Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (5): 237-247.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1104
Previous Articles Next Articles
YU Li-jun1(), WANG Qiao-mei2,3, PENG Wen-shu2,3, YAN Liang2,3(), YANG Rui-juan1,2,3()
Received:
2023-11-22
Online:
2024-05-26
Published:
2024-06-13
Contact:
YAN Liang, YANG Rui-juan
E-mail:1421547579@qq.com;jacky_4680@163.com;yangruijuan@pecxy.com
YU Li-jun, WANG Qiao-mei, PENG Wen-shu, YAN Liang, YANG Rui-juan. Study on the Microbial Community of Rhizosphere Soil in Ancient Tea Garden and Modern Organic Tea Garden in Jingmai Mountain[J]. Biotechnology Bulletin, 2024, 40(5): 237-247.
土壤养分Soil nutrients | GS | TS |
---|---|---|
阳离子交换量Cation exchange capacity/(mol·kg-1) | 22.50±0.69a | 24.60±0.98a |
有机质Soil organic matter /(g·kg-1) | 83.60±0.98a | 106.60±0.06b |
腐殖质Soil humus /(g·kg-1) | 43.00±0.46a | 54.40±0.46b |
氨氮Ammonia nitrogen /(mg·kg-1) | 418.90±3.00a | 513.00±1.33b |
铵态氮Ammonium nitrogen /(mg·kg-1) | 508.70±1.21a | 662.90±0.52b |
有效磷Available phosphorous /(mg·kg-1) | 0.90±0.02a | 66.40±0.52b |
速效钾Available K /(mg·kg-1) | 61.00±0.17a | 61.00±0.69a |
水分Moisture /% | 2.50±0.02a | 2.90±0.08b |
Table 1 Soil nutrient contents in different tea plantations
土壤养分Soil nutrients | GS | TS |
---|---|---|
阳离子交换量Cation exchange capacity/(mol·kg-1) | 22.50±0.69a | 24.60±0.98a |
有机质Soil organic matter /(g·kg-1) | 83.60±0.98a | 106.60±0.06b |
腐殖质Soil humus /(g·kg-1) | 43.00±0.46a | 54.40±0.46b |
氨氮Ammonia nitrogen /(mg·kg-1) | 418.90±3.00a | 513.00±1.33b |
铵态氮Ammonium nitrogen /(mg·kg-1) | 508.70±1.21a | 662.90±0.52b |
有效磷Available phosphorous /(mg·kg-1) | 0.90±0.02a | 66.40±0.52b |
速效钾Available K /(mg·kg-1) | 61.00±0.17a | 61.00±0.69a |
水分Moisture /% | 2.50±0.02a | 2.90±0.08b |
Fig. 1 Rarefaction curves of microbial communities in the soil samples based on OTU richness GS1-GS3: Soil sample 1-3 in the Ancient Tea Garden. TS1-TS3: Soil sample 1-3 in the Organic Tea Garden
样品代号Sample | 丰富度指数Richness index | 多样性指数Diversity index | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ACE index | Chao 1 index | Simpson index | Shannon index | |||||||||
细菌Bacteria | 真菌Fungi | 细菌Bacteria | 真菌Fungi | 细菌Bacteria | 真菌Fungi | 细菌Bacteria | 真菌Fungi | |||||
GS | 800.63±34.61a | 259.06±25.78a | 806.52±32.86a | 261.17±27.19a | 0.10±0.03a | 0.07±0.05a | 4.20±0.33a | 3.99±0.61a | ||||
TS | 886.57±22.31a | 295.12±21.03a | 892.61±23.77a | 298.08±20.68a | 0.02±0.00b | 0.09±0.02a | 5.28±0.03b | 3.43±0.12a |
Table 2 Microbial Alpha diversity analysis of rhizosphere soil
样品代号Sample | 丰富度指数Richness index | 多样性指数Diversity index | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ACE index | Chao 1 index | Simpson index | Shannon index | |||||||||
