Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (1): 11-20.doi: 10.13560/j.cnki.biotech.bull.1985.2015.01.002
Previous Articles Next Articles
Li Yang, Li Dong
Received:
2014-06-09
Online:
2015-01-09
Published:
2015-01-10
Li Yang, Li Dong. Research Advances in the Selective Relationship Between Ubiquitin Ligases and Substrates[J]. Biotechnology Bulletin, 2015, 31(1): 11-20.
[1] Goldstein G, Scheid M, Hammerling U, et al. Isolation of a polypep-tide that has lymphocyte-differentiating properties and is probably represented universally in living cells[J]. Proceedings of the National Academy of Sciences, 1975, 72(1):11-15. [2] Pickart CM, Eddins MJ. Ubiquitin:structures, functions, mechanis-ms[J]. Biochimica et Biophysica Acta(BBA)-Molecular Cell Research, 2004, 1695(1-3):55-72. [3] Komander D, Rape M. The ubiquitin code[J]. Annual Review of Biochemistry, 2012, 81:203-229. [4] Komander D. The emerging complexity of protein ubiquitination[J]. Biochemical Society Transactions, 2009, 37(Pt 5):937-953. [5] Miranda M, Sorkin A. Regulation of receptors and transporters by ubiquitination:new insights into surprisingly similar mechanis-ms[J]. Molecular Interventions, 2007, 7(3):157-167. [6] Ikeda F, Dikic I. Atypical ubiquitin chains:new molecular signals[J]. EMBO Reports, 2008, 9(6):536-542. [7] Ciechanover A, Ben-Saadon R. N-terminal ubiquitination:more protein substrates join in[J]. Trends in Cell Biol, 2004, 14:103-106. [8] Deshaies RJ, Joazeiro CAP. RING domain E3 ubiquitin ligases[J]. Annual Review of Biochemistry, 2009, 78:399-434. [9] Michelle C, Vourc’h P, Mignon L, et al. What was the set of ubiqui-tin and ubiquitin-like conjugating enzymes in the eukaryote common ancestor?[J]. J Mol Evol, 2009, 68(6):616-628. [10] Moynagh PN. The roles of Pellino E3 ubiquitin ligases in immuni-ty[J]. Nature Reviews Immunology, 2014, 14(2):122-131. [11] Wrighton KH. DNA damage response:a ligase makes sense of DNA damage[J]. Nature Reviews Molecular Cell Biology, 2014, 15(2):76-77. [12] Guo X, Baillo A, Dutta SM, et al. HTLV-1 Tax binds to and stabilizes the SUMO-targeted ubiquitin ligase RNF4 during DNA damage response[J]. Retrovirology, 2014, 11(Suppl 1):98. [13] Zhang S, Zhou Y, Sarkeshik A, et al. Identification of RNF8 as a ubiquitin ligase involved in targeting the p12 subunit of DNA polymerase δ for degradation in response to DNA damage[J]. Journal of Biological Chemistry, 2014, 288(5):2941-2950. [14] Inuzuka H, Shaik S, Onoyama I, et al. SCFFBW7 regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction[J]. Nature, 2011, 471(7336):104-109. [15] Santra MK, Wajapeyee N, Green MR. F-box protein FBXO31 mediates cyclin D1 degradation to induce G1 arrest after DNA damage[J]. Nature, 2009, 459(7247):722-725. [16] Paolino M, Choidas A, Wallner S, et al. The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells[J]. Nature, 2014, 507(7493):508-512. [17] Duan S, Cermak L, Pagan JK, et al. FBXO11 targets BCL6 for degradation and is inactivated in diffuse large B-cell lymphomas[J]. Nature, 2012, 481(7379):90-93. [18] Severe N, Dieudonné FX, Marie PJ. E3 ubiquitin ligase-mediated regulation of bone formation and tumorigenesis[J]. Cell Death & Disease, 2013, 4(1):e463. [19] Berkers CR, Ovaa H. Drug discovery and assay development in the ubiquitinproteasome system[J]. Biochemical Society Transactions, 2010, 38(1):14. [20] Yang Y, Ludwig RL, Jensen JP, et al. Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53in cells[J]. Cancer Cell, 2005, 7(6):547-559. [21] Obenauer JC, Cantley LC, Yaffe MB. Scansite 2.0:proteome-wide prediction of cell signaling interactions using short sequence motifs[J]. Nucleic Acids Res, 2003, 31(13):3635-3641. [22] Lindon C, Pines J. Ordered proteolysis in anaphase inactivates Plk1 to contribute to proper mitotic exit in human cells[J]. The Journal of Cell Biology, 2004, 164(2):233-241. [23] Lasorella A, Stegmüller J, Guardavaccaro D, et al. Degradation of Id2 by the anaphase-promoting complex couples cell cycle exit and axonal growth[J]. Nature, 2006, 442(7101):471-474. [24] Pfleger CM, Kirschner MW. The KEN box:an APC recognition signal distinct from the D box targeted by Cdh1[J]. Genes & Development, 2000, 14(6):655-665. [25] Arquint C, Nigg EA. STIL Microcephaly mutations interfere with APC/C-mediated degradation and cause centriole amplification[J]. Current Biology, 2014, 24(4):351-360. [26] Ichim G, Mola M, Finkbeiner MG, et al. The histone acetyltransferase component TRRAP is targeted for destruction during the cell cycle[J]. Oncogene, 2014, 33(2):181-192. [27] Ingham RJ, Gish G, Pawson T. The Nedd4 family of E3 ubiquitin ligases:functional diversity within a common modular architecture[J]. Oncogene, 2004, 23(11):1972-1984. [28] Rotin D, Kumar S. Physiological functions of the HECT family of ubiquitin ligases[J]. Nature Reviews Molecular Cell Biology, 2009, 10(6):398-409. [29] Graham L, Padmanabhan S. NEDD4L in essential hypertension[J]. Journal of Hypertension, 2014, 32(2):230-232. [30] Fei C, He X, Xie S, et al. Smurf1-mediated axin ubiquitination requires Smurf1 C2 domain and is cell-cycle dependent[J]. Journal of Biological Chemistry, 2014, 289(20):14170-14177. [31] Zhi X, Chen C. WWP1:a versatile ubiquitin E3 ligase in signaling and diseases[J]. Cell Mol Life Sci, 2012, 69(9):1425-1434. [32] Kavsak P, Rasmussen RK, Causing CG, et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGFβ receptor for degradation[J]. Molecular Cell, 2000, 6(6):1365-1375. [33] Geetha T, Jiang J, Wooten MW. Lysine 63 polyubiquitination of the nerve growth factor receptor TrkA directs internalization and signaling[J]. Molecular Cell, 2005, 20(2):301-312. [34] Laney JD, Hochstrasser M. Substrate targeting in the ubiquitin system[J]. Cell, 1999, 97(4):427-430. [35] An H, Krist DT, Statsyuk AV. Crosstalk between kinases and Nedd4 family ubiquitin ligases[J]. Molecular Biosystems, 2014, 10(7):1643-1657. [36] Zhao Y, Brickner JR, Majid MC, et al. Crosstalk between ubiquitin and other post-translational modifications on chromatin during double-strand break repair[J]. Trends in Cell Biology, 2014, 24(7):426-434. [37] Gill G. SUMO and ubiquitin in the nucleus:different functions, similar mechanisms?[J]. Genes & Development, 2004, 18(17):2046-2059. [38] Kawakami T, Chiba T, Suzuki T, et al. NEDD8 recruits E2-ubiquitin to SCF E3 ligase[J]. The EMBO Journal, 2001, 20(15):4003-4012. [39] Darwanto A, Curtis MP, Schrag M, et al. A modified “cross-talk” between histone H2B Lys-120 ubiquitination and H3 Lys-79 methylation[J]. J Biol Chem, 2010, 285(28):21868-21876. [40] Lee JS, Shukla A, Schneider J, et al. Histone crosstalk between H2B monoubiquitination and H3 methylation mediated by COMPASS[J]. Cell, 2007, 131(6):1084-1096. [41] Yen HCS, Xu Q, Chou DM, et al. Global protein stability profiling in mammalian cells[J]. Science, 2008, 322(5903):918-923. [42] Yen HCS, Elledge SJ. Identification of SCF ubiquitin ligase substrates by global protein stability profiling[J]. Science, 2008, 322(5903):923-929. [43] Andrews PS, Schneider S, Yang E, et al. Identification