Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (7): 24-30.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0488
Previous Articles Next Articles
FENG Han-qian, LI Chao
Received:
2018-05-25
Online:
2018-07-26
Published:
2018-08-01
FENG Han-qian, LI Chao. Research Advances of Auxin Signal Transduction[J]. Biotechnology Bulletin, 2018, 34(7): 24-30.
[1] Went F.On growth accelerating substances in the coleoptile of Avena sativa[J]. Proceedings of the Section of Sciences, Koninklijke Akademie van Wetenschappen te Amsterdam, 1926, 30:10-19. [2] Woodward AW, Bartel B.Auxin:Regulation, action, and interaction[J]. Annals of Botany, 2005, 95(5):707-735. [3] Katrin P, Natalya I, Peter A, et al.Auxin activates KAT1 and KAT2, two K+-channel genes expressed in seedlings of Arabidopsis thaliana[J]. The Plant J, 2004, 37(6):815-827. [4] Perrot-Rechenmann C.Cellular responses to auxin:division versus expansion[J]. Cold Spring Harbor Perspectives in Biology, 2010, 2(5):a001446. [5] Zhao Y.Auxin biosynthesis and its role in plant development[J]. Annual Review of Plant Biology, 2010, 61:49-64. [6] Petrášek J, Friml J.Auxin transport routes in plant development [J]. Development, 2009, 136(16):2675-2688. [7] Mashiguchi K, Tanaka K, Sakai T, et al.The main auxin biosynthesis pathway in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2011, 108(45):18512-18517. [8] Stepanova AN, Robertson-Hoyt J, Yun J, et al.TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development[J]. Cell, 2008, 133(1):177-191. [9] Cheng Y, Dai X, Zhao Y, Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis[J]. Genes & Development, 2006, 20(13):1790-1799. [10] Chen Q, Westfall CS, Hicks LM, et al.Kinetic basis for the conjugation of auxin by a GH3 family indole-acetic acid-amido synthetase[J]. J Biol Chem, 2010, 285(39):29780-29786. [11] Yang Y, Hammes UZ, Taylor CG, et al.High-affinity auxin transport by the AUX1 influx carrier protein[J]. Current Biology, 2006, 16(11):1123-1127. [12] Křeček P, Skůpa P, Libus J, et al.The PIN-FORMED(PIN)protein family of auxin transporters[J]. Genome Biology, 2009, 10(12):249. [13] Cho M, Cho HT.The function of ABCB transporters in auxin transport[J]. Plant Signaling & Behavior, 2013, 8(2):e22990. [14] Paponov IA, Paponov M, Teale W, et al.Comprehensive transcrip-tome analysis of auxin responses in Arabidopsis[J]. Molecular Plant, 2008, 1(2):321-337. [15] Tiwari SB, Wang XJ, Hagen G, et al.AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin[J]. The Plant Cell, 2001, 13(12):2809-2822. [16] Li SB, Xie ZZ, Hu CG, et al.A review of auxin response factors(ARFs)in plants[J]. Front Plant Sci, 2016, 7:47. [17] Ruegger M, Dewey E, Gray WM, et al.The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast Grr1p[J]. Genes & Development, 1998, 12(2):198-207. [18] Gray WM, del Pozo JC, Walker L, et al. Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana[J]. Genes & Development, 1999, 13(13):1678-1691. [19] Gray WM, Kepinski S, Rouse D, et al.Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins[J]. Nature, 2001, 414:271. [20] Dharmasiri N, Dharmasiri S, Estelle M.The F-box protein TIR1 is an auxin receptor[J]. Nature, 2005, 435:441. [21] Sabatini S, Beis D, Wolkenfelt H, et al.An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root[J]. Cell, 1999, 99(5):463-472. [22] Liao CY, Smet W, Brunoud G, et al.Reporters for sensitive and quantitative measurement of auxin response[J]. Nature methods, 2015, 12(3):207-210. [23] Li Y, Wu YH, Hagen G, et al.Expression of the auxin-inducible GH3 Promoter/GUS fusion gene as a useful molecular marker for auxin physiology1[J]. Plant and Cell Physiology, 1999, 40(7):675-682. [24] Brunoud G, Wells DM, Oliva M, et al.A novel sensor to map auxin response and distribution at high spatio-temporal resolution[J]. Nature, 2012, 482:103. [25] Dindas J, Scherzer S, Roelfsema MRG, et