细菌Bacteria | 真菌Fungi | 细菌Bacteria | 真菌Fungi | 细菌Bacteria | 真菌Fungi | 细菌Bacteria | 真菌Fungi | |||||
GS | 800.63±34.61a | 259.06±25.78a | 806.52±32.86a | 261.17±27.19a | 0.10±0.03a | 0.07±0.05a | 4.20±0.33a | 3.99±0.61a | ||||
TS | 886.57±22.31a | 295.12±21.03a | 892.61±23.77a | 298.08±20.68a | 0.02±0.00b | 0.09±0.02a | 5.28±0.03b | 3.43±0.12a |
门Phylum | 科Family | 属Genus | OUT | GS/% | TS/% |
---|---|---|---|---|---|
Actinobacteria | Micrococcaceae | Arthrobacter | OTU1 | 30.08 | 8.54 |
Acidobacteria | uncultured_bacterium_o_Acidobacteriales | uncultured_bacterium_o_Acidobacteriales | OTU6 | - | 1.89 |
OTU13 | - | 1.79 | |||
OTU19 | - | 1.39 | |||
Solibacteraceae_Subgroup_3 | Candidatus_Solibacter | OTU37 | - | 1.45 | |
OTU174 | - | 1.37 | |||
OTU15 | - | 1.14 | |||
Bryobacter | OTU34 | - | 1.00 | ||
uncultured_bacterium_o_Subgroup_2 | uncultured_bacterium_o_Subgroup_2 | OTU9 | - | 1.20 | |
uncultured_bacterium_o_Subgroup_7 | OTU16 | 1.13 | - | ||
Streptomycetaceae | uncultured_bacterium_f_Streptomycetaceae | OTU8 | - | 1.22 | |
Bacteroidetes | Prevotellaceae | Prevotella_7 | OTU24 | 1.07 | - |
Chloroflexi | uncultured_bacterium_c_AD3 | uncultured_bacterium_c_AD3 | OTU3 | 7.49 | 1.68 |
OTU135 | 2.53 | - | |||
Proteobacteria | Xanthobacteraceae | uncultured_bacterium_f_Xanthobacteraceae | OTU7 | 3.25 | 4.13 |
OTU4 | - | 1.63 | |||
OTU11 | 1.31 | - | |||
Bradyrhizobium | OTU2 | 2.17 | 4.81 | ||
Unclassified | Acidibacter | OTU31 | - | 1.62 | |
Polyangiaceae | Pajaroellobacter | OTU28 | - | 1.27 | |
Unclassified | Acidibacter | OTU31 | 1.26 | - |
Table 3 Relative abundance of dominant species(relative abundance >1%)of bacteria in the rhizosphere soil of the two tea gardens
门Phylum | 科Family | 属Genus | OUT | GS/% | TS/% |
---|---|---|---|---|---|
Actinobacteria | Micrococcaceae | Arthrobacter | OTU1 | 30.08 | 8.54 |
Acidobacteria | uncultured_bacterium_o_Acidobacteriales | uncultured_bacterium_o_Acidobacteriales | OTU6 | - | 1.89 |
OTU13 | - | 1.79 | |||
OTU19 | - | 1.39 | |||
Solibacteraceae_Subgroup_3 | Candidatus_Solibacter | OTU37 | - | 1.45 | |
OTU174 | - | 1.37 | |||
OTU15 | - | 1.14 | |||
Bryobacter | OTU34 | - | 1.00 | ||
uncultured_bacterium_o_Subgroup_2 | uncultured_bacterium_o_Subgroup_2 | OTU9 | - | 1.20 | |
uncultured_bacterium_o_Subgroup_7 | OTU16 | 1.13 | - | ||
Streptomycetaceae | uncultured_bacterium_f_Streptomycetaceae | OTU8 | - | 1.22 | |
Bacteroidetes | Prevotellaceae | Prevotella_7 | OTU24 | 1.07 | - |
Chloroflexi | uncultured_bacterium_c_AD3 | uncultured_bacterium_c_AD3 | OTU3 | 7.49 | 1.68 |
OTU135 | 2.53 | - | |||
Proteobacteria | Xanthobacteraceae | uncultured_bacterium_f_Xanthobacteraceae | OTU7 | 3.25 | 4.13 |
