Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (5): 221-230.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0846
Previous Articles Next Articles
WU Qi-man(), ZHANG Jin-mei, LI Yue-ying, ZHANG Ying()
Received:
2020-07-10
Online:
2021-05-26
Published:
2021-06-11
Contact:
ZHANG Ying
E-mail:1730056486@qq.com;f5944@163.com
WU Qi-man, ZHANG Jin-mei, LI Yue-ying, ZHANG Ying. Recent Advances on the Mechanism of Beneficial Microbial Fertilizers in Crops[J]. Biotechnology Bulletin, 2021, 37(5): 221-230.
物种 Species | 菌株名称 Strain name | 植物变量形态 Plant variable morphology | 生理生化 Physiology and biochemistry | 引用文献Citation |
---|---|---|---|---|
藜麦Quinoa | B.amyloliquefaciens | 茎长↑,根长↑,干鲜质量↑ | [ | |
黄瓜cucumber | P.polymyxa | 株高↑,茎粗↑,叶片 数↑ | 根系活力↑,叶绿素↑,可溶性糖↑,可溶性蛋白↑,维生素C↑ | [ |
黄瓜cucumber | Mix | 株高↑,茎粗↑,产量↑ | 叶绿素↑,维生素C↑,可溶性糖↑,可溶性蛋白↑ | [ |
鹰嘴豆Chickpeas | B.subtilis, B. pumilis | 株高↑,茎粗↑,叶面积↑ | 叶绿素↑,ACC脱氨酶↑,IAA↑ | [ |
番茄tomato | T.viride | 根鲜重↑ | 叶绿素↑,VOCs生物量↑ | [ |
大蒜garlic | Mix | 发芽率↑,株高↑ | 叶绿素↑,N↑,P↑,K↑ | [ |
黄瓜cucumber | C.subaffine | 萌发率↑,根长↑,株高↑,茎 长↑,叶面积↑,干鲜重↑ | IAA↑ | [ |
Table 1 Effect of PGPR on the growth of crops
物种 Species | 菌株名称 Strain name | 植物变量形态 Plant variable morphology | 生理生化 Physiology and biochemistry | 引用文献Citation |
---|---|---|---|---|
藜麦Quinoa | B.amyloliquefaciens | 茎长↑,根长↑,干鲜质量↑ | [ | |
黄瓜cucumber | P.polymyxa | 株高↑,茎粗↑,叶片 数↑ | 根系活力↑,叶绿素↑,可溶性糖↑,可溶性蛋白↑,维生素C↑ | [ |
黄瓜cucumber | Mix | 株高↑,茎粗↑,产量↑ | 叶绿素↑,维生素C↑,可溶性糖↑,可溶性蛋白↑ | [ |
鹰嘴豆Chickpeas | B.subtilis, B. pumilis | 株高↑,茎粗↑,叶面积↑ | 叶绿素↑,ACC脱氨酶↑,IAA↑ | [ |
番茄tomato | T.viride | 根鲜重↑ | 叶绿素↑,VOCs生物量↑ | [ |
大蒜garlic | Mix | 发芽率↑,株高↑ | 叶绿素↑,N↑,P↑,K↑ | [ |
黄瓜cucumber | C.subaffine | 萌发率↑,根长↑,株高↑,茎 长↑,叶面积↑,干鲜重↑ | IAA↑ | [ |
胁迫 Stress | 植株表现 Plant performance | 菌种 Bacterium | 物种 Species | 植物变量形态Plant Variable morphology | 生理生化 Physiology and biochemistry | 基因 Gene | 文献Literature |
---|---|---|---|---|---|---|---|
生物Biological | 枯萎病(Fusarium Wilt) | B. cereus | 黄瓜 Cucumber | 生物量↑ (Biomass ↑) | 抑菌率↑ | [ | |
枯萎病(Fusarium Wilt) | B.amyloliquefaciens | 番茄 Tomato | 抗生素(Antibiotics)bacillomycinL,fengycins,surfactins | Sfp,ituA,fenb | [ | ||
青枯病(Bacterial wilt) | B.amyloliquefaciens | 番茄 Tomato | AUDPC↓,死亡率↓(AUDPC↑,Mortality ↓) | 诱导SAR,ISR 产生抗生素、铁离子POD↑,PPO↑,SOD↑ | PAL↑,PRLA↑,LOX↑ | [ | |
纹枯病(Rhizoctonia) | B. subtilis | 水稻 Rice | 产生抑菌物质 (Produce antibacterial substances) | [ | |||
白粉病(powdery mildew) | C.subaffine | 黄瓜 Cucumber | 病情指数↓,控制效果↑ (Disease index↓,control effect↑) | [ | |||
非生物 Non-biological | 干旱胁迫(Drought stress) | YX2 | 苹果 Apple | MDA↑,光合能力↑,叶绿素降解↓,抗氧化酶↑,相对含水量↑,相对电导率↓ | [ | ||
水分胁迫(Water stress) | P.putida | 拟南芥 Arabidopsis | ABA↑,IAA↑,tZ↑,茎GA↑,根GA↓ | [ | |||
