Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (9): 258-263.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1177
Previous Articles Next Articles
YANG Xiao-feng1,2(), QIN Xiao-wei1, GUO Ze-yuan1, LV Li-hua1()
Received:
2021-07-28
Online:
2022-09-26
Published:
2022-10-11
Contact:
LV Li-hua
E-mail:463423663@qq.com;lihualvsxau@126.com
YANG Xiao-feng, QIN Xiao-wei, GUO Ze-yuan, LV Li-hua. Effects of Proanthocyanidin on the Proliferation of Sheep Follicular Granulosa Cells in vitro[J]. Biotechnology Bulletin, 2022, 38(9): 258-263.
基因名称Gene name | 引物序列 Primer sequence(5'-3') |
---|---|
p21 | F:ACGTCTCAGGAGGACCACTT, R:TGGTAGAAATCTGTCATGCTGGT |
p27 | F:TACTTGGGTCTCAGGCAAAC, R:GCTCTTTTGTTTTGAGGAGAGG |
caspase-8 | F:ACTGTGTGGAGCAGGTAACA, R:CCGGCTTAGGAACTTGAGGG |
18S | F:GTAACCCGTTGAACCCCATT, R:CCATCCAATCGGTAGTAGCG |
Table 1 Primer sequences of RT-qPCR
基因名称Gene name | 引物序列 Primer sequence(5'-3') |
---|---|
p21 | F:ACGTCTCAGGAGGACCACTT, R:TGGTAGAAATCTGTCATGCTGGT |
p27 | F:TACTTGGGTCTCAGGCAAAC, R:GCTCTTTTGTTTTGAGGAGAGG |
caspase-8 | F:ACTGTGTGGAGCAGGTAACA, R:CCGGCTTAGGAACTTGAGGG |
18S | F:GTAACCCGTTGAACCCCATT, R:CCATCCAATCGGTAGTAGCG |
Fig. 1 Growth status of sheep follicular granulosa cells in vitro cultured with different concentrations of PC for different time(100×) A1:48 h,0 μg/mL;B1:48 h,20 μg/mL;B2:48 h,50 μg/mL;B3:48 h,70 μg/mL;A2:24 h, 0 μg/mL;A3:72 h, 0 μg/mL;C:24 h, 50 μg/mL;D:72 h, 50 μg/mL
Fig. 2 OD values of granulosa cells cultured in vitro after 24,48 and 72 h treatment with different concentration of PC Superscript lowercase letters indicate comparison results at 0.05 significance level
Fig. 3 mRNA expression of proliferation-related genes in sheep granulosa cells Superscript capital letters indicate comparison results at 0.01 significance level
[1] |
Payne MJ, Hurst WJ, Stuart DA, et al. Determination of total procyanidins in selected chocolate and confectionery products using DMAC[J]. J AOAC Int, 2010, 93(1):89-96.
pmid: 20334169 |
[2] |
Qi Y, Chen SL, Lu YK, et al. Grape seed proanthocyanidin extract ameliorates ionizing radiation-induced hematopoietic stem progenitor cell injury by regulating Foxo1 in mice[J]. Free Radic Biol Med, 2021, 174:144-156.