OTU4 | - | 1.63 | |||
OTU11 | 1.31 | - | |||
Bradyrhizobium | OTU2 | 2.17 | 4.81 | ||
Unclassified | Acidibacter | OTU31 | - | 1.62 | |
Polyangiaceae | Pajaroellobacter | OTU28 | - | 1.27 | |
Unclassified | Acidibacter | OTU31 | 1.26 | - |
门Phylum | 科Family | 属Genus | OUT | GS/% | TS/% |
---|---|---|---|---|---|
Ascomycota | Chaetomiaceae | Unclassified | OTU9 | 4.01 | - |
OTU1 | - | 21.52 | |||
OTU13 | - | 2.16 | |||
Cladosporiaceae | Cladosporium | OTU17 | 1.42 | - | |
Clavicipitaceae | Metarhizium | OTU24 | 1.29 | - | |
Cordycipitaceae | Beauveria | OTU30 | 1.01 | - | |
Hypocreaceae | Trichoderma | OTU14 | - | 2.18 | |
OTU38 | - | 1.45 | |||
Nectriaceae | Unclassified | OTU5 | - | 4.34 | |
Ophiocordycipitaceae | Purpureocillium | OTU25 | - | 1.32 | |
Orbiliaceae | Arthrobotrys | OTU15 | 1.89 | - | |
Pseudeurotiaceae | Geomyces | OTU11 | 3.30 | - | |
Basidiomycota | Trimorphomycetaceae | Saitozyma | OTU6 | 1.70 | 3.75 |
Hygrophoraceae | Hygrocybe | OTU19 | 1.66 | - | |
Agaricaceae | Unclassified | OTU27 | 1.38 | - | |
Mortierellomycota | Mortierellaceae | Mortierella | OTU2 | 12.06 | 5.47 |
OTU3 | 7.80 | - | |||
OTU4 | 4.93 | - | |||
OTU1336 | 1.37 | - | |||
OTU213 | - | 9.83 | |||
OTU26 | - | 1.45 |
Table 4 Relative abundance of dominant species(relative abundance >1%)of fungi in the rhizosphere soil of the two tea gardens
门Phylum | 科Family | 属Genus | OUT | GS/% | TS/% |
---|---|---|---|---|---|
Ascomycota | Chaetomiaceae | Unclassified | OTU9 | 4.01 | - |
OTU1 | - | 21.52 | |||
OTU13 | - | 2.16 | |||
Cladosporiaceae | Cladosporium | OTU17 | 1.42 | - | |
Clavicipitaceae | Metarhizium | OTU24 | 1.29 | - | |
Cordycipitaceae | Beauveria | OTU30 | 1.01 | - | |
Hypocreaceae | Trichoderma | OTU14 | - | 2.18 | |
OTU38 | - | 1.45 | |||
Nectriaceae | Unclassified | OTU5 | - | 4.34 | |
Ophiocordycipitaceae | Purpureocillium | OTU25 | - | 1.32 | |
Orbiliaceae | Arthrobotrys | OTU15 | 1.89 | - | |
Pseudeurotiaceae | Geomyces | OTU11 | 3.30 | - | |
Basidiomycota | Trimorphomycetaceae | Saitozyma | OTU6 | 1.70 | 3.75 |
Hygrophoraceae | Hygrocybe | OTU19 | 1.66 | - | |
Agaricaceae | Unclassified | OTU27 | 1.38 | - | |
Mortierellomycota | Mortierellaceae | Mortierella | OTU2 | 12.06 | 5.47 |
OTU3 | 7.80 | - | |||
OTU4 | 4.93 | - | |||
OTU1336 | 1.37 | - | |||
OTU213 | - | 9.83 | |||
OTU26 | - | 1.45 |