铬胁迫(Chromium stress) | P.aeruginosa | 水稻 Rice | SOD↑,POD↑,CAT↑,MDA↓,O2.-↓,类黄酮↑,总酚↑,根系活力↑,净光合速率↑ | [ | |||
盐胁迫 (Salt stress) | B. pumilus | 甘草 Licorice | 胚乳粗度↑,干重↑,胚乳长度↓(Endosperm thickness↑,dry weight↑,endosperm length↓) | MDA↓,SOD↑,POD↑,CAT↑,H2O2含量↓,O2-产生速率↓ | [ |
Table 2 PGPR can improve the resistance of crops
胁迫 Stress | 植株表现 Plant performance | 菌种 Bacterium | 物种 Species | 植物变量形态Plant Variable morphology | 生理生化 Physiology and biochemistry | 基因 Gene | 文献Literature |
---|---|---|---|---|---|---|---|
生物Biological | 枯萎病(Fusarium Wilt) | B. cereus | 黄瓜 Cucumber | 生物量↑ (Biomass ↑) | 抑菌率↑ | [ | |
枯萎病(Fusarium Wilt) | B.amyloliquefaciens | 番茄 Tomato | 抗生素(Antibiotics)bacillomycinL,fengycins,surfactins | Sfp,ituA,fenb | [ | ||
青枯病(Bacterial wilt) | B.amyloliquefaciens | 番茄 Tomato | AUDPC↓,死亡率↓(AUDPC↑,Mortality ↓) | 诱导SAR,ISR 产生抗生素、铁离子POD↑,PPO↑,SOD↑ | PAL↑,PRLA↑,LOX↑ | [ | |
纹枯病(Rhizoctonia) | B. subtilis | 水稻 Rice | 产生抑菌物质 (Produce antibacterial substances) | [ | |||
白粉病(powdery mildew) | C.subaffine | 黄瓜 Cucumber | 病情指数↓,控制效果↑ (Disease index↓,control effect↑) | [ | |||
非生物 Non-biological | 干旱胁迫(Drought stress) | YX2 | 苹果 Apple | MDA↑,光合能力↑,叶绿素降解↓,抗氧化酶↑,相对含水量↑,相对电导率↓ | [ | ||
水分胁迫(Water stress) | P.putida | 拟南芥 Arabidopsis | ABA↑,IAA↑,tZ↑,茎GA↑,根GA↓ | [ | |||
铬胁迫(Chromium stress) | P.aeruginosa | 水稻 Rice | SOD↑,POD↑,CAT↑,MDA↓,O2.-↓,类黄酮↑,总酚↑,根系活力↑,净光合速率↑ | [ | |||
盐胁迫 (Salt stress) | B. pumilus | 甘草 Licorice | 胚乳粗度↑,干重↑,胚乳长度↓(Endosperm thickness↑,dry weight↑,endosperm length↓) | MDA↓,SOD↑,POD↑,CAT↑,H2O2含量↓,O2-产生速率↓ | [ |
[1] | 王涛, 乔卫花, 李玉奇, 等. 轮作和微生物菌肥对黄瓜连作土壤理化性状及生物活性的影响[J]. 土壤通报, 2011,42(3):578-583. |
Wang T, Qiao WH, Li YQ, et al. Effects of crop rotation and microbial fertilizer on soil physical and chemical properties and biological activity of cucumber continuous cropping[J]. Soil Bulletin, 2011,42(3):578-583. | |
[2] | 邱吟霜, 王西娜, 李培富, 等. 不同种类有机肥及用量对当季旱地土壤肥力和玉米产量的影响[J]. 中国土壤与肥料, 2019(6):182-189. |
Qiu YS, Wang XN, Li PF, et al. Effects of different types of organic fertilizers and their amounts on dryland soil fertility and corn yield in current season[J]. Soils and Fertilizers in China, 2019(6):182-189. | |
[3] | 王梦雅, 符云鹏, 贾辉, 等. 不同菌肥对土壤养分、酶活性和微生物功能多样性的影响[J]. 中国烟草科学, 2018,39(1):57-63. |
Wang MY, Fu YP, Jia H, et al. Effects of different bacterial fertilizers on soil nutrients, enzyme activities and microbial functional diversity[J]. China Tobacco Science, 2018,39(1):57-63. | |
[4] | 卢培娜, 刘景辉, 赵宝平, 等. 菌肥对盐碱地土壤特性及燕麦根系分泌物的影响[J]. 作物杂志, 2017(5):85-92. |
Lu PN, Liu JH, Zhao BP, et al. Effects of bacterial manure on saline-alkaline soil characteristics and oat root exudates[J]. Crop Journal, 2017(5):85-92. | |
