Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (12): 71-81.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0119
Previous Articles Next Articles
PAN Jing-yu1(), CHEN Jia-le1, QIAN Yu-cheng1, LIU Xin1, YANG Hao-ning2, LIU Li1, WEI Bu-yun1, ZHAO Hong-xin1()
Received:
2021-01-29
Online:
2021-12-26
Published:
2022-01-19
Contact:
ZHAO Hong-xin
E-mail:469377080@qq.com;bxxbj2003@gmail.com
PAN Jing-yu, CHEN Jia-le, QIAN Yu-cheng, LIU Xin, YANG Hao-ning, LIU Li, WEI Bu-yun, ZHAO Hong-xin. Characteristics of Aureobasidium sp. 3A00493 from Deep Sea Sediment and Characteristic Analysis of Its Extracellular Polysaccharide[J]. Biotechnology Bulletin, 2021, 37(12): 71-81.
Fig. 4 Effects of different culture conditions on the sugar production and growth of strain 3A00493(n=3) A:pH. B:Temperature. C:Cultivation volume. D:Rotation speed. The same below
指示菌 Indicator | 革兰氏染色特性 Gram staining features | 抑菌圈直径 Diameter of inhibition zome/mm | |||
---|---|---|---|---|---|
A. pullulans 3A00493 | PDA(Ck) | 卡那霉素 Kanamycin/(50 μg·mL-1) | 氨苄青霉素 Ampicillin(50 μg·mL-1) | ||
大肠杆菌(E. coil ATCC8091) | G- | 12.47±0.82 | - | 12.42±2.39 | 10.02±2.19 |
铜绿假单胞菌(P. aeruginosa) | G- | - | - | 16.87±0.90 | 8.65±1.38 |
枯草芽孢杆菌 (B. subtilis ATCC6051) | G+ | 12.70±1.65 | - | 13.28±0.73 | 6.95±0.65 |
金黄色葡萄球菌 (S. aureus ATCC6538) | G+ | 11.91±0.36 | - | 15.88±0.93 | 18.53±0.79 |
粪肠球菌 (E. faecalis ATCC29212) | G+ | 14.91±0.55 | - | 11.48±5.86 | - |
白色念珠菌 (M. albican ATCC10231) | 无None | - | - | 14.78±3.73 | 9.72±0.83 |
Table 1 Antibacterial activity of fermentation products of strain 3A00493
指示菌 Indicator | 革兰氏染色特性 Gram staining features | 抑菌圈直径 Diameter of inhibition zome/mm | |||
---|---|---|---|---|---|
A. pullulans 3A00493 | PDA(Ck) | 卡那霉素 Kanamycin/(50 μg·mL-1) | 氨苄青霉素 Ampicillin(50 μg·mL-1) | ||
大肠杆菌(E. coil ATCC8091) | G- | 12.47±0.82 | - | 12.42±2.39 | 10.02±2.19 |
铜绿假单胞菌(P. aeruginosa) | G- | - | - | 16.87±0.90 | 8.65±1.38 |
枯草芽孢杆菌 (B. subtilis ATCC6051) | G+ | 12.70±1.65 | - | 13.28±0.73 | 6.95±0.65 |
金黄色葡萄球菌 (S. aureus ATCC6538) | G+ | 11.91±0.36 | - | 15.88±0.93 | 18.53±0.79 |
粪肠球菌 (E. faecalis ATCC29212) | G+ | 14.91±0.55 | - | 11.48±5.86 | - |
白色念珠菌 (M. albican ATCC10231) | 无None | - | - | 14.78±3.73 | 9.72±0.83 |
Fig. 6 Polysaccharide TLC A:1/2/3/4:Standard sample/Tested sample/Hydrolysate of standard sample/Hydrolysate of tested sample,arrow shows maltotriose. B:Identification of tested sample with IR spectrogram
[1] | 徐志平. 复合诱变出芽短梗霉选育普鲁兰高产菌株[D]. 武汉:湖北大学, 2012. |
Xu ZP. Composite mutagenesis budding Aureobasidium pullulan breeding high strain[D]. Wuhan:Hubei University, 2012. | |
[2] |
Singh RS, Kaur N, Rana V, et al. Pullulan:a novel molecule for biomedical applications[J]. Carbohydr Polym, 2017, 171:102-121.