Fig. 3 PCoA analysis, ANOSIM analysis and distance heatmap of microbial communities in the rhizosphere soil of the two tea gardens A: PCoA analysis of rhizosphere soil bacterial community species in the two tea gardens; B: ANOSIM analysis of rhizosphere soil bacterial community species in the two tea gardens; C: heatmap analysis of rhizosphere soil bacterial community species distance in the two tea gardens; D: PCoA analysis of rhizosphere soil fungal community species in the two tea gardens; E: ANOSIM analysis of rhizosphere soil fungal community species in the two tea gardens; F: heatmap analysis of rhizosphere soil fungal community species in the two tea gardens; F: heatmap analysis of rhizosphere soil bacterial community species distance in the two tea gardens
细菌 Bacterium | 占比 Proportion/% | 真菌 Fungus | 占比 Proportion/% | |||
---|---|---|---|---|---|---|
GS | TS | GS | TS | |||
节杆菌属Arthrobacter | 30.08 | 8.54 | 被孢霉属Mortierella | 27.70 | 18.27 | |
uncultured_bacterium_c_AD3 | 13.53 | 3.71 | Saitozyma | 1.70 | 3.75 | |
uncultured_bacterium_o_Acidobacteriales | 2.72 | 10.27 | 青霉属Penicillium | 2.58 | 1.46 | |
uncultured_bacterium_f_Xanthobacteraceae | 5.32 | 6.59 | 木霉属Trichoderma | 0.30 | 3.73 | |
uncultured_bacterium_o_Subgroup_2 | 2.06 | 5.96 | 金孢霉属Geomyces | 3.39 | 0.47 | |
Candidatus_Solibacter | 1.47 | 6.01 | 紫孢霉属Purpureocillium | 1.22 | 1.40 | |
慢生根瘤菌属Bradyrhizobium | 2.17 | 4.81 | 节丛孢属Arthrobotrys | 1.89 | 0.28 | |
uncultured_bacterium_o_Elsterales | 1.23 | 4.46 | 湿伞属Hygrocybe | 1.82 | 0.18 | |
酸杆菌属Acidibacter | 1.69 | 3.24 | 绿僵菌属Metarhizium | 1.45 | 0.43 | |
uncultured_bacterium_p_WPS-2 | 2.07 | 2.27 | 枝孢菌属Cladosporium | 1.42 | 0.05 |
Table 5 Composition of microorganisms at genus level(Top 10 genera)in the rhizosphere soil
细菌 Bacterium | 占比 Proportion/% | 真菌 Fungus | 占比 Proportion/% | |||
---|---|---|---|---|---|---|
GS | TS | GS | TS | |||
节杆菌属Arthrobacter | 30.08 | 8.54 | 被孢霉属Mortierella | 27.70 | 18.27 | |
uncultured_bacterium_c_AD3 | 13.53 | 3.71 | Saitozyma | 1.70 | 3.75 | |
uncultured_bacterium_o_Acidobacteriales | 2.72 | 10.27 | 青霉属Penicillium | 2.58 | 1.46 | |
uncultured_bacterium_f_Xanthobacteraceae | 5.32 | 6.59 | 木霉属Trichoderma | 0.30 | 3.73 | |
uncultured_bacterium_o_Subgroup_2 | 2.06 | 5.96 | 金孢霉属Geomyces | 3.39 | 0.47 | |
Candidatus_Solibacter | 1.47 | 6.01 | 紫孢霉属Purpureocillium | 1.22 | 1.40 | |
慢生根瘤菌属Bradyrhizobium | 2.17 | 4.81 | 节丛孢属Arthrobotrys | 1.89 | 0.28 | |
uncultured_bacterium_o_Elsterales | 1.23 | 4.46 | 湿伞属Hygrocybe | 1.82 | 0.18 | |
酸杆菌属Acidibacter | 1.69 | 3.24 | 绿僵菌属Metarhizium | 1.45 | 0.43 | |
uncultured_bacterium_p_WPS-2 | 2.07 | 2.27 | 枝孢菌属Cladosporium | 1.42 | 0.05 |
Fig. 5 RDA analysis between rhizosphere soil microorganisms and environmental factors in the two tea gardens CEC, SOM, HE, AN and NH4+-N refers to cation exchange, organic matter, humus, ammonia and ammonium nitrogen, respectively
[1] |
杨瑞娟, 王桥美, 彭文书, 等. 云南景迈山不同生境茶园根际土壤微生物群落多样性初步研究[J]. 热带作物学报, 2021, 42(4): 1182-1189.