al.AUX1-mediated root hair auxin influx governs SCFTIR1/AFB-type Ca2+ signaling[J][J]. Nat Commun, 2018, 9(1):1174. [26] Melnyk CW, Gabel A, Hardcastle TJ, et al.Transcriptome dynamics at Arabidopsis graft junctions reveal an intertissue recognition mechanism that activates vascular regeneration[J]. Proceedings of the National Academy of Sciences, 2018, 115(10):E2447-E2456. [27] Tao LZ, Cheung AY, Nibau C, et al.RAC GTPases in tobacco and Arabidopsis mediate auxin-induced formation of proteolytically active nuclear protein bodies that contain AUX/IAA proteins[J]. The Plant Cell, 2005, 17(8):2369-2383. [28] Wang R, Zhang Y, Kieffer M, et al.HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1[J]. Nat Commun, 2016, 7:10269. [29] Yang BJ, Han XX, Yin LL, et al.Arabidopsis PROTEASOME REGULATOR1 is required for auxin-mediated suppression of proteasome activity and regulates auxin signalling[J]. Nat Commun, 2016, 7:11388. [30] Jing H, Yang X, Zhang J, et al.Peptidyl-prolyl isomerization targets rice Aux/IAAs for proteasomal degradation during auxin signalling[J]. Nat Commun, 2015, 6:7395. [31] Lombardo MC, Graziano M, Polacco JC, et al.Nitric oxide functions as a positive regulator of root hair development[J]. Plant Signaling & Behavior, 2006, 1(1):28-33. [32] Pagnussat GC, Simontacchi M, Puntarulo S, et al.Nitric oxide is required for root organogenesis[J]. Plant Physiology, 2002, 129(3):954-956. [33] Terrile MC, París R, Calderón LA, et al.Nitric oxide influences auxin signaling through S-nitrosylation of the Arabidopsis transport inhibitor response1 auxin receptor[J]. The Plant J, 2012, 70(3):492-500. [34] Badescu GO, Napier RM.Receptors for auxin:will it all end in TIRs?[J]. Trends in Plant Science, 2006, 11(5):217-223. [35] Arsuffi G, Braybrook SA.Acid growth:an ongoing trip[J]. Journal of Experimental Botany, 2018, 69(2):137-146. [36] Takahashi K, Hayashi KI, Kinoshita T.Auxin activates the plasma membrane H+-ATPase by phosphorylation during Hypocotyl Elongation in Arabidopsis[J]. Plant Physiology, 2012, 159(2):632-641. [37] Falhof J, Pedersen Jesper T, Fuglsang Anja T, et al.Plasma membrane H+-ATPase regulation in the center of plant physiology[J]. Molecular Plant, 2016, 9(3):323-337. [38] Spartz AK, Lee SH, Wenger JP, et al.The SAUR19 subfamily of SMALL AUXIN UP RNA genes promote cell expansion[J]. The Plant J, 2012, 70(6):978-990. [39] Spartz AK, Ren H, Park, MY, et al.SAUR inhibition of PP2C-D phosphatases activates plasma membrane H+-ATPases to promote cell expansion in Arabidopsis[J]. The Plant Cell, 2014, 26(5):2129-2142. [40] Tao L, Cheung AY, Wu HM.Plant Rac-Like GTPases are activated by auxin and mediate auxin-responsive gene expression[J]. The Plant Cell, 2002, 14(11):2745-2760. [41] Xu T, Wen M, Nagawa S, et al.Cell surface-and Rho GTPase-based auxin signaling controls cellular Interdigitation in Arabidopsis[J]. Cell, 2010, 143(1):99-110. [42] Duan Q, Kita D, Li C, et al.FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development[J]. Proceedings of the National Academy of Sciences, 2010, 107(41):17821-17826. [43] Li C, Yeh FL, Cheung AY, et al.Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis[J]. Elife, 2015, 4:e06587. [44] Löbler M, Klämbt D.Auxin-binding protein from coleoptile membranes of corn(Zea mays L.). II. Localization of a putative auxin receptor[J]. J Biol Chem, 1985, 260(17):9854-9859. [45] Xu T, Dai N, Chen J, et al.Cell Surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling[J]. Science, 2014, 343(6174):1025-1028. [46] Enders TA, Oh S, Yang Z, et al.Genome sequencing of Arabidopsis abp1-5 reveals second-site mutations that may affect phenotypes[J]. The Plant Cell, 2015, 27(7):1820-1826. [47] Gao Y, Zhang Y, Zhang D, et al.Auxin binding protein 1(ABP1)is not required for either auxin signaling or Arabidopsis development[J]. Proceedings of the National Academy of Sciences, 