doi: 10.1016/j.freeradbiomed.2021.08.010 URL |
[3] | 张霞, 姜力, 李娜, 等. 白花木瓜多聚原花青素降解条件优化[J]. 西南林业大学学报:自然科学, 2017, 37(2):209-215. |
Zhang X, Jiang L, Li N, et al. Optimization for degradative process of polymeric proanthocyanidins from Chaenomeles cathayensis[J]. J Southwest For Univ Nat Sci, 2017, 37(2):209-215. | |
[4] | 王馨悦. 几种富含花青素果蔬的HPLC特征图谱构建及其生物活性研究[D]. 贵阳: 贵州师范大学, 2018. |
Wang XY. Study on the construction of HPLC characteristic chromatogram and bioactivity of several anthocyanin-rich fruits and vegetables[D]. Guiyang: Guizhou Normal University, 2018. | |
[5] | 梁祖培, 张燕, 熊波, 等. 天然植物中原花青素提取和纯化方法研究进展[J]. 食品安全质量检测学报, 2017, 8(8):3029-3036. |
Liang ZP, Zhang Y, Xiong B, et al. Advances in extraction and purification methods of procyanidine from natural plants[J]. J Food Saf Qual, 2017, 8(8):3029-3036. | |
[6] | 付歆欣. 原花青素在雌性生殖干细胞增殖和卵巢衰老中的作用研究[D]. 南昌: 南昌大学, 2019. |
Fu XX. The role of proanthocyanidin in the proliferation of female germline stem cells and ovarian aging[D]. Nanchang: Nanchang University, 2019. | |
[7] | 汪美容. P21、P27在宫颈病变中的表达及其临床意义[D]. 南昌: 南昌大学, 2018. |
Wang MR. Expression of P21 and P27 in cervical lesions and their clinical significance[D]. Nanchang: Nanchang University, 2018. | |
[8] | 焦燕, 邱倩, 杨再兴, 等. 淋巴细胞微粒刺激AKT/Foxo1阻滞气道上皮细胞周期的研究[J]. 第三军医大学学报, 2012, 34(24):2498-2502. |
Jiao Y, Qiu Q, Yang ZX, et al. Lymphocyte particles stimulates AKT/Foxo1 blocking airway epithelial cell cycle in vitro[J]. J Third Mil Med Univ, 2012, 34(24):2498-2502. | |
[9] | 曾嘉豪. 芍药苷对APP/PS1小鼠的神经细胞保护作用及机制研究[D]. 广州: 暨南大学, 2018. |
Zeng JH. The Effects of paeoniflorin on protection of nerve cells in APP/PS1 mice and its mechanism[D]. Guangzhou: Jinan University, 2018. | |
[10] |
Orning P, Lien E. Multiple roles of caspase-8 in cell death, inflammation, and innate immunity[J]. J Leukoc Biol, 2021, 109(1):121-141.
doi: 10.1002/JLB.3MR0420-305R URL |
[11] |
van Meerloo J, Kaspers GJL, Cloos J. Cell sensitivity assays:the MTT assay[J]. Methods Mol Biol, 2011, 731:237-245.
doi: 10.1007/978-1-61779-080-5_20 pmid: 21516412 |
[12] | Rio DC, Ares M Jr, Hannon GJ, et al. Purification of RNA using TRIzol(TRI reagent)[J]. Cold Spring Harb Protoc, 2010, 2010( 6): pdb. prot5439. |
[13] | Lv JM, Gouda M, Zhu YY, et al. Ultrasound-assisted extraction optimization of proanthocyanidins from kiwi(Actinidia chinensis)leaves and evaluation of its antioxidant activity[J]. Antioxidants(Basel), 2021, 10(8):1317. |
[14] |
Chen L, Yan FF, Chen WB, et al. Procyanidin from peanut skin induces antiproliferative effect in human prostate carcinoma cells DU145[J]. Chem Biol Interact, 2018, 288:12-23.
doi: 10.1016/j.cbi.2018.04.008 URL |
[15] |
Ottaviani JI, Heiss C, Spencer JPE, et al. Recommending flavanols and procyanidins for cardiovascular health:revisited[J]. Mol Aspects Med, 2018, 61:63-75.
doi: S0098-2997(18)30018-9 pmid: 29427606 |
[16] |
Xiao Y, Dong JL, Yin ZT, et al. Procyanidin B2 protects against d-galactose-induced mimetic aging in mice:Metabolites and microbiome analysis[J]. Food Chem Toxicol, 2018, 119:141-149.
doi: 10.1016/j.fct.2018.05.017 URL |
[17] |
Andersen-Civil AIS, Arora P, Williams AR. Regulation of enteric infection and immunity by dietary proanthocyanidins[J]. Front Immunol, 2021, 12:637603.