[5] | 关菁, 史利平. 复合微生物肥和生物有机肥对不同土壤改良作用的机理探究[J]. 现代农业, 2016(1):28. |
Guan J, Shi LP. Research on the mechanism of compound microbial fertilizer and bio-organic fertilizer on different soil improvement[J]. Modern Agriculture, 2016(1):28. | |
[6] | 杨美英, 王春红, 武志海, 等. 不同条件下两株溶磷菌溶磷量及葡萄糖脱氢酶基因表达与酶活分析[J]. 微生物学报, 2016,56(4):651-663. |
Yang MY, Wang CH, Wu ZH, et al. Phosphate solubilization and glucose dehydrogenase gene expression and enzyme activity analysis of two phosphate solubilizing bacteria under different conditions[J]. Acta Microbiology, 2016,56(4):651-663. | |
[7] |
Sashidhar B, Podile AR. Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase[J]. J Appl Microbiol, 2010,109(1):1-12.
doi: 10.1111/jam.2010.109.issue-1 URL |
[8] |
Hauser F, Pessi G, Friberg M, et al. Dissection of the Bradyrhizobium japonicum NifA+sigma54 regulon, and identification of a ferredoxin gene(Fdxn)for symbiotic nitrogen fixation[J]. Mol Genet Genomics, 2007,278(3):255-271.
pmid: 17569992 |
[9] |
Selvakumar G, Yi PH, Lee SH, et al. Hairy vetch, compost and chemical fertilizer management effects on red pepper yield, quality, and soil microbial population[J]. Horticulture, Environment, and Biotechnology, 2018,59(5):607-614.
doi: 10.1007/s13580-018-0078-z URL |
[10] | 刘燕, 潘婷, 孙萍, 等. 农用微生物菌肥在黄瓜上的应用效果研究[J]. 现代农业科技, 2020(6):60-61. |
Liu Y, Pan T, Sun P, et al. Study on the application effect of agricultural microbial fertilizer on cucumber[J]. Modern Agricultural Science and Technology, 2020(6):60-61. | |
[11] | 王书娟, 齐合玉, 孙超, 等. 微生物菌肥对大棚番茄的影响[J]. 蔬菜, 2020(1):34-37. |
Wang SJ, Qi HY, Sun C, et al. The effect of microbial fertilizer on tomato in greenhouse[J]. Vegetables, 2020(1):34-37. | |
[12] | 黄玉波, 庄秋丽, 李习军. 复合生物菌肥在大豆种植上的应用效果初报[J]. 农业科技通讯, 2014(10):114-115. |
Huang YB, Zhuang QL, Li XJ. Preliminary report on the application effect of compound biological bacterial fertilizer on soybean planting[J]. Bulletin of Agricultural Science and Technology, 2014(10):114-115. | |
[13] | 李小炜, 田丽. 菌肥对西北半干旱区大棚黄瓜生长及产质量的影响[J]. 贵州农业科学, 2019(8):93-96. |
Li XW, Tian L. Effects of bacterial manure on the growth, yield and quality of cucumber in greenhouse in semi-arid area of northwest China[J]. Guizhou Agricultural Sciences, 2019(8):93-96. | |
[14] | 余小兰, 李光义, 邹雨坤, 等. 蚯蚓粪和巨大芽孢杆菌互作对小白菜产量与品质的影响[J]. 中国土壤与肥料, 2020(2):206-212. |
Yu XL, Li GY, Zou YK, et al. The interaction of vermicompost and Bacillus megaterium on the yield and quality of Chinese cabbage[J]. Soils and Fertilizers in China, 2020(2):206-212. | |
[15] | 庞强强, 蔡兴来, 周曼, 等. 微生物菌肥对设施白菜生长、品质和土壤酶活性的影响[J]. 热带农业科学, 2018,38(4):20-23. |