doi: 10.3969/j.issn.1000-2561.2021.04.039 |
Yang RJ, Wang QM, Peng WS, et al. A preliminary study on the distribution diversity of rhizosphere soil microbial community in tea plantations with different habitats of jingmai mountain, Yunnan, China[J]. Chin J Trop Crops, 2021, 42(4): 1182-1189. | |
[2] |
Li YC, Li Z, Li ZW, et al. Variations of rhizosphere bacterial communities in tea(Camellia sinensis L.) continuous cropping soil by high-throughput pyrosequencing approach[J]. J Appl Microbiol, 2016, 121(3): 787-799.
doi: 10.1111/jam.13225 pmid: 27377624 |
[3] | 俞慎, 何振立, 陈国潮, 等. 不同树龄茶树根层土壤化学特性及其对微生物区系和数量的影响[J]. 土壤学报, 2003, 40(3): 433-439. |
Yu S, He ZL, Chen GC, et al. Soil chemical characteristics and their impacts on soil microflora in the root layer of tea plants with different cultivating ages[J]. Acta Pedol Sin, 2003, 40(3): 433-439. | |
[4] | 浦滇, 罗义菊, 陈洪宇, 等. 长期种植云南大叶种茶对土壤真菌多样性的影响[J]. 应用与环境生物学报, 2023, 29(2): 440-448. |
Pu D, Luo YJ, Chen HY, et al. Effects of long-term cultivation of Yunnan large-leaf tea(Camellia sinensis var. assamica)on soil fungal community characteristics[J]. Chin J Appl Environ Biol, 2023, 29(2): 440-448. | |
[5] | 张旭博, 徐梦, 史飞. 藏东南林芝地区典型农业土地利用方式对土壤微生物群落特征的影响[J]. 农业环境科学学报, 2020, 39(2): 331-342. |
Zhang XB, Xu M, Shi F. Impact of typical agricultural land use on the characteristics of soil microbial communities in the Nyingchi region of southeastern Tibet[J]. J Agro Environ Sci, 2020, 39(2): 331-342. | |
[6] | 刘会梅, 张天宇. 土壤真菌研究进展[J]. 山东农业大学学报: 自然科学版, 2008, 39(2): 326-330. |
Liu HM, Zhang TY. Research progress on soil fungi[J]. J Shandong Agric Univ Nat Sci Ed, 2008, 39(2): 326-330. | |
[7] | Jackson LE, Bowles TM, Hodson AK, et al. Soil microbial-root and microbial-rhizosphere processes to increase nitrogen availability and retention in agroecosystems[J]. Curr Opin Environ Sustain, 2012, 4(5): 517-522. |
[8] | Huang Q, Jiao F, Huang YM, et al. Response of soil fungal community composition and functions on the alteration of precipitation in the grassland of Loess Plateau[J]. Sci Total Environ, 2021, 751: 142273. |
[9] | Boddington CL, Dodd JC. The effect of agricultural practices on the development of indigenous arbuscular mycorrhizal fungi. I. Field studies in an Indonesian ultisol[J]. Plant Soil, 2000, 218(1): 137-144. |
[10] | 卢开阳. 云南11个茶山的大叶种茶树根际土壤微生物遗传多样性研究[D]. 昆明: 云南师范大学, 2016. |
Lu KY. Study on microbial genetic diversity in large leaf tea rhizosphere soil at 11 mountains from Yunnan province[D]. Kunming: Yunnan Normal University, 2016. | |
[11] | Sarkar S, Seenivasan S, Asir RPS. Biodegradation of propargite by Pseudomonas putida, isolated from tea rhizosphere[J]. J Hazard Mater, 2010, 174(1/2/3): 295-298. |
[12] | 黄芳芳, 李勤, 黄建安. 茶树根际微生物研究进展[J]. 茶叶科学, 2020, 40(6): 715-723. |
Huang FF, Li Q, Huang JA. Research progress of tea rhizosphere microorganisms[J]. J Tea Sci, 2020, 40(6): 715-723. | |
[13] |
Sharma S, Chen C, Navathe S, et al. A halotolerant growth promoting rhizobacteria triggers induced systemic resistance in plants and defends against fungal infection[J]. Sci Rep, 2019, 9(1): 4054.
