[1] Umezawa T, Yoshida R. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsivegene expression in Arabidopsis thaliana[J] . PNAS, 2004, 101(49), 17306-17311.
[2] Boudsocq M, Lauriere C. Osmotic signal in plants multiple pathways mediated by emerging kinase families [J] .Plant Physiology, 2005, 138 :1185-1194.
[3] Kobayashi Y, Yamamoto S, Minami H, et al. Differential activation of the rice sucrose non fermenting l-related protein kinase2 family by hyperosmotic stress and abscisic[J].The Plant Cell, 2004, 16 : 1163-1177.
[4] Huai JL, Wang M, He JG, et al. Cloning and characterization of the SnRK2 gene family from Zea mays[J]. Plant Cell Reports, 2008, 27 :1861-1868.
[5] Cohen P. Protein phosphorylation and hormone action[J]. Proceedings of the Royal Society B.Biological Sciences, 1988, 234 :115- 144.
[6] Jaglo-Ottosen KR, Gilmour SJ, ZaRKa DG et al. Arabidopsis CBF1 over expression induces COR genes and enhances freezing tolerance[J]. Science, 1998, 280(5360):104-106.
[7] Passioura JB. Environmental biology and crop improvement[J]. Functional Plant Biology, 2002, 29 :537-546.
[8] Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants[J]. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47 : 377-403.
[9] Schafleitner R, Gutierrez Rosales RO, Gaudin A. Capturing candidate drought tolerance traits in two native Andean potato clones by transcription profiling of field grown plants under water stress[J]. Plant Physiol Biochem, 2007, 45(9):673-690.
[10] Fujita Y, Fujita M, Satoh R, et al. AREB1 Is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis[J]. Plant Cell, 2005, 17(12): 3470-3488.
[11] Karim S, Aronsson H, Ericson H, et al. Improved drought tolerance without undesired side effects in transgenic plants producing trehalose [J]. Plant Mol Biol, 2007, 64(4):371-386.
[12] Gosal SS, Wani SH, Kang MS. Biotechnology and drought tolerance. Journal of Crop Improvement, 2009, 23 :19-54.
[13] 唐先兵, 赵恢武, 林忠平. 植物耐旱基因工程研究进展[J]. 首都师范大学学报:自然科学版, 2009, 23(3):47-51.
[14] 李娜, 李莉, 陈光辉. 作物抗旱机理及其相关基因的研究进 展[J]. 长江大学学报:自然科学版, 2011, 8(3):239-243.
[15] Chaves MM, Pereira J, Maroco J. How plants cope with water stress in the field?[J]. Photosynthesis and Growth. Ann Bot, 2002, 89 (7):907-916.
[16] Xu ZZ, Zhou GS, Shimizu H. Plant responses to drought and rewatering [J]. Plant Signaling & Behavior, 2010, 5(6):649-654.
[17] 张树珍, 王自章. 物耐旱的分子基础及植物耐旱基因工程的研 究进展[J]. 生命科学研究, 2001, 5(3):134-140.
[18] 刘欣, 李云. 转录因子与植物抗逆性研究进展[J]. 中国农学 通报, 2006, 22 (4): 61-65.
[19] Sambrook J, Fritsh EF, Maniatis T. 分子克隆实验指南
[ M] . 第 2 版. 北京:科学出版社, 1992.
[20] 吴峻岩, 王茂广, 吴能表, 等. 植物中的CDPK/SnRK 蛋白激 酶家族[J]. 激光生物学报, 2004, 13(4):265-269.
[21] 王永波, 高世庆, 唐益苗, 等. 植物蔗糖非发酵. 1 相关蛋白激 酶家族研究进展[J]. 生物技术通报, 2010(11):7-17.
[22] 李利斌, 开昌, 李现刚. 三个新的玉米SnRK2 基因的鉴定和 特征分析[J]. 山东农业科学, 2009, 12 :7-11.
[23] Amaguehi K, Shinmkik K. Transcriptional regulatory networks incellular responses and tolerance to dehydraliotl and cold stress). Annu Rev Plant Bio, 2006, 57 :781-803.
[24] 连魏卫, 唐益苗, 高世庆, 等. 小麦TaSnRK2.9 蛋白激酶基因克 隆与生物信息学分析[J]. 中国农学通报, 2011 , 27(33): 6-12.
[25] 徐蓓, 郭丽香, 赵昌平, 等. 长穗偃麦草EeSnRK2.6 基因克隆 及生物信息学分析[J]. 麦类作物学报, 2012, 32(1):36- 43. |