Pang Q, Cai XL, Zhou M, et al. Effects of microbial fertilizer on the growth, quality and soil enzyme activity of cabbage in greenhouse[J]. Tropical Agricultural Sciences, 2018,38(4):20-23. | |
[16] | 赵达, 傅俊范, 裘季燕, 等. 枯草芽孢杆菌在植病生防中的作用机制与应用[J]. 辽宁农业科学, 2007(1):46-48. |
Zhao D, Fu JF, Qiu JY, et al. Mechanism and application of Bacillus subtilis in biocontrol of plant diseases[J]. Liaoning Agricultural Sciences, 2007(1):46-48. | |
[17] |
Lee S, Trinh CS, Lee WJ, et al. Bacillus Subtilis strain L1 promotes nitrate reductase activity in Arabidopsis and elicits enhanced growth performance in Arabidopsis, lettuce, and wheat[J]. J Plant Res, 2020,133(2):231-244.
doi: 10.1007/s10265-019-01160-4 URL |
[18] | 蒋永梅, 高亚敏, 姚拓, 等. 植物根际促生菌(PGPR)对非宿主植物猫尾草和小黑麦生长的促生作用[J]. 草业科学, 2018,35(8):1910-1918. |
Jiang YM, Gao YM, Yao T, et al. Growth-promoting effects of plant rhizosphere growth promoting bacteria(PGPR)on the growth of non-host plants Timothy grass and triticale[J]. Pratacultura Sci, 2018,35(8):1910-1918. | |
[19] | Franco-Sierra ND, Posada LF, Santa-Maria G, et al. Bacillus Subtilis Ea-Cb0575 genome reveals clues for plant growth promotion and potential for sustainable agriculture[J]. Funct Integr Genomics, 2020(20):575-589. |
[20] |
Cakmakci R, Mosber G, Milton AH, et al. The effect of auxin and auxin-producing bacteria on the growth, essential oil yield, and composition in medicinal and aromatic plants[J]. Curr Microbiol, 2020,77(4):564-577.
doi: 10.1007/s00284-020-01917-4 URL |
[21] |
Egorshina AA, Khairullin RM, Sakhabutdinova AR, et al. Involvement of phytohormones in the development of interaction between wheat seedlings and endophytic Bacillus subtilis strain 11bm[J]. Russian J Plant Physiol, 2011,59(1):134-140.
doi: 10.1134/S1021443711050062 URL |
[22] |
Parray JA, Jan S, Kamili AN, et al. Current perspectives on plant growth-promoting rhizobacteria[J]. Journal of Plant Growth Regulation, 2016,35(3):877-902.
doi: 10.1007/s00344-016-9583-4 URL |
[23] |
Vacheron J, Desbrosses G, Bouffaud ML, et al. Plant growth-promoting Rhizobacteria and root system functioning[J]. Front Plant Sci, 2013,4:356.
doi: 10.3389/fpls.2013.00356 pmid: 24062756 |
[24] |
Argueso CT, Hansen M, Kieber JJ. Regulation of ethylene biosynjournal[J]. J Plant Growth Regul, 2007,26(2):92-105.
doi: 10.1007/s00344-007-0013-5 URL |
[25] |
Glick BR. Modulation of plant ethylene levels by the bacterial enzyme Acc deaminase[J]. FEMS Microbiol Lett, 2005,251(1):1-7.
doi: 10.1016/j.femsle.2005.07.030 URL |
[26] |
Glick BR. Bacteria with Acc deaminase can promote plant growth and help to feed the world[J]. Microbiol Res, 2014,169(1):30-39.
