A, Seradj H, et al. Identification and functional prediction of stress responsive AP2/ERF transcription factors in Brassica napus by genome-wide analysis[J]. Comput Biol Chem, 2017, 71: 32-56. |
[35] |
Wang XB, Zeng WF, Ding YF, et al. Peach ethylene response factor PpeERF2 represses the expression of ABA biosynthesis and cell wall degradation genes during fruit ripening[J]. Plant Sci, 2019, 283: 116-126.
doi: S0168-9452(18)31012-4 pmid: 31128681 |
[36] | Qi XN, Xiao YY, Fan ZQ, et al. A banana fruit transcriptional repressor MaERF10 interacts with MaJAZ3 to strengthen the repression of JA biosynthetic genes involved in MeJA-mediated cold tolerance[J]. Postharvest Biol Technol, 2016, 120: 222-231. |
[37] |
王佳慧, 顾凯迪, 王楚堃, 等. 苹果乙烯响应因子MdERF72对非生物胁迫的响应[J]. 中国农业科学, 2019, 52(23): 4374-4385.
doi: 10.3864/j.issn.0578-1752.2019.23.017 |
Wang JH, Gu KD, Wang CK, et al. Analysis of apple ethylene response factor MdERF72 to abiotic stresses[J]. Sci Agric Sin, 2019, 52(23): 4374-4385. | |
[38] |
Zhang J, Yin XR, Li H, et al. ETHYLENE RESPONSE FACTOR39-MYB8 complex regulates low-temperature-induced lignification of loquat fruit[J]. J Exp Bot, 2020, 71(10): 3172-3184.
doi: 10.1093/jxb/eraa085 pmid: 32072171 |
[39] |
Zheng JR, Yang XY, Ye JB, et al. Multiomics analysis provides new insights into the regulatory mechanism of carotenoid biosynthesis in yellow peach peel[J]. Mol Hortic, 2023, 3(1): 23.
doi: 10.1186/s43897-023-00070-3 pmid: 37919829 |
[1] | NIE Zhu-xin, GUO Jin, QIAO Zi-yang, LI Wei-wei, ZHANG Xue-yan, LIU Chun-yang, WANG Jing. Transcriptome Analysis of the Anthocyanin Biosynthesis in the Fruit Development Processes of Lycium ruthenicum Murr. [J]. Biotechnology Bulletin, 2024, 40(8): 106-117. |
[2] | ZHOU Lin, HUANG Shun-man, SU Wen-kun, YAO Xiang, QU Yan. Identification of the bHLH Gene Family and Selection of Genes Related to Color Formation in Camellia reticulata [J]. Biotechnology Bulletin, 2024, 40(8): 142-151. |
[3] | GAO Meng-meng, ZHAO Tian-yu, JIAO Xin-yue, LIN Chun-jing, GUAN Zhe-yun, DING Xiao-yang, SUN Yan-yan, ZHANG Chun-bao. Comparative Transcriptome Analysis of Cytoplasmic Male Sterile Line and Its Restorer Line in Soybean [J]. Biotechnology Bulletin, 2024, 40(7): 137-149. |
[4] | LIAO Yang-mei, ZHAO Guo-chun, WENG Xue-huang, JIA Li-ming, CHEN Zhong. Transcriptome Sequencing of Male Sterile Buds at Different Developmental Stages in Sapindus mukorossi ‘Qirui’ [J]. Biotechnology Bulletin, 2024, 40(7): 197-206. |
[5] | BAI Zhi-yuan, XU Fei, YANG Wu, WANG Ming-gui, YANG Yu-hua, ZHANG Hai-ping, ZHANG Rui-jun. Transcriptome Analysis of Fertility Transformation in Weakly Restoring Hybrid F1 of Soybean Cytoplasmic Male Sterility [J]. Biotechnology Bulletin, 2024, 40(6): 134-142. |
[6] | WU Di, YOU Xiao-feng, ZHENG Yi-zheng, LIN Nan, ZHANG Yan-yan, WEI Yi-cong. Analysis of Endogenous Hormone Regulation Mechanism for Carotenoid Synthesis in Sarcandra glabra [J]. Biotechnology Bulletin, 2024, 40(5): 203-214. |
[7] | GUO Chun, SONG Gui-mei, YAN Yan, DI Peng, WANG Ying-ping. Genome Wide Identification and Expression Analysis of the bZIP Gene Family in Panax quinquefolius [J]. Biotechnology Bulletin, 2024, 40(4): 167-178. |
[8] | ZHONG Yun, LIN Chun, LIU Zheng-jie, DONG Chen-wen-hua, MAO Zi-chao, LI Xing-yu. Cloning and Prokaryotic Expression Analysis of Asparagus Saponin Synthesis Related Glycosyltransferase Genes [J]. Biotechnology Bulletin, 2024, 40(4): 255-263. |
[9] | YANG Qi, WEI Zi-di, SONG Juan, TONG Kun, YANG Liu, WANG Jia-han, LIU Hai-yan, LUAN Wei-jiang, MA Xuan. Construction and Transcriptomic Analysis of Rice Histone H1 Triple Mutant [J]. Biotechnology Bulletin, 2024, 40(4): 85-96. |
[10] | XIE Qian, JIANG Lai, HE Jin, LIU Ling-ling, DING Ming-yue, CHEN Qing-xi. Regulatory Genes Mining Related to Transcriptome Sequencing and Phenolic Metabolism Pathway of Canarium album Fruit with Different Fresh Food Quality [J]. Biotechnology Bulletin, 2024, 40(3): 215-228. |
[11] | LI Ming-kun, BI Mei-ying, ZHANG Tian-hang, WU Xiang-yu, YANG Pei-ru, YING Ming. Restoration of Agricultural Function of Rhizobacteria by UgRNA/Cas9 Multi-gene Editing [J]. Biotechnology Bulletin, 2024, 40(10): 275-287. |
[12] | LIN Hong-yan, GUO Xiao-rui, LIU Di, LI Hui, LU Hai. Molecular Mechanism of Transcriptional Factor AtbHLH68 in Regulating Cell Wall Development by Transcriptome Analysis [J]. Biotechnology Bulletin, 2023, 39(9): 105-116. |
[13] | WU Qiao-yin, SHI You-zhi, LI Lin-lin, PENG Zheng, TAN Zai-yu, LIU Li-ping, ZHANG Juan, PAN Yong. In Situ Screening of Carotenoid Degrading Strains and the Application in Improving Quality and Aroma of Cigar [J]. Biotechnology Bulletin, 2023, 39(9): 192-201. |
[14] | MIAO Yong-mei, MIAO Cui-ping, YU Qing-cai. Properties of Bacillus subtilis Strain BBs-27 Fermentation Broth and the Inhibition of Lipopeptides Against Fusarium culmorum [J]. Biotechnology Bulletin, 2023, 39(9): 255-267. |
[15] | FU Yu, JIA Rui-rui, HE He, WANG Liang-gui, YANG Xiu-lian. Growth Differences Among Grafted Seedlings with Two Rootstocks of Catalpa bungei and Comparative Analysis of Transcriptome [J]. Biotechnology Bulletin, 2023, 39(8): 251-261. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||