doi: 10.3389/fimmu.2021.637603 URL |
[18] |
Katiyar SK, Pal HC, Prasad R. Dietary proanthocyanidins prevent ultraviolet radiation-induced non-melanoma skin cancer through enhanced repair of damaged DNA-dependent activation of immune sensitivity[J]. Semin Cancer Biol, 2017, 46:138-145.
doi: S1044-579X(17)30094-9 pmid: 28412456 |
[19] |
Izumi T, Terauchi M. The diverse efficacy of food-derived proanthocyanidins for middle-aged and elderly women[J]. Nutrients, 2020, 12(12):3833.
doi: 10.3390/nu12123833 URL |
[20] |
Ong ALC, Ramasamy TS. Role of Sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming[J]. Ageing Res Rev, 2018, 43:64-80.
doi: S1568-1637(17)30271-4 pmid: 29476819 |
[21] | Hsu YC, Wu YT, Tsai CL, et al. Current understanding and future perspectives of the roles of sirtuins in the reprogramming and differentiation of pluripotent stem cells[J]. Exp Biol Med(Maywood), 2018, 243(6):563-575. |
[22] |
Tummers B, Green DR. Caspase-8:regulating life and death[J]. Immunol Rev, 2017, 277(1):76-89.
doi: 10.1111/imr.12541 pmid: 28462525 |
[23] | 陈会丛, 翟建英, 张广平, 等. 葡萄籽原花青素的毒理学研究[J]. 食品工业科技, 2014, 35(2):317-323. |
Chen HC, Zhai JY, Zhang GP, et al. Experimental studies on the toxic effect of grape seed proanthocyanidin extract[J]. Sci Technol Food Ind, 2014, 35(2):317-323. | |
[24] |
Huang LL, Pan C, Wang L, et al. Protective effects of grape seed proanthocyanidins on cardiovascular remodeling in DOCA-salt hypertension rats[J]. J Nutr Biochem, 2015, 26(8):841-849.
doi: 10.1016/j.jnutbio.2015.03.007 URL |
[25] |
Rodríguez-Pérez C, García-Villanova B, Guerra-Hernández E, et al. Grape seeds proanthocyanidins:an overview of in vivo bioactivity in animal models[J]. Nutrients, 2019, 11(10):2435.
doi: 10.3390/nu11102435 URL |
[26] |
Xiong F, Hu LQ, Zhang Y, et al. miR-22 inhibits mouse ovarian granulosa cell apoptosis by targeting SIRT1[J]. Biol Open, 2016, 5(3):367-371.
doi: 10.1242/bio.016907 pmid: 26912776 |
[27] |
Liu MY, Yin Y, Ye XY, et al. Resveratrol protects against age-associated infertility in mice[J]. Hum Reprod, 2013, 28(3):707-717.