doi: 10.1038/s41598-019-40930-x pmid: 30858512 |
[14] | 陈丽莹, 张玉满, 陈晓英, 等. 茶树叶际选择性富集的内生细菌的鉴定[J]. 微生物学报, 2018, 58(10): 1776-1785. |
Chen LY, Zhang YM, Chen XY, et al. Identification of endophytic bacteria selectively enriched in Camellia sinensis leaf[J]. Acta Microbiol Sin, 2018, 58(10): 1776-1785. | |
[15] | 夏丽飞, 梁名志, 王丽, 等. 勐海晒青茶品质化学研究[J]. 中国农学通报, 2012, 28(16): 239-244. |
Xia LF, Liang MZ, Wang L, et al. Studying on the quality of Menghai's sunny dried tea[J]. Chin Agric Sci Bull, 2012, 28(16): 239-244. | |
[16] | Jiang PK, Xu QF, Xu ZH, et al. Seasonal changes in soil labile organic carbon pools within a Phyllostachys praecox stand under high rate fertilization and winter mulch in subtropical China[J]. For Ecol Manag, 2006, 236(1): 30-36. |
[17] |
曾美娟, 钟永嘉, 刁勇. 药用植物根际促生菌促生机理研究进展[J]. 生物技术通报, 2017, 33(11): 13-18.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0359 |
Zeng MJ, Zhong YJ, Diao Y. Promoting mechanism of plant growth-promoting rhizobacteria in medicinal plants[J]. Biotechnol Bull, 2017, 33(11): 13-18. | |
[18] | Osorio NW, Habte M. Soil phosphate desorption induced by a phosphate-solubilizing fungus[J]. Commun Soil Sci Plant Anal, 2014, 45(4): 451-460. |
[19] | Tamayo-Vélez Á, Osorio NW. Soil fertility improvement by litter decomposition and inoculation with the fungus Mortierella sp. in avocado plantations of Colombia[J]. Commun Soil Sci Plant Anal, 2018, 49(2): 139-147. |
[20] |
孙建光, 胡海燕, 刘君, 等. 农田环境中固氮菌的促生潜能与分布特点[J]. 中国农业科学, 2012, 45(8): 1532-1544.
doi: 10.3864/j.issn.0578-1752.2012.08.009 |
Sun JG, Hu HY, Liu J, et al. Growth promotion potential and distribution features of nitrogen-fixing bacteria in field environments[J]. Sci Agric Sin, 2012, 45(8): 1532-1544. | |
[21] | Azarias Guimarães A, Duque Jaramillo PM, Simão Abrahão Nóbrega R, et al. Genetic and symbiotic diversity of nitrogen-fixing bacteria isolated from agricultural soils in the western Amazon by using cowpea as the trap plant[J]. Appl Environ Microbiol, 2012, 78(18): 6726-6733. |
[22] |
梁晓洁, 刘志华, 张平, 等. 抗油桐枯萎病木霉菌的分离鉴定及抑菌作用研究[J]. 菌物学报, 2020, 39(5): 795-805.