of substrates of SMURF1 ubiquitin ligase activity utilizing protein microarrays[J]. Assay and Drug Development Technologies, 2010, 8(4):471-487. [44] Loch CM, Eddins MJ, Strickler JE. Protein microarrays for the identification of praja1 e3 ubiquitin ligase substrates[J]. Cell Biochemistry and Biophysics, 2011, 60(1-2):127-135. [45] Guo Z, Wang X, Li H, et al. Screening E3 substrates using a live phage display library[J]. PloS One, 2013, 8(10):e76622. [46] Yumimoto K, Matsumoto M, Oyamada K, et al. Comprehensive identification of substrates for F-box proteins by differential proteomics analysis[J]. Journal of Proteome Research, 2012, 11(6):3175-3185. [47] Shi Y, Chan DW, Jung SY, et al. A data set of human endogenous protein ubiquitination sites[J]. Molecular & Cellular Proteomics, 2011, 10(5):M110. 002089. [48] Rubel CE, Schisler JC, Hamlett ED, et al. Diggin' on U(biquitin):a novel method for the identification of physiological E3 ubiquitin ligase sustrates[J]. Cell Biochemistry and Biophysics, 2013, 67(1):127-138. [49] Zhuang M, Guan S, Wang H, et al. Substrates of IAP ubiquitin ligases identified with a designed orthogonal E3 ligase, the NEDDylator[J]. Molecular Cell, 2013, 49(2):273-282. [50] Han Y, Lee H, Park JC, et al. E3Net:a system for exploring E3-mediated regulatory networks of cellular functions[J]. Molecular & Cellular Proteomics, 2012, 11(4):0111. [51] Du Y, Xu N, Lu M, et al. hUbiquitome:a database of experimen-tally verified ubiquitination cascades in humans[J]. Database, 2011, 2011:bar055. [52] Lee WC, Lee M, Jung JW, et al. SCUD:Saccharomyces cerevisiae ubiquitination database[J]. BMC Genomics, 2008, 9(1):440. [53] Chernorudskiy AL, Garcia A, Eremin EV, et al. UbiProt:a database of ubiquitylated proteins[J]. BMC Bioinformatics, 2007, 8(1):126. [54] Du Z, Zhou X, Li L, et al. PlantsUPS:a database of plants’ Ubiquitin Proteasome System[J]. BMC Genomics, 2009, 10(1):227. [55] Jadhav TS, Wooten MW, Wooten MC. Mining the TRAF6/p62 interactome for a selective ubiquitination motif[J]. BMC Proc, 2011, 5(suppl 2):S4. [56] Liu ZX, Yuan F, Ren J, et al. GPS-ARM:computational analysis of the APC/C recognition motif by predicting D-boxes and KEN-boxes[J]. PloS One, 2012, 7(3):e34370. [57] Xue Y, Zhou F, Zhu M, et al. GPS:a comprehensive www server for phosphorylation sites prediction[J]. Nucleic Acids Research, 2005, 33(suppl 2):W184-W187. [58] Xue Y, Ren J, Gao X, et al. GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy[J]. Molecular & Cellular Proteomics, 2008, 7(9):1598-1608. [59] Jansen R, Yu H, Greenbaum D, et al. A Bayesian networks approach for predicting protein-protein interactions from genomic data[J]. Science, 2003, 302(5644):449-453. [60] Rhodes DR, Tomlins SA, Varambally S, et al. Probabilistic model of the human protein-protein interaction network[J]. Nature Biotechnology, 2005, 23(8):951-959. [61] Li D, Liu W, Liu Z, et al. PRINCESS, a protein interaction confidence evaluation system with multiple data sources[J]. Molecular & Cellular Proteomics, 2008, 7(6):1043-1052. [62] Zhang Q C, Petrey D, Deng L, et al. Structure-based prediction of protein-protein interactions on a genome-wide scale[J]. Nature, 2012, 490(7421):556-560. [63] Snel B, Lehmann G, Bork P, et al. STRING:a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene[J]. Nucleic Acids Research, 2000, 28(18):3442-3444. [64] Thierry-Mieg N. A new pooling strategy for high-throughput screening:the Shifted Transversal Design[J]. BMC Bioinforma-tics, 2006, 7(1):28. |