doi: 10.1016/j.carbpol.2017.04.089 URL |
[3] | 马再超. 海洋产黑色素短梗霉P16菌株产普鲁兰多糖的研究[D]. 青岛:中国海洋大学, 2015. |
Ma ZC. Study on pullulan production by a marine yeast Aureobasidium melanogenum strain P16[D]. Qingdao:Ocean University of China, 2015. | |
[4] |
Singh RS, Kaur N, Rana V, et al. Recent insights on applications of pullulan in tissue engineering[J]. Carbohydr Polym, 2016, 153:455-462.
doi: 10.1016/j.carbpol.2016.07.118 URL |
[5] | 于林艳, 张金华, 刘飞, 等. 普鲁兰糖无色素高产菌株的选育研究进展[J]. 中国生化药物杂志, 2015, 35(6):181-184. |
Yu LY, Zhang JH, Liu F, et al. Rsearch progress on breeding of pullulan high-yield strain without melanin[J]. Chin J Biochem Pharm, 2015, 35(6):181-184. | |
[6] | Hanin NA, Fitriasari PD. Identification of endophytic fungi from fruits and seeds of jambolana(Syzygium cuminiL.)skeels[J]. IOP Conf Ser:Earth Environ Sci, 2019, 276:012-060. |
[7] |
Hartman D. Perfecting your spread plate technique[J]. J Microbiol Biol Educ, 2011, 12(2):204-205.
doi: 10.1128/jmbe.v12i2.324 URL |
[8] | 胡娜娜, 李超, 王茜, 等. 北京地区油菜软腐病病原菌的鉴定[J]. 微生物学报, 2015, 55(10):1253-1263. |
Hu NN, Li C, Wang Q, et al. Identification of the pathogen of rape soft rot in Beijing area[J]. Acta Microbiol Sin, 2015, 55(10):1253-1263. | |
[9] | 王永康, 宋晓丹, 李晓荣, 等. 聚苹果酸生产菌出芽短梗霉CCTCC M2012223的全基因组测序及序列分析[J]. 微生物学报, 2017, 57(1):97-108. |
Wang YK, Song XD, Li XR, et al. Complete genome sequencing and sequence analysis of the poly malic acid production by Aureobasiduim sp. CCTCC M2012223[J]. Acta Microbiol Sin, 2017, 57(1):97-108. | |
[10] | 朱艳蕾. 细菌生长曲线测定实验方法的研究[J]. 微生物学杂志, 2016, 36(5):108-112. |
Zhu YL. Experimental method of bacteria growth curve determination[J]. J Microbiol, 2016, 36(5):108-112. | |
[11] | 沈琦, 张殿鹏, 郝雅荞, 等. 出芽短梗霉新菌株RM1603产普鲁兰多糖条件优化及多糖分析[J]. 生物技术通讯, 2019, 30(3):385-390. |
Shen Q, Zhang DP, Hao YQ, et al. Optimum conditions and identification of pullulan produced by a new finding strain Aureobasidium pullulans RM1603[J]. Lett Biotechnol, 2019, 30(3):385-390. | |
[12] |
An C, Ma SJ, Chang F, et al. Efficient production of pullulan by Aureobasidium pullulans grown on mixtures of potato starch hydrolysate and sucrose[J]. Braz J Microbiol, 2017, 48(1):180-185.
doi: 10.1016/j.bjm.2016.11.001 URL |
[13] |
Duan X, Chi Z, Wang L, et al. Influence of different sugars on pullulan production and activities of α-phosphoglucose mutase, UDPG-pyrophosphorylase and glucosyltransferase involved in pullulan synjournal in Aureobasidium pullulans Y68[J]. Carbohydr Polym, 2008, 73(4):587-593.
doi: 10.1016/j.carbpol.2007.12.028 URL |
[14] |
Pang N, Zhang JQ, Qi J, et al. Research status of microbial exopolysaccharide and its metabolic pathway[J]. Adv Microbiol, 2017, 6(2):27-34.