doi: 10.1093/humrep/des437 URL |
[28] | 朱楠, 黄小圆, 李金晶, 等. 晚期糖基化终末产物对卵巢原始卵泡的影响[J]. 生殖医学杂志, 2018, 27(6):560-565. |
Zhu N, Huang XY, Li JJ, et al. Effect of advanced glycation end products on ovarian primordial follicles[J]. J Reproductive Med, 2018, 27(6):560-565. |
[1] | MA Yu-jing, DUAN Chun-hui, HE Ming-yang, ZHANG Ying-jie, YANG Ruo-chen, WANG Yong, LIU Yue-qin. Effects of Knockout of G0S2 Gene in Ovarian Granulosa Cell Proliferation, Steroids Hormones and Related Gene Expression [J]. Biotechnology Bulletin, 2023, 39(6): 325-334. |
[2] | JIANG Qing-chun, DU Jie, WANG Jia-cheng, YU Zhi-he, WANG Yun, LIU Zhong-yu. Expression and Function Analysis of Transcription Factor PcMYB2 from Polygonum cuspidatum [J]. Biotechnology Bulletin, 2023, 39(5): 217-223. |
[3] | YANG Xin-ran, WANG Jian-fang, MA Xin-hao, ZAN Lin-sen. Expression Analyses of m6A Methylase Genes in Bovine Adipogenesis [J]. Biotechnology Bulletin, 2022, 38(7): 70-79. |
[4] | SHENG Xue-qing, ZHAO Nan, LIN Ya-qiu, CHEN Ding-shuang, WANG Rui-long, LI Ao, WANG Yong, LI Yan-yan. Cloning and Expression Analysis of ZNF32 Gene in Goat [J]. Biotechnology Bulletin, 2022, 38(12): 300-311. |
[5] | WANG Shu-xuan, XIANG Gang, MA Xiao-jing, YU Jing. Construction of Galectin-1 Overexpressing 4T1 Mammary Tumor Cells and Its Effects on the Proliferation and Migration [J]. Biotechnology Bulletin, 2022, 38(11): 97-103. |
[6] | LI Dan, DU Meng-tan, XIU Ming-xia, LIU Xing-jian, ZHANG Zhi-fang, LI Yi-nv. Expression of Sheep Interferon Alpha in Silkworm and Determination of Its Activity Against Peste Des Petits Ruminants Virus [J]. Biotechnology Bulletin, 2022, 38(1): 187-193. |
[7] | JIN Qiu-xia, WANG Si-hong, JIN Li-hua. Research Progress on Drosophila Intestinal Stem Cells and Intestinal Microflora [J]. Biotechnology Bulletin, 2021, 37(4): 245-250. |
[8] | WANG Zhao-yu, CHANG Ming-chang, XU Li-jing, MENG Jun-long, ZUO Ning-ke, PAN Xu. Structural Characterization,Physicochemical Properties of Melanin from Fruiting Body,Hyphae and Spores of Ganoderma lucidum [J]. Biotechnology Bulletin, 2021, 37(11): 81-91. |
[9] | ZHENG Fang-fang, LIN Jun-sheng. Selection and Specificity of Nucleic Acid Aptamers for a Proliferation Inducing Ligand [J]. Biotechnology Bulletin, 2021, 37(10): 196-202. |
[10] | SONG Shao-zheng, LU Rui, ZHANG Ting, HE Zheng-yi, WU Zhao-manqiu, CHENG Yong, ZHOU Ming-ming. Research Progress of CRISPR /Cas9 Gene Editing Technology in Goat and Sheep [J]. Biotechnology Bulletin, 2020, 36(3): 62-68. |
[11] | YANG Lei, YE Zhou-jie, LI Zhao-long, SHEN Yang-kun, FU Ya-juan. Effects of TET2 on T Cell Proliferation by Electroporation [J]. Biotechnology Bulletin, 2020, 36(1): 229-237. |
[12] | BAO Jing-jing, PU Ya-bin, MA Yue-hui, ZHAO Qian-jun. Identification and Analysis of Alternative Splicing in Longissimus dorsi of Sheep at Different Development Stages [J]. Biotechnology Bulletin, 2019, 35(7): 33-38. |
[13] | LI Biao, ZHANG Rui-ying, WANG Xiao-qi, ZHANG Cun-fang, DUAN Zi-yuan. Microsatellite Polymorphism and Its Correlation Analysis with Body Size Traits of Tan Sheep [J]. Biotechnology Bulletin, 2019, 35(6): 131-137. |
[14] | ZHANG Rui, LANG Xia, WU Jian-ping, WANG Cai-lian, LIANG Ting-yu. Correlation Analysis Between Microsatellite Polymorphism and Production Traits in Black Fur Sheep in Min County [J]. Biotechnology Bulletin, 2019, 35(11): 55-63. |
[15] | TIAN De-hong, LIU Si-jia, DING Ning, LI Xue, ZHAO Kai. Research on SNP Associated with Multiparous Trait in Double-lamb of Tan Sheep by SNaPshot Assay [J]. Biotechnology Bulletin, 2019, 35(10): 152-161. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||