doi: 10.1016/j.micres.2013.09.009 URL |
[27] | 徐瑛, 郭晓农, 蔡德育. 解淀粉芽孢杆菌11B91对藜麦生长影响的初探[J]. 大麦与谷类科学, 2019,36(5):10-14. |
Xu Y, Guo XN, Cai DY. The effect of Bacillus amyloliquefaciens 11B91 on the growth of quinoa[J]. Barley and Cereal Sciences, 2019,36(5):10-14. | |
[28] | 李英楠, 曹正, 杜南山, 等. 三种PGPR菌株对黄瓜生长及根际土壤环境的影响[J]. 北方园艺, 2019(24):21-27. |
Li YN, Cao Z, Du NS, et al. Effects of three PGPR strains on cucumber growth and rhizosphere soil environment[J]. Northern Horticulture, 2019(24):21-27. | |
[29] | 吕鹏超, 王成慧, 林悦香, 等. 复合微生物菌剂对温室黄瓜生长和品质的影响[J]. 安徽农学通报, 2020,26(17):47-49, 131. |
Lv PC, Wang CH, Lin YX, et al. Effect of compound microbial inoculants on the growth and quality of cucumber in greenhouse[J]. Anhui Agricultural Science Bulletin, 2020,26(17):47-49, 131. | |
[30] |
Pandey S, Gupta S, Ramawat N. Unravelling the potential of microbes isolated from rhizospheric soil of chickpea(Cicer Arietinum)as plant growth promoter[J]. 3 Biotech, 2019,9(7):277.
doi: 10.1007/s13205-019-1809-2 URL |
[31] |
Lee S, Yap M, Behringer G, et al. Volatile organic compounds emitted by trichoderma species mediate plant growth[J]. Fungal Biol Biotechnol, 2016,3:7.
doi: 10.1186/s40694-016-0025-7 URL |
[32] | 吕俊, 付春, 肖析蒙, 等. 植物根际促生菌对大蒜的促生、抗病作用研究[J]. 中国农学通报, 2020,36(24):146-153. |
Lv J, Fu C, Xiao XM, et al. Research on the growth-promoting and disease-resistant effects of plant rhizosphere growth-promoting bacteria on garlic[J]. Chinese Agricultural Science Bulletin, 2020,36(24):146-153. | |
[33] | 刘彩云, 赵静. 生防菌株LB-1培养液对黄瓜的抑病促生作用[J]. 植物病理学报, 2020,50(6):731-738. |
Liu CY, Zhao J. The anti-disease and growth-promoting effects of biocontrol strain LB-1 on cucumber[J]. Chinese Journal of Phytopathology, 2020,50(6):731-738. | |
[34] | 董春娟, 李亮, 曹宁, 等. 苯丙氨酸解氨酶在诱导黄瓜幼苗抗寒性中的作用[J]. 应用生态学报, 2015,26(7):2041-2049. |
Dong CJ, Li L, Cao N, et al. The role of phenylalanine ammonia lyase in inducing cold resistance of cucumber seedlings[J]. Chinese Journal of Applied Ecology, 2015,26(7):2041-2049. | |
[35] |
Holzapfel C, Shahrokh P, Kafkewitz D. Polyphenol oxidase activity in the roots of seedlings of bromus(poaceae)and other grass genera[J]. Am J Bot, 2010,97(7):1195-1199.
doi: 10.3732/ajb.0900337 pmid: 21616870 |
[36] |
Vogt T. Phenylpropanoid biosynjournal[J]. Mol Plant, 2010,3(1):2-20.