[1] | ZHANG Lu-yang, HAN Wen-long, XU Xiao-wen, YAO Jian, LI Fang-fang, TIAN Xiao-yuan, ZHANG Zhi-qiang. Identification and Expression Analysis of the Tobacco TCP Gene Family [J]. Biotechnology Bulletin, 2023, 39(6): 248-258. |
[2] | LI Jing-rui, WANG Yu-bo, XIE Zi-wei, LI Chang, WU Xiao-lei, GONG Bin-bin, GAO Hong-bo. Identification and Expression Analysis of PIN Gene Family in Melon Under High Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(5): 192-204. |
[3] | GUO San-bao, SONG Mei-ling, LI Ling-xin, YAO Zi-zhao, GUI Ming-ming, HUANG Sheng-he. Cloning and Analysis of Chalcone Synthase Gene and Its Promoter from Euphorbia maculata [J]. Biotechnology Bulletin, 2023, 39(4): 148-156. |
[4] | WANG Yi-qing, WANG Tao, WEI Chao-ling, DAI Hao-min, CAO Shi-xian, SUN Wei-jiang, ZENG Wen. Identification and Interaction Analysis of SMAS Gene Family in Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(4): 246-258. |
[5] | YANG Lan, ZHANG Chen-xi, FAN Xue-wei, WANG Yang-guang, WANG Chun-xiu, LI Wen-ting. Gene Cloning, Expression Pattern, and Promoter Activity Analysis of Chicken BMP15 [J]. Biotechnology Bulletin, 2023, 39(4): 304-312. |
[6] | CHEN Qiang, ZHOU Ming-kang, SONG Jia-min, ZHANG Chong, WU Long-kun. Identification and Analysis of LBD Gene Family and Expression Analysis of Fruit Development in Cucumis melo [J]. Biotechnology Bulletin, 2023, 39(3): 176-183. |
[7] | PING Huai-lei, GUO Xue, YU Xiao, SONG Jing, DU Chun, WANG Juan, ZHANG Huai-bi. Cloning and Expression of PdANS in Paeonia delavayi and Correlation with Anthocyanin Content [J]. Biotechnology Bulletin, 2023, 39(3): 206-217. |
[8] | XING Yuan, SONG Jian, LI Jun-yi, ZHENG Ting-ting, LIU Si-chen, QIAO Zhi-jun. Identification of AP Gene Family and Its Response Analysis to Abiotic Stress in Setaria italica [J]. Biotechnology Bulletin, 2023, 39(11): 238-251. |
[9] | CHEN Chu-yi, YANG Xiao-mei, CHEN Sheng-yan, CHEN Bin, YUE Li-ran. Expression Analysis of the ZF-HD Gene Family in Chrysanthemum nankingense Under Drought and ABA Treatment [J]. Biotechnology Bulletin, 2023, 39(11): 270-282. |
[10] | YANG Min, LONG Yu-qing, ZENG Juan, ZENG Mei, ZHOU Xin-ru, WANG Ling, FU Xue-sen, ZHOU Ri-bao, LIU Xiang-dan. Cloning and Function Analysis of Gene UGTPg17 and UGTPg36 in Lonicera macranthoides [J]. Biotechnology Bulletin, 2023, 39(10): 256-267. |
[11] | GUO Zhi-hao, JIN Ze-xin, LIU Qi, GAO Li. Bioinformatics Analysis, Subcellular Localization and Toxicity Verification of Effector g11335 in Tilletia contraversa Kühn [J]. Biotechnology Bulletin, 2022, 38(8): 110-117. |
[12] | YU Qiu-lin, MA Jing-yi, ZHAO Pan, SUN Peng-fang, HE Yu-mei, LIU Shi-biao, GUO Hui-hong. Cloning and Functional Analysis of Gynostemma pentaphyllum GpMIR156a and GpMIR166b [J]. Biotechnology Bulletin, 2022, 38(7): 186-193. |
[13] | CHEN Jia-min, LIU Yong-jie, MA Jin-xiu, LI Dan, GONG Jie, ZHAO Chang-ping, GENG Hong-wei, GAO Shi-qing. Expression Pattern Analysis of Histone Methyltransferase Under Drought Stress in Hybrid Wheat [J]. Biotechnology Bulletin, 2022, 38(7): 51-61. |
[14] | LIU Jing-jing, LIU Xiao-rui, LI Lin, WANG Ying, YANG Hai-yuan, DAI Yi-fan. Establishment of Porcine Fetal Fibroblasts with OXTR-knockout Using CRISPR/Cas9 [J]. Biotechnology Bulletin, 2022, 38(6): 272-278. |
[15] | WANG Nan, ZHANG Rui, PAN Yang-yang, HE Hong-hong, WANG Jing-lei, CUI Yan, YU Si-jiu. Cloning of Bos grunniens TGF-β1 Gene and Its Expression in Major Organs of Female Reproductive System [J]. Biotechnology Bulletin, 2022, 38(6): 279-290. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||