2015, 112(7):2275-2280. [48] Jurado S, Abraham Z, Manzano C, et al.The Arabidopsis cell cycle F-Box protein SKP2A binds to auxin[J]. The Plant Cell, 2010, 22(12):3891-3904. [49] Prigge MJ, Lavy M, Ashton NW, Estelle M.Physcomitrella patens auxin-resistant mutants affect conserved elements of an auxin-signaling pathway[J]. Current Biology, 2010(21):1907-1912. [50] Lavy M, Prigge MJ, Tao S, et al.Constitutive auxin response in Physcomitrella reveals complex interactions between Aux/IAA and ARF proteins[J]. Elife, 2016, 5:e13325. [51] Kato H, Ishizaki K, Kouno M, et al.Auxin-mediated transcriptional system with a minimal set of components Is critical for morphogenesis through the life cycle in Marchantia polymorpha[J]. PLoS Genetics, 2015, 11(5):e1005084. |
[1] | LIU Hui, LU Yang, YE Xi-miao, ZHOU Shuai, LI Jun, TANG Jian-bo, CHEN En-fa. Comparative Transcriptome Analysis of Cadmium Stress Response Induced by Exogenous Sulfur in Tartary Buckwheat [J]. Biotechnology Bulletin, 2023, 39(5): 177-191. |
[2] | YANG Chun-hong, DONG Lu, CHEN Lin, SONG Li. Characterization of Soybean VAS1 Gene Family and Its Involvement in Lateral Root Development [J]. Biotechnology Bulletin, 2023, 39(3): 133-142. |
[3] | CHEN Qiang, ZHOU Ming-kang, SONG Jia-min, ZHANG Chong, WU Long-kun. Identification and Analysis of LBD Gene Family and Expression Analysis of Fruit Development in Cucumis melo [J]. Biotechnology Bulletin, 2023, 39(3): 176-183. |
[4] | CUI Jun-mei, WEI Jia-ping, DONG Xiao-yun, WANG Ying, ZHENG Guo-qiang, LIU Zi-gang. PIP/PIPL: A Kind of Endogenous Plant Peptide Regulating Plant Stress Response and Development [J]. Biotechnology Bulletin, 2023, 39(3): 35-42. |
[5] | XU Rui, ZHU Ying-fang. The Key Roles of Mediator Complex in Plant Responses to Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 54-60. |
[6] | CHEN Guang-xia, LI Xiu-jie, JIANG Xi-long, SHAN Lei, ZHANG Zhi-chang, LI Bo. Research Progress in Plant Small Signaling Peptides Involved in Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(11): 61-73. |
[7] | LEI Chun-xia, LI Can-hui, CHEN Yong-kun, GONG Ming. Physiological and Biochemical Basis and Molecular Mechanism of Solanum tuberosum Tuberization [J]. Biotechnology Bulletin, 2022, 38(4): 44-57. |
[8] | DONG Hai-jiao, YANG Xiao-yu, MO Bei-xin, CHEN Xue-mei, CUI Jie. Research Progress in NAD+ Cap Modification at the 5' End of RNA [J]. Biotechnology Bulletin, 2022, 38(2): 245-251. |
[9] | HU Qi, HOU Yu-xiang, LI Rui, LI Mei-lan. Cloning and Expression of CYP79B2 Homologous Genes in Brassica rapa ssp. chinensis [J]. Biotechnology Bulletin, 2022, 38(12): 168-174. |
[10] | QIAN Jing-jie, LIN Su-meng, ZHANG Dong-ping, GAO Yong. Phytochrome Interacting Factors Involving in Auxin-regulated Plant Growth and Development [J]. Biotechnology Bulletin, 2022, 38(10): 29-33. |
[11] | CHEN Chen, HUANG Zhi-yang, YU Hai-yan, YUAN Hai-bin, TIAN Huai-xiang. Research Technology and Progress in Transcriptional Regulation in Prokaryotes [J]. Biotechnology Bulletin, 2022, 38(10): 54-65. |
[12] | YANG Wei, WU Xi, CHENG Jian-guo, LUO Yan, WANG Yin, YANG Ze-xiao, YAO Xue-ping. Cloning,Expression and Transcriptional Regulation of Interferon-α in Forest Musk Deer [J]. Biotechnology Bulletin, 2022, 38(1): 194-204. |
[13] | LI Wen-jiao, ZHANG Zhong-feng, LIU Qing, SUN Jie, YANG Li, WANG Xing-jun, ZHAO Shu-zhen. Role of BRs in Plant Response to Abiotic Stress [J]. Biotechnology Bulletin, 2022, 38(1): 228-235. |
[14] | TANG Jia-cheng, LIANG Yi-min, MA Jia-si, PENG Gui-xiang, TAN Zhi-yuan. Diversity and Growth Promotion of Endophytic Bacteria Isolated from Passiflora edulia Sims [J]. Biotechnology Bulletin, 2022, 38(1): 86-97. |
[15] | WU Feng-zhang, WANG He-xin. Low Temperature Stress Response Mediated by Protein Ubiquitination in Plant [J]. Biotechnology Bulletin, 2021, 37(6): 225-235. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||