doi: 10.1093/mp/ssp106 URL |
[37] | 谢东锋, 王国强, 谢荣, 等. 不同微生物菌肥处理连作土壤对黄瓜生长及防御性酶的影响[J]. 福建农业学报, 2018,33(7):696-701. |
Xie DF, Wang GQ, Xie R, et al. Effects of continuous cropping soil treated with different microbial fertilizers on cucumber growth and defensive enzymes[J]. Fujian Journal of Agricultural Sciences, 2018,33(7):696-701. | |
[38] | 周游, 杨腊英, 汪军, 等. 枯草芽孢杆菌和绿色木霉协同促进芹菜生长的研究[J]. 中国土壤与肥料, 2020(2):213-219. |
Zhou Y, Yang LY, Wang J, et al. Synergistic promotion of celery growth by Bacillus subtilis and Trichoderma viride[J]. Soils and Fertilizers in China, 2020(2):213-219. | |
[39] | 台莲梅, 郭永霞, 张亚玲, 等. 木霉生防菌对大豆幼苗的促生作用及对根腐病的防治效果[J]. 安徽农业科学, 2013,41(11):4820-4821. |
Tai LM, Guo YX, Zhang YL, et al. Growth-promoting effects of Trichoderma biocontrol bacteria on soybean seedlings and root rot control[J]. Journal of Anhui Agricultural Sciences, 2013,41(11):4820-4821. | |
[40] | 成瑢, 董铮, 李魏, 等. 大豆根腐病研究进展[J]. 中国农学通报, 2016,32(8):58-62. |
Cheng R, Dong Z, Li Wei, et al. Research progress on soybean root rot[J]. Chinese Agricultural Science Bulletin, 2016,32(8):58-62. | |
[41] | 高同国, 李术娜, 张冬冬, 等. 大豆根腐病生防细菌优势菌株的筛选、鉴定及生防效果验证[J]. 大豆科学, 2015,34(4):661-665. |
Gao TG, Li SN, Zhang D, et al. Screening, identification and verification of dominant bacterial strains for biocontrol of soybean root rot[J]. Soybean Science, 2015,34(4):661-665. | |
[42] | 张淑梅, 王玉霞, 赵晓宇, 等. 生物拌种剂防治大豆根腐病效果和机制[J]. 大豆科学, 2009,28(5):863-868, 874. |
Zhang SM, Wang YX, Zhao XY, et al. The effect and mechanism of biological seed dressing agent on preventing and controlling soybean root rot[J]. Soybean Science, 2009,28(5):863-868, 874. | |
[43] |
Chen Y, Xu Y, Zhou T, et al. Biocontrol of fusarium Wilt disease in strawberries using bioorganic fertilizer fortified with Bacillus Licheniformis X-1 and Bacillus Methylotrophicus Z-1[J]. 3 Biotech, 2020,10(2):80.
doi: 10.1007/s13205-020-2060-6 pmid: 32099731 |
[44] |
Xu SJ, Park DH, Kim JY, et al. Biological control of gray mold and growth promotion of tomato using Bacillus spp. isolated from soil[J]. Tropical Plant Pathology, 2016,41(3):169-176.
doi: 10.1007/s40858-016-0082-8 URL |
[45] |
Sotoyama K, Akutsu K, Nakajima M. Suppression of bacterial wilt of Tomato by soil amendment with mushroom compost containing Bacillus Amyloliquefaciens Iumc7[J]. Journal of General Plant Pathology, 2016,83(1):51-55.
doi: 10.1007/s10327-016-0690-7 URL |
[46] | 卢冬雪, 杨美英, 岳胜天, 等. 植物根际促生菌的促生作用及促生机制研究进展[C]. 全国植物生物技术发展与植物逆境生理研究前沿动态研讨会. 海口, 2017. |
Lu DX, Yang MH, Yue ST, et al. Research progress on growth-promoting effects and growth-promoting mechanisms of plant rhizosphere growth-promoting bacteria[C]. National Symposium on the Frontiers of Plant Biotechnology Development and Plant Stress Physiology. Haikou, 2017. | |
[47] |
Chi F, Shen SH, Cheng HP, et al. Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology[J]. Appl Environ Microbiol, 2005,71(11):7271-7278.
doi: 10.1128/AEM.71.11.7271-7278.2005 URL |
[48] |
James EK, Gyaneshwar P, Reddy PM, et al. Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67[J]. Molecular Plant-Microbe Interactions, 2002,15(9):894-906.
doi: 10.1094/MPMI.2002.15.9.894 URL |
[49] |
Spaepen S, Vanderleyden J, Remans R. Indole-3-Acetic acid in microbial and microorganism-plant signaling[J]. FEMS Microbiol Rev, 2007,31(4):425-448.
