Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (7): 226-234.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0160
Previous Articles Next Articles
FAN Zong-qiang(), FENG Jing-han, ZHENG Li-xue, WANG Shuo, PENG Xiang-qian, CHEN Fang()
Received:
2024-02-18
Online:
2024-07-26
Published:
2024-07-30
Contact:
CHEN Fang
E-mail:577472410@qq.com;chenfang20045@163.com
FAN Zong-qiang, FENG Jing-han, ZHENG Li-xue, WANG Shuo, PENG Xiang-qian, CHEN Fang. Study on the Control and Induced Resistance in Cucumber with Bacillus subtilis B579 against Cucumber Fusarium Wilt[J]. Biotechnology Bulletin, 2024, 40(7): 226-234.
基因Gene | 基因序列Sequence(5'-3') | 登录号Accession number | 参考文献Reference |
---|---|---|---|
ACTIN | F: TGGACTCTGGTGATGGTGTTA | DQ641117 | [ |
R:CAATGAGGGATGGCTGGAAAA | |||
LOX | F:GAGAGCGTAAGGAATGGGATAGAA | NM_001305708 | [ |
R: CACCGGGTTCGGAAAGG | |||
PR1 | AACTCTGGCGGACCTTAC | DQ641122 | [ |
GACTTCCTCCACACTACT | |||
PR3 | GCCTTACTCCATAACATCACTCC | DQ641104 | [ |
GATTTCGATATCGAGTCTGGCT | |||
CAT | AACCCAACCCAAAATCCCA | GU248529 | [ |
TCTAATAGCCTCCTCTTCCAGCA |
Table 1 Primer information for the real-time quantitative PCR reaction
基因Gene | 基因序列Sequence(5'-3') | 登录号Accession number | 参考文献Reference |
---|---|---|---|
ACTIN | F: TGGACTCTGGTGATGGTGTTA | DQ641117 | [ |
R:CAATGAGGGATGGCTGGAAAA | |||
LOX | F:GAGAGCGTAAGGAATGGGATAGAA | NM_001305708 | [ |
R: CACCGGGTTCGGAAAGG | |||
PR1 | AACTCTGGCGGACCTTAC | DQ641122 | [ |
GACTTCCTCCACACTACT | |||
PR3 | GCCTTACTCCATAACATCACTCC | DQ641104 | [ |
GATTTCGATATCGAGTCTGGCT | |||
CAT | AACCCAACCCAAAATCCCA | GU248529 | [ |
TCTAATAGCCTCCTCTTCCAGCA |
Fig. 1 Effect of B579 fermentation broth on the growth of pathogen Data are mean ± SE,different small letters on the bar chart indicate significant differences between each treatment group and the control group(P<0.05);the same below
Fig. 2 Mycelium morphology of pathogens in control group(A)and treatment group(B, C)under optical microscope A: Mycelium folding; B: hyphal expansion; C: hyphal rupture
组别 Treatment | 病情指数 Disease index | 防治效果 Control efficiency/% |
---|---|---|
CK | 0c | - |
B579 | 0c | - |
B579+FOC | 11.12±2.41b | 78.80% |
FOC | 52.78±4.81a | - |
Table 2 Control effect of B579 treatment on cucumber Fusarium wilt
组别 Treatment | 病情指数 Disease index | 防治效果 Control efficiency/% |
---|---|---|
CK | 0c | - |
B579 | 0c | - |
B579+FOC | 11.12±2.41b | 78.80% |
FOC | 52.78±4.81a | - |
组别Treatment | 株高Plant height/cm | 茎粗Stem diameter/mm | 鲜重Fresh weight/g | 干重Dry weight/g |
---|---|---|---|---|
CK | 9.95±1.30b | 4.80±0.39b | 9.11±1.07b | 0.47±0.06b |
B579 | 11.33±0.79a | 5.00±0.57a | 10.49±0.87a | 0.53±0.06a |
B579+FOC | 9.32±0.62b | 4.66±0.45b | 7.98±0.76c | 0.42±0.07b |
FOC | 7.42±1.10d | 3.97±0.58c | 6.41±1.19d | 0.33±0.07d |
Table 3 Effects of different treatments on cucumber seedling growth
组别Treatment | 株高Plant height/cm | 茎粗Stem diameter/mm | 鲜重Fresh weight/g | 干重Dry weight/g |
---|---|---|---|---|
CK | 9.95±1.30b | 4.80±0.39b | 9.11±1.07b | 0.47±0.06b |
B579 | 11.33±0.79a | 5.00±0.57a | 10.49±0.87a | 0.53±0.06a |
B579+FOC | 9.32±0.62b | 4.66±0.45b | 7.98±0.76c | 0.42±0.07b |
FOC | 7.42±1.10d | 3.97±0.58c | 6.41±1.19d | 0.33±0.07d |
[1] | Liu HJ, Yuan BZ, Hu XD, et al. Cucumber production and the economic revenues under various nitrogen applications in an unheated solar greenhouse on the North China Plain[J]. Agron J, 2021, 113(4): 3444-3459. |
[2] |
陈梦多, 胡春艳, 马肖静, 等. 植物根际细菌HQ1-2的根际定殖与土壤微生态调节及枯萎病防治[J]. 中国生物防治学报, 2023, 39(4): 924-932.