doi: 10.12677/AMB.2017.62004 URL |
[15] |
Meng M, Cheng D, Han L, et al. Isolation, purification, structural analysis and immunostimulatory activity of water-soluble polysaccharides from Grifola Frondosa fruiting body[J]. Carbohydr Polym, 2017, 157:1134-1143.
doi: 10.1016/j.carbpol.2016.10.082 URL |
[16] |
Guo J, Huang S, Chen Y, et al. Discovering the role of the apolipoprotein gene and the genes in the putative pullulan biosynjournal pathway on the synjournal of pullulan, heavy oil and melanin in Aureobasidium pullulans[J]. World J Microbiol Biotechnol, 2018, 34(1):11.
doi: 10.1007/s11274-017-2398-z URL |
[17] |
An C, Ma SJ, Xue WJ, et al. Comparative study of different molecular weight pullulan productions by Aureobasidium pullulans CGMCC No. 11602[J]. 3 Biotech, 2019, 9(4):156.
doi: 10.1007/s13205-019-1680-1 URL |
[18] |
Ma ZC, Fu WJ, Liu GL, et al. High-level pullulan production by Aureobasidium pullulans var. melanogenium P16 isolated from mangrove system[J]. Appl Microbiol Biotechnol, 2014, 98(11):4865-4873.
doi: 10.1007/s00253-014-5554-5 URL |
[19] | 罗祥莲, 张殿朋, 王翰, 等. 出芽短梗霉Aureobasidium sp. SRF的菌株特性分析及胞外多糖结构鉴定[J]. 微生物学杂志, 2020, 40(1):15-25. |
Luo XL, Zhang DP, Wang H, et al. Strain feature analysis and identification of extracellular polysaccharide structure of Aureobasidium sp. SRF[J]. J Microbiol, 2020, 40(1):15-25. | |
[20] |
Chen X, Wang QQ, Liu NN, et al. A glycosyltransferase gene responsible for pullulan biosynjournal in Aureobasidium melanogenum P16[J]. Int J Biol Macromol, 2017, 95:539-549.
doi: S0141-8130(16)31113-8 pmid: 27889342 |
[21] |
Mari M, Martini C, Guidarelli M, et al. Postharvest biocontrol of Monilinia laxa, Monilinia fructicola and Monilinia fructigena on stone fruit by two Aureobasidium pullulans strains[J]. Biol Control, 2012, 60(2):132-140.
doi: 10.1016/j.biocontrol.2011.10.013 URL |
[22] |
Rathnayake RMSP, Savocchia S, Schmidtke LM, et al. Characterisation of Aureobasidium pullulans isolates from Vitis vinifera and potential biocontrol activity for the management of bitter rot of grapes[J]. Eur J Plant Pathol, 2018, 151(3):593-611.
doi: 10.1007/s10658-017-1397-0 URL |
[23] |
Roberti R, Di Francesco A, Innocenti G, et al. Potential for biocontrol of Pleurotus ostreatus green mould disease by Aureobasidium pullulans De Bary(Arnaud)[J]. Biol Control, 2019, 135:9-15.