pmid: 17509086 |
[50] | 崔薇薇. 植物根际促生菌的研究进展[J]. 辽宁农业科学, 2010(2):35-39. |
Cui W. Research progress of plant rhizosphere growth-promoting bacteria[J]. Liaoning Agricultural Sciences, 2010(2):35-39. | |
[51] | 刘邮洲, Lu SE, Baird SM, 等. 绿针假单胞菌Yl-1抗细菌活性相关基因的克隆和分析[J]. 植物病理学报, 2015,45(3):307-316. |
Liu YZ, Lu SE, Baird SM, et al. Cloning and analysis of genes related to antibacterial activity of Pseudomonas chlorophylla Yl-1[J]. Acta Phytopathology, 2015,45(3):307-316. | |
[52] | 向亚萍, 周华飞, 刘永锋, 等. 解淀粉芽孢杆菌B1619脂肽类抗生素的分离鉴定及其对番茄枯萎病菌的抑制作用[J]. 中国农业科学, 2016,49(15):2935-2944. |
Xiang YP, Zhou HF, Liu YF, et al. Isolation and identification of Bacillus amyloliquefaciens B1619 lipopeptide antibiotics and their inhibitory effects on tomato Fusarium wilt[J]. China Agricultural Sciences, 2016,49(15):2935-2944. | |
[53] | 黄伟红, 丁延芹, 姚良同, 等. Pseudomonas mosselii E1铁载体合成相关基因cysI的克隆与功能初步分析[J]. 微生物学报, 2007(5):910-913. |
Huang WH, Ding YQ, Yao LT, et al. Cloning and preliminary function analysis of Pseudomonas mosselii E1 siderophore synjournal-related gene cysI[J]. Acta Microbiology, 2007(5):910-913. | |
[54] | 陈香, 唐彤彤, 孙星, 等. 对黄瓜枯萎病具防效的海洋源芽孢杆菌Y3F的鉴定[J]. 微生物学通报, 2017,44(10):2370-2379. |
Chen X, Tang T, Sun X, et al. Identification of marine-derived Bacillus Y3F that is effective against cucumber Fusarium wilt[J]. Microbiology Bulletin, 2017,44(10):2370-2379. | |
[55] |
Huang CN, Lin CP, Hsieh FC, et al. Characterization and evaluation of Bacillus amyloliquefaciens strain Wf02 regarding its biocontrol activities and genetic responses against bacterial wilt in two different resistant tomato cultivars[J]. World J Microbiol Biotechnol, 2016,32(11):183.
doi: 10.1007/s11274-016-2143-z URL |
[56] | 李德全, 陈志谊, 聂亚锋. 生防菌BS-916及高效突变菌株抗菌物质及其对水稻抗性诱导作用的研究[J]. 植物病理学报, 2008,38(2):192-198. |
Li DQ, Chen ZY, Nie YF. Biocontrol bacteria BS-916 and highly efficient mutant strain antibacterial substances and their resistance induction effects on rice[J]. Acta Phytopathology, 2008,38(2):192-198. | |
[57] | 徐雪东, 张超, 秦成, 等. 干旱下接种根际促生细菌对苹果实生苗光合和生理生态特性的影响[J]. 应用生态学报, 2019,30(10):3501-3508. |
Xu XD, Zhang C, Qin C, et al. Effects of rhizosphere growth-promoting bacteria inoculation on photosynthetic and physiological and ecological characteristics of apple seedlings under drought[J]. Chinese Journal of Applied Ecology, 2019,30(10):3501-3508. | |
[58] | Ghosh D, Gupta A, Mohapatra S. Dynamics of endogenous hormone regulation in plants by phytohormone secreting rhizobacteria under water-stress[J]. Symbiosis, 2019(77):265-278. |
[59] | 汪敦飞, 郑新宇, 肖清铁, 等. 铜绿假单胞菌对镉胁迫苗期水稻根系活力及叶片生理特性的影响[J]. 应用生态学报, 2019,30(8):2767-2774. |
Wang DF, Zheng XY, Xiao QT, et al. Effects of Pseudomonas aeruginosa on root vigor and leaf physiological characteristics of rice seedlings under cadmium stress[J]. The Journal of Applied Ecology, 2019,30(8):2767-2774. | |
[60] | 张晓佳, 解植彩, 张文晋, 等. 短小芽孢杆菌对盐胁迫下甘草生长及抗氧化系统的影响[J]. 时珍国医国药, 2019,30(3):688-691. |
Zhang XJ, Xie ZC, Zhang WJ, et al. Effects of Bacillus pumilus on the growth and antioxidant system of licorice under salt stress[J]. Lishizhen Medicine and Materia Medica Research, 2019,30(3):688-691. | |
[61] | 王世平. 试析有机农业种植土壤培肥技术[J]. 农业与技术, 2020,40(8):95-96. |
Wang SP. Analysis on soil fertility improvement techniques for organic agriculture planting[J]. Agriculture & Technology, 2020,40(8):95-96. |