doi: 10.16409/j.cnki.2095-039x.2023.02.034 |
Chen MD, Hu CY, Ma XJ, et al. Rhizosphere colonization of plant growth promoting rhizobacteria HQ1-2 and regulation effects of soil microecology and control effects on the Fusarium wilt[J]. Chin J Biol Contr, 2023, 39(4): 924-932. | |
[3] | Liu X, Zhang Y. Exploring the communities of bacteria, fungi and ammonia oxidizers in rhizosphere of Fusarium-diseased greenhouse cucumber[J]. Appl Soil Ecol, 2021, 161: 103832. |
[4] | Zhang XZ, Meng XH, Jiao XD, et al. Preventive effect of Cleome spinosa against cucumber Fusarium wilt and improvement on cucumber growth and physiology[J]. 3 Biotech, 2024, 14(4): 97. |
[5] | Dimkić I, Janakiev T, Petrović M, et al. Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms - A review[J]. Physiol Mol Plant Pathol, 2022, 117: 101754. |
[6] | Romanazzi G, Sanzani SM, Bi Y, et al. Induced resistance to control postharvest decay of fruit and vegetables[J]. Postharvest Biol Technol, 2016, 122: 82-94. |
[7] | Vlot AC, Sales JH, Lenk M, et al. Systemic propagation of immunity in plants[J]. New Phytol, 2021, 229(3): 1234-1250. |
[8] | Sabbagh SK, Roudini M, Panjehkeh N. Systemic resistance induced by Trichoderma harzianum and Glomus mossea on cucumber damping-off disease caused by Phytophthora melonis[J]. Arch Phytopathol Plant Prot, 2017, 50(7-8): 375-388. |
[9] | Chowdhury SP, Uhl J, Grosch R, et al. Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani[J]. Mol Plant Microbe Interact, 2015, 28(9): 984-995. |
[10] | 田松, 乔宏宇, 郭小哲, 等. 4种药剂对黄瓜幼苗2, 4-D丁酯药害的缓解作用[J]. 东北农业科学, 2022, 47(3): 134-137. |
Tian S, Qiao HY, Guo XZ, et al. Alleviating effects of four pesticides on the damage of 2, 4-D butyl ester in cucumber seedlings[J]. J Northeast Agric Sci, 2022, 47(3): 134-137. | |
[11] | Najafi M, Esfahani MN, Vatandoost J, et al. Antioxidant enzymes activity associated with resistance to Phytophthora melonis-pumpkin blight[J]. Physiol Mol Plant Pathol, 2024, 129: 102192. |
[12] | 吕敏, 卫甜, 刘怀阿, 等. 昆虫取食和机械损伤对棉花和玉米脂氧合酶活性的诱导作用[J]. 江苏农业科学, 2021, 49(10): 86-90. |
Lü M, Wei T, Liu HA, et al. Insect feeding and mechanical damage induce lipoxygenase activity in cotton and corn[J]. Jiangsu Agric Sci, 2021, 49(10): 86-90. | |
[13] | Fan YJ, He XJ, Dai JW, et al. Induced resistance mechanism of Bacillus velezensis S3-1 against pepper wilt[J]. Curr Microbiol, 2023, 80(12): 367. |
[14] | Rashad YM, Abdalla SA, Sleem MM. Endophytic Bacillus subtilis SR22 triggers defense responses in tomato against Rhizoctonia root rot[J]. Plants, 2022, 11(15): 2051. |
[15] | 柴凤兰, 郑晨, 张帆. 枯草芽孢杆菌在农作物种植上的应用研究进展[J]. 南方农业, 2023, 17(5): 152-156. |
Chai FL, Zheng C, Zhang F. Research progress on the application of Bacillus subtilis in crop planting[J]. South China Agric, 2023, 17(5): 152-156. | |
[16] | 谢晓佩, 王琦, 孔新平, 等. 西藏牦牛源枯草芽孢杆菌的分离培养及鉴定[J]. 家畜生态学报, 2021, 42(3): 26-31. |