doi: 10.13346/j.mycosystema.190392 |
Liang XJ, Liu ZH, Zhang P, et al. Trichoderma spp. isolated from rhizosphere soil of wilt-resistant Vernicia fordii and their inhibition effects against Fusarium oxysporum[J]. Mycosystema, 2020, 39(5): 795-805. | |
[23] | 汪立群, 颜小梅, 郭小双, 等. 紫娟、云抗10号两个茶树品种内生菌多样性研究[J]. 安徽农业大学学报, 2016, 43(1): 1-5. |
Wang LQ, Yan XM, Guo XS, et al. Diversity of endophytic microorganisms zijuan and Yunkang 10 of Camellia sinensis[J]. J Anhui Agric Univ, 2016, 43(1): 1-5. | |
[24] | 杨瑞娟, 王桥美, 龚婉莹, 等. 云南景迈山不同生境茶园及茶窖空气微生物群落分布多样性研究[J]. 云南农业大学学报: 自然科学, 2020, 35(4): 659-666. |
Yang RJ, Wang QM, Gong WY, et al. Distribution diversity of microbial communities in the air of tea gardens and tea cellars in different habitats of jingmai mountain, Yunnan Province[J]. J Yunnan Agric Univ Nat Sci, 2020, 35(4): 659-666. | |
[25] | 张英英, 魏玉杰, 吴之涛, 等. 不同种植年限对特殊药材土壤化学性质和微生物多样性的影响[J]. 干旱地区农业研究, 2023, 41(1): 150-159. |
Zhang YY, Wei YJ, Wu ZT, et al. Effects of different cropping years on soil chemical properties of special medicine source plant[J]. Agric Res Arid Areas, 2023, 41(1): 150-159. | |
[26] | 李丽艳, 朱瑞艳, 杜迎辉, 等. 微生物肥料对草莓根腐病防治效果及对根围土壤微生物群落多样性的影响[J]. 安徽农业科学, 2018, 46(33): 111-113. |
Li LY, Zhu RY, Du YH, et al. Effect of microbial fertilizer on the control of strawberry root rot and the diversity of soil microbial communities[J]. J Anhui Agric Sci, 2018, 46(33): 111-113. | |
[27] | 黄昆鹏, 董昆乐, 李芳芳, 等. 烟草抗病嫁接对根际土壤微生物多样性的影响[J]. 江苏农业科学, 2023, 51(20): 239-247. |
Huang KP, Dong KL, Li FF, et al. Impacts of disease-resistant grafting on microbial diversity in rhizosphere soil of tobacco[J]. Jiangsu Agric Sci, 2023, 51(20): 239-247. |
[1] | KONG De-ting, QI Xiao-han, LIU Xing-lei, LI Li-ping, HU Feng-yi, HUANG Li-yu, QIN Shi-wen. Comparison and Analysis of Endophytic Bacterial Communities in Different Perennial Rice Varieties [J]. Biotechnology Bulletin, 2024, 40(5): 225-236. |
[2] | GAO Yu-kun, ZHANG Jian-dong, YANG Pu-yuan, CHEN Dong-ming, WANG Zhi-bo, TIAN Yi-jin, Zakey Eldinn. E. A. Khlid, CUI Jiang-hui, CHANG Jin-hua. Responses of Sorghum Rhizosphere Soil Bacterial Communities to Salt Stress [J]. Biotechnology Bulletin, 2024, 40(4): 203-216. |
[3] | LIU Jia-ning, LI Meng, YANG Xin-sen, WU Wei, PEI Xin-wu, YUAN Qian-hua. Impact of Different Water Management Cultivation Methods on the Rhizosphere Bacteria Community of Shanlan Upland Rice [J]. Biotechnology Bulletin, 2024, 40(3): 242-250. |
[4] | XU Yang, ZHANG Rui-ying, DAI Liang-xiang, ZHANG Guan-chu, DING Hong, ZHANG Zhi-meng. Regulation of Nitrogen Application on Peanut Seed Germination and Spermosphere Bacterial Community Structure Under Salt Stress [J]. Biotechnology Bulletin, 2024, 40(2): 253-265. |