[1] | WANG Tian-yi, WANG Rong-huan, WANG Xia-qing, ZHANG Ru-yang, XU Rui-bin, JIAO Yan-yan, SUN Xuan, WANG Ji-dong, SONG Wei, ZHAO Jiu-ran. Research in Maize Dwarf Genes and Dwarf Breeding [J]. Biotechnology Bulletin, 2023, 39(8): 43-51. |
[2] | ZHANG Bei, REN Fu-sen, ZHAO Yang, GUO Zhi-wei, SUN Qiang, LIU He-juan, ZHEN Jun-qi, WANG Tong-tong, CHENG Xiang-jie. Advances in the Mechanism of Pepper in the Response to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(7): 37-47. |
[3] | ZHANG He-chen, YUAN Xin, GAO Jie, WANG Xiao-chen, WANG Hui-juan, LI Yan-min, WANG Li-min, FU Zhen-zhu, LI Bao-yin. Mechanism of Flower Petal Coloration and Molecular Breeding [J]. Biotechnology Bulletin, 2023, 39(5): 23-31. |
[4] | QI Fang-ting, HUANG He. Research Advance in the Regulation Mechanism of Flower Spots Formation in Ornamental Plant [J]. Biotechnology Bulletin, 2023, 39(10): 17-28. |
[5] | MA Sai-mai, LI Tong-yuan, MA Yan-jun, HAN Fu-jun, PENG Hai, KONG Wei-bao. Research Progress in Chitinase Involving in the Biocontrol of Crop Diseases and Pests [J]. Biotechnology Bulletin, 2023, 39(10): 29-40. |
[6] | XIE Wei, LIU Chun-ming. Commercialization of Biological Breeding in China: Opportunities and Policy Issues [J]. Biotechnology Bulletin, 2023, 39(1): 16-20. |
[7] | JIN Yun-qian, WANG Bin, GUO Shu-lei, ZHAO Lin-xi, HAN Zan-ping. Research Progress in Gibberellin Regulation on Maize Seed Vigor [J]. Biotechnology Bulletin, 2023, 39(1): 84-94. |
[8] | LIN Ying, YANG Wen-li, ZHOU Ling-yan, JIANG Da-gang. Research Progress in Agricultural Genetically Modified Nucleic Acid Reference Materials [J]. Biotechnology Bulletin, 2022, 38(8): 52-59. |
[9] | LIU Zi-ran, ZHEN Zhen, CHEN Qiang, LI Yue-ying, WANG Ze, PANG Hong-bo. Research Progress in Plant Response to Cd Stress [J]. Biotechnology Bulletin, 2022, 38(6): 13-26. |
[10] | XU Miao-yun, XING Li-juan, YANG Ming-yu, ZHANG Ling-xuan, WANG Lei, LIU Yue-ping. Research Progress in Germplasm Innovation and Utilization of High Amylose Cereal Crops [J]. Biotechnology Bulletin, 2022, 38(4): 20-28. |
[11] | LEI Chun-xia, LI Can-hui, CHEN Yong-kun, GONG Ming. Physiological and Biochemical Basis and Molecular Mechanism of Solanum tuberosum Tuberization [J]. Biotechnology Bulletin, 2022, 38(4): 44-57. |
[12] | YIPARE·Paerhati , ZULIHUMAER·Rouzi , TIAN Yong-zhi, ZHU Yan-lei, LI Yuan-ting, MA Xiao-lin. Research Progress in Diversity of Endophytes Microbial Communities Isolated from Desert Plants and Their Strengthening Effects on Drought and Salt Tolerance in Crops [J]. Biotechnology Bulletin, 2022, 38(12): 88-99. |
[13] | WU Qi-man, TIAN Shi-han, LI Yun-ye, PAN Ying-jie, ZHANG Ying. Effects of Microbial Fertilizer on Cucumis sativus L. Growth,Yield and Quality [J]. Biotechnology Bulletin, 2022, 38(1): 125-131. |
[14] | WANG Ting, YANG Yang, LI Jin-ping, DU Kun. Research Progress in the Effects of Genetically Modified Crops on Soil Microbial Community [J]. Biotechnology Bulletin, 2021, 37(9): 255-265. |
[15] | LI Qian, JIANG Wen-bo, WANG Yu-xiang, ZHANG Bo, PANG Yong-zhen. Research Progresses on the Drought Resistance of Medicago at Molecular Level [J]. Biotechnology Bulletin, 2021, 37(8): 243-252. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||