Xie XP, Wang Q, Kong XP, et al. Isolation, culture and identification of Bacillus subtilis from yak in Tibet[J]. J Domest Anim Ecol, 2021, 42(3): 26-31. | |
[17] | 徐洪宇, 孙兴权, 张强, 等. 枯草芽孢杆菌有机肥对土壤条件及烤烟产质量的影响[J]. 湖南农业科学, 2017(7): 55-58, 64. |
Xu HY, Sun XQ, Zhang Q, et al. Effects of Bacillus subtilis organic fertilizer on soil conditions, yield and quality of flue-cured tobacco[J]. Hunan Agric Sci, 2017(7): 55-58, 64. | |
[18] | 王进, 高鹏, 黄天悦, 等. 产聚谷氨酸菌株的筛选及其发酵物对辣椒生长及产量的影响[J]. 河南农业科学, 2018, 47(11): 56-60. |
Wang J, Gao P, Huang TY, et al. Screening of strain producing γ-polyglutamic acid and effect of its fermentation products on growth and yield of pepper[J]. J Henan Agric Sci, 2018, 47(11): 56-60. | |
[19] | 武亚芬, 向丹, 梁斌, 等. 番茄枯萎病拮抗菌KCKB1的分离、鉴定及生防效果[J]. 江苏农业科学, 2023, 51(9): 131-139. |
Wu YF, Xiang D, Liang B, et al. Isolation and identification of antagonist bacteria Bacillus subtilis KCKB1 and its biological control effect against tomato Fusarium wilt[J]. Jiangsu Agric Sci, 2023, 51(9): 131-139. | |
[20] | 陈静宇, 孟利强, 曹旭, 等. 马铃薯微生物菌剂的应用效果及对根际土壤微生物的影响[J]. 现代化农业, 2017(7): 11-12. |
Chen JY, Meng LQ, Cao X, et al. Application effect of potato microbial inoculum and its influence on rhizosphere soil microorganisms[J]. Mod Agric, 2017(7): 11-12. | |
[21] | 闫杨, 刘月静, 李晓静, 等. 生防芽孢杆菌对半夏根际土壤酶活性及产量的影响[J]. 聊城大学学报: 自然科学版, 2018, 31(3): 99-105. |
Yan Y, Liu YJ, Li XJ, et al. Effect of biocontrol Bacillus strains on enzyme activities in rhizosphere soil and yield of Pinellia terna-ta[J]. J Liaocheng Univ Nat Sci Ed, 2018, 31(3): 99-105. | |
[22] | Pu XM, Xie BY, Li PQ, et al. Analysis of the defence-related mechanism in cucumber seedlings in relation to root colonization by nonpathogenic Fusarium oxysporum CS-20[J]. FEMS Microbiol Lett, 2014, 355(2): 142-151. |
[23] | Zhuang HR, Liu XY, Ma H, et al. Growth and physiological-biochemical characteristics of cucumber(Cucumis sativus L.) in the presence of different microplastics[J]. Arab J Geosci, 2023, 16(3): 194. |
[24] | Wang H, Jiang YP, Yu HJ, et al. Light quality affects incidence of powdery mildew, expression of defence-related genes and associated metabolism in cucumber plants[J]. Eur J Plant Pathol, 2010, 127(1): 125-135. |
[25] |
Sang MK, Kim KD. Biocontrol activity and primed systemic resistance by compost water extracts against anthracnoses of pepper and cucumber[J]. Phytopathology, 2011, 101(6): 732-740.
doi: 10.1094/PHYTO-10-10-0287 pmid: 21281115 |
[26] | Zhang HJ, Zhang N, Yang RC, et al. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber(Cucumis sativus L.)[J]. J Pineal Res, 2014, 57(3): 269-279. |
[27] | Lian H, Li RZ, Ma GS, et al. The effect of Trichoderma harzianum agents on physiological-biochemical characteristics of cucumber and the control effect against Fusarium wilt[J]. Sci Rep, 2023, 13(1): 17606. |
[28] |
Pickett JA, Khan ZR. Plant volatile-mediated signalling and its application in agriculture: successes and challenges[J]. New Phytol, 2016, 212(4): 856-870.