[5] | LEI Mei-ling, RAO Wen-hua, HU Jin-feng, YUE Qi, WU Zu-jian, FAN Guo-cheng. Bacterial Diversity and Structure in Rhizosphere Soil of Citrus Infested with Huanglongbing [J]. Biotechnology Bulletin, 2024, 40(2): 266-276. |
[6] | WANG Yu-qing, MA Zi-qi, HOU Jia-xin, ZONG Yu-qi, HAO Han-rui, LIU Guo-yuan, WEI Hui, LIAN Bo-lin, CHEN Yan-hong, ZHANG Jian. Research Progress in the Composition Analysis and Ecological Function of Plant Root Exudates Under Salt Stress [J]. Biotechnology Bulletin, 2024, 40(1): 12-23. |
[7] | ZHAO Lin-yan, XU Wu-mei, WANG Hao-ji, WANG Kun-yan, WEI Fu-gang, YANG Shao-zhou, GUAN Hui-lin. Effects of Applying Biochar on the Rhizosphere Fungal Community and Survival Rate of Panax notoginseng Under Continuous Cropping [J]. Biotechnology Bulletin, 2023, 39(7): 219-227. |
[8] | SUN Hai-hang, GUAN Hui-lin, WANG Xu, WANG Tong, LI Hong-lin, PENG Wen-jie, LIU Bo-zhen, FAN Fang-ling. Effects of Biochar on the Soil Properties and Fungal Community Structure under Continuous Cropping of Panax notoginseng [J]. Biotechnology Bulletin, 2023, 39(2): 221-231. |
[9] | LI Ying, LONG Chang-mei, JIANG Biao, HAN Li-zhen. Colonization on the Peanuts of Two Plant-growth Promoting Rhizobacteria Strains and Effects on the Bacterial Community Structure of Rhizosphere [J]. Biotechnology Bulletin, 2022, 38(9): 237-247. |
[10] | WANG Zi-ye, WANG Zhi-gang, YAN Ai-hua. Diversity of Soil Protist Community in the Rhizosphere of Morus alba L. at Different Tree Ages [J]. Biotechnology Bulletin, 2022, 38(8): 206-215. |
[11] | CHEN Tian-ci, WU Shao-lan, YANG Guo-hui, JIANG Dan-xia, JIANG Yu-ji, CHEN Bing-zhi. Effects of Ganoderma resinaceum Alcohol Extract on Sleep and Intestinal Microbiota in Mice [J]. Biotechnology Bulletin, 2022, 38(8): 225-232. |
[12] | WANG Zi-yin, LIU Bing-ru, LI Zi-hao, ZHAO Xiao-yu. Characteristics of Soil Bacterial Community Structure in the Different Developmental Stages of Desert Grassland Caragana korshinskii Kom. Nebkhas [J]. Biotechnology Bulletin, 2022, 38(7): 205-214. |
[13] | ZHONG Hui, LIU Ya-jun, WANG Bin-hua, HE Meng-jie, WU Lan. Effects of Analysis Methods on the Analyzed Results of 16S rRNA Gene Amplicon Sequencing in Bacterial Communities [J]. Biotechnology Bulletin, 2022, 38(6): 81-92. |
[14] | YANG Lu, XIN Jian-pan, TIAN Ru-nan. Research Progress in the Mitigative Effects of Rhizosphere Microorganisms on Heavy Metal Stress in Plants and Their Mechanisms [J]. Biotechnology Bulletin, 2022, 38(3): 213-225. |
[15] | ZHAO Lin-yan, GUAN Hui-lin, XIANG Ping, LI Ze-cheng, BAI Yu-long, SONG Hong-chuan, SUN Shi-zhong, XU Wu-mei. Composition Features of Microbial Community in the Rhizospheric Soil of Bletilla striata with Root Rot [J]. Biotechnology Bulletin, 2022, 38(2): 67-74. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||