[1] Park SC, Kim YH, Jeong JC, et al. Sweetpotato late embryogenesis abundant 14(IbLEA14)gene influences lignification and increases osmotic- and salt stress-tolerance of transgenic calli[J]. Planta, 2011, 233:621-634. [2] 马杰, 刘翠芳, 李灵之, 等. 非生物胁迫下植物脱水素的研究进展[J]. 生物学杂志, 2012, 29(1):71-74. [3] 夏惠, 林玲, 高帆, 等. 植物脱水素对多种逆境的响应[J]. 干旱地区农业研究, 2014, 32(4):47-52. [4] Marina B, Yadira OC, Alejandro G, et al. The enigmatic LEA proteins and other hydrophilins[J]. Plant Physiol, 2008, 148(1):6-24. [5] Laura S, Jan S, Valentina C, et al. A dehydrin gene in Physcomitrella patens is required for salt and osmotic stress tolerance[J]. The Plant Journal, 2006, 45:237-249. [6] Zhang YX, Wang Z, Xu J. Molecular mechanism of dehydrin in response to environmental stress in plant[J]. Progress in Natural Science, 2007, 17(3):237-246. [7] 陈兵, 文建凡. 内含子在生物信息学研究和基因工程中的应用[J]. 生命的化学, 2010, 30(1):59-63. [8] Emami S, Arumainayagam D, Korf L, et al. The effects of a stimulating intron on the expression of heterologous genes in Arabidopsis thaliana[J]. Plant Biotechnology Journal, 2013, 11(5):555. [9] Juan FJB, Israel ML, Ana EOA, et al. LEA gene introns:is the intron of dehydrin genes a characteristic of the serine-segment?[J]. Plant Mol Biol Rep, 2013, 31:128-140. [10] Liu MQ, Shen X, Yin WL, et al. Functional analysis of cold-inducible cDNA clones in the legume Ammopiptanthus mongolicus[J]. Cryoletters, 2005, 26(4):213-222. [11] Shi J, Liu MQ, Chen YZ, et al. Heterologous expression of the dehydrin-like protein gene AmCIP from Ammopiptanthus mongolicus enhances viability of Escherichia coli and tobacco under cold stress[J]. Plant Growth Regulation, 2015, doi:10. 1007/s10725-015-0112-4. [12] Hu B, Jin JP, Guo AY, et al. GSDS 2. 0:an upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8):1296-1297. [13] Tamura K, Dudley J, Nei M, et al. MEGA4:Molecular evolutionary genetics analysis(MEGA)software version 4.0[J]. Molecular Biology & Evolution, 2007, 24(8):1596-1599. [14] Edgar RC. MUSCLE:a multiple sequence alignment method with reduced time and space complexity[J]. BMC Bioinformatics, 2004, 5:113. [15] 李江涛, 杨世湖, 陈苗苗, 等. 内含子1、2对水稻pib基因启动子活性影响的转基因分析[J]. 江苏农业科学, 2012, 40(3):15-19. [16] Chung BYW, Simons C, Firth AE, et al. Effect of 5'UTR introns on gene expression in Arabidopsis thaliana[J]. BMC Genomics, 2006, 7:120. [17] 张强, 李宏, 赵小庆, 等. 基因外显子连接序列与相应内含子序列的相互作用[J]. 生物信息学, 2013, 11(3):172-180. [18] Nelsen NS, Marcotte WR Jr. A wheat group 1 Lea intron enhances β-glucuronidase gene expression in cereal cells[J]. Journal Of Plant Physiology, 2000, 157:677-684. [19] Lin SL, Miller JD, Ying SY. Intronic MicroRNA(miRNA)[J]. Journal of Biomedicine and Biotechnology, 2006:1-13. [20] 胡俊, 杨建红. 内含子的进化及其转录调控功能的统计分析[J]. 计算生物学, 2013, 3:21-23. [21] Thanaraj TA, Clark F. Human GC-AG alternative intron isoforms with weak donor sites show enhanced consensus at acceptor exon positions[J]. Nucleic Acids Research, 2001, 29(12):2581-2593. [22] 曹军. 真核生物内含子研究进展[J]. 生物过程, 2011, 1:9-12. [23] Reddy ASN, Marquez Y, Kalyna M, et al. Complexity of the alternative splicing landscape in plants[J]. The Plant Cell, 2013, 25:3657-3683. |