doi: 10.1016/j.biocontrol.2019.04.016 URL |
[24] | 巩文峰, 李月飞, 上官妮妮, 等. 出芽短梗霉对苹果采后灰霉病的防治[J]. 中国生物防治学报, 2016, 32(2):251-257. |
Gong WF, Li YF, Shangguan NN, et al. Control of apple postharvest gray mold by Aureobasidium pullulans[J]. Chin J Biol Control, 2016, 32(2):251-257. |
[1] | YOU Zi-juan, CHEN Han-lin, DENG Fu-cai. Research Progress in the Extraction and Functional Activities of Bioactive Peptides from Fish Skin [J]. Biotechnology Bulletin, 2023, 39(7): 91-104. |
[2] | LIU Xiao-li, TONG Zhen-yi, ZHAO Liang, YIN Li, LIU Chen-guang. Research Progress in Non-antibiotic Active Substances Against Helicobacter pylori [J]. Biotechnology Bulletin, 2022, 38(9): 96-105. |
[3] | FU Qiao, LIN Qi-lan, XUE Qiang, XIONG Hai-rong, WANG Ya-wei. Effects of CBM41 N-terminal Truncation on the Enzymological Properties of the Pullulanase from Bacillus subtilis 168 [J]. Biotechnology Bulletin, 2022, 38(6): 245-251. |
[4] | WANG Zi-yan, WANG Jian, ZHANG Lun, GUI Shui-qing, LU Xue-mei. Study on Antibacterial Stability of Musca domestica Cecropin-MDC Against Salmonella typhimurium [J]. Biotechnology Bulletin, 2022, 38(3): 149-156. |
[5] | WANG Xiao-he, GU Xi-rong, QI Shun-ju, LI Jie, CUI Yao, LI De-xia, YANG Li-hui. Antioxidant Activity,Antibacterial Activity and Volatile Components of Extracts from the Branches and Leaves of Torreya fargesii Franch. [J]. Biotechnology Bulletin, 2021, 37(8): 152-161. |
[6] | CAI Guo-lei, LU Xiao-kai, LOU Shui-zhu, YANG Hai-ying, DU Gang. Classification and Identification of Bacillus LM Based on Whole Genome and Study on Its Antibacterial Principle [J]. Biotechnology Bulletin, 2021, 37(8): 176-185. |
[7] | GONG Xiao-hui, YANG Min, LI Shu-ting, LIN Sheng-hao, XU Wen-tao. Progress on Antibacterial Mechanism,Activity and Application of Silver Nanoclusters [J]. Biotechnology Bulletin, 2021, 37(5): 212-220. |
[8] | YANG Yue, TAO Yan, XIE Jing, QIAN Yun-fang. Biosynthesis of Ctenopharyngodon idella C-type Lysozyme Based on Recombinant Pichia pastoris and Its Antibacterial Activity [J]. Biotechnology Bulletin, 2021, 37(12): 169-179. |
[9] | LUO Ya-jun, SUN Hong-min, HE Ning, YUAN Li-jie, XIE Yun-ying. Isolation and Antibacterial Activity of Actinomycetes from the Nodules and Rhizosphere Soil of Hippophae rhamnoides in Tibet [J]. Biotechnology Bulletin, 2021, 37(11): 225-236. |
[10] | WANG Zhi-xin, LIU Yang, ZHOU Jing-bo, HONG Dan, LU Lei-zhen, NING Ya-wei, JIA Ying-min. Optimization of Quantitative Determination of Bacitracin Based on Turbidimetric Method [J]. Biotechnology Bulletin, 2020, 36(5): 92-97. |
[11] | ZHAO Zhen, WANG Sha-sha, LÜ Xing-xing, TAO Yan, XIE Jing, QIAN Yun-fang. Heterologous Expression of Cyclina sinensis Mytimacin Antibacterial Peptide Based on Recombinant Pichia pastoris [J]. Biotechnology Bulletin, 2020, 36(5): 150-158. |
[12] | CAI Juan, LIU Liu, WANG Ling-jun, CAO Jian-ping, ZHENG Ming-hui, LIU Hui. Screening aoattacin Gene from Amiota okadai Based on Transcriptome Sequencing,Expression of It in Insect Cells and Antibacterial Activity Identification [J]. Biotechnology Bulletin, 2019, 35(9): 118-124. |
[13] | RANG Feng-ju, REN Yan-li, ZHANG Wei, OUYANG Yan. Isolation,Screening and Identification of Active Endophytic Fungi from Yili Wild Walnut [J]. Biotechnology Bulletin, 2019, 35(9): 218-223. |
[14] | ZHANG Sheng-liang, CHU Xiao-xiao, ZHAO You-xing, KONG Fan-dong, HUANG Xiao-long. Isolation,Identification,and Antibacterial Activity of Fungi Associated with Marine Organisms [J]. Biotechnology Bulletin, 2019, 35(3): 59-64. |
[15] | LIU Jin-lan, YANG Xue, LI Shuang-shuang, ZHANG Yu-ming, LIU Feng-song, TANG Ting, LI Hong-quan. Eukaryotic Expression of Antibacterial Peptide Domesticin from Musca domestica in Pichia Pastoris and Antibacterial Activity Identification [J]. Biotechnology Bulletin, 2019, 35(2): 109-115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||