doi: 10.1111/nph.14274 pmid: 27874990 |
[29] | Han SY, Chen JX, Zhao YJ, et al. Bacillus subtilis HSY21 can reduce soybean root rot and inhibit the expression of genes related to the pathogenicity of Fusarium oxysporum[J]. Pestic Biochem Physiol, 2021, 178: 104916. |
[30] | 张婉菊, 谢太震, 陈梦多, 等. 根际细菌LK2-3对黄瓜枯萎病的生物防治作用[J]. 中国瓜菜, 2022, 35(7): 25-30. |
Zhang WJ, Xie TZ, Chen MD, et al. Biocontrol effect of rhizosphere bacteria LK2-3 against Fusarium wilt of cucumber[J]. China Cucurbits Veg, 2022, 35(7): 25-30. | |
[31] | 虞凡枫, 赵进, 孙铭悦, 等. 黄瓜枯萎病拮抗芽孢杆菌A7-3-14的筛选及鉴定[J]. 北方园艺, 2022(3): 41-46. |
Yu FF, Zhao J, Sun MY, et al. Screening and identification of antagonistic Bacillus A7-3-14 in cucumber Fusarium wilt[J]. North Hortic, 2022(3): 41-46. | |
[32] |
张林林, 沈虎生, 杨冰, 等. 生防细菌HK11-9对黄瓜棒孢叶斑病的防病能力及其鉴定[J]. 生物技术通报, 2023, 39(12): 209-218.
doi: 10.13560/j.cnki.biotech.bull.1985.2023-0407 |
Zhang LL, Shen HS, Yang B, et al. Control ability and identification of biocontrol agent HK11-9 against Corynespora leaf spot of cucumber[J]. Biotechnol Bull, 2023, 39(12): 209-218. | |
[33] | Saleem D, Zuhra Z, Akhtar W, et al. Salicylic acid and H2O2 induce PPO derived GUS expression in Arabidopsis[J]. Russ J Plant Physiol, 2020, 67: 822-826. |
[34] | 吴梦露, 李鹏, 于文清, 等. 水稻防御酶与其抗病性关系研究进展[J]. 分子植物育种, 2024, 22(7): 2413-2420. |
Wu ML, Li P, Yu WQ, et al. Advances in the research of relationship between defensive enzymes and disease resistance in rice[J]. Mol Plant Breed, 2024, 22(7): 2413-2420. | |
[35] | Li YL, Gu YL, Li J, et al. Biocontrol agent Bacillus amyloliquefa-ciens LJ02 induces systemic resistance against cucurbits powdery mildew[J]. Front Microbiol, 2015, 6: 883. |
[36] | 项佳胤, 商桑, 田丽波. 贝莱斯芽孢杆菌N46对苦瓜白粉病的防治机理研究[J]. 热带作物学报, 2023, 23: 1-17. |
Xiang JY, Shang S, Tian LB. Study on the control mechanism of Bacilus velezensis N46 against powdery mildew of bittel melon[J]. Chinese Journal of Tropical Crops, 2023, 23: 1-17. | |
[37] | Jain C, Gupta S, Sharma SP, et al. Effect of Fusarium wilt on proteinaceous content and pathogenesis-related proteins in Cucumis melo[J]. Biologia, 2023, 78(11): 3329-3338. |
[38] |
Cutt JR, Harpster MH, Dixon DC, et al. Disease response to tobacco mosaic virus in transgenic tobacco plants that constitutively express the pathogenesis-related PR1b gene[J]. Virology, 1989, 173(1): 89-97.
doi: 10.1016/0042-6822(89)90224-9 pmid: 2815592 |
[39] | 孙锦涛, 谢旻皓, 徐辉, 等. 几丁质酶在农作物免疫防御中的应用研究进展[J]. 粮食科技与经济, 2023, 48(2): 114-120. |
Sun JT, Xie MH, Xu H, et al. Research progress on the application of chitinase in crops immune defense[J]. Food Sci Technol Econ, 2023, 48(2): 114-120. | |
[40] | Du NS, Shi L, Yuan YH, et al. Isolation of a potential biocontrol agent Paenibacillus polymyxa NSY50 from vinegar waste compost and its induction of host defense responses against Fusarium wilt of cucumber[J]. Microbiol Res, 2017, 202: 1-10. |
[1] | WANG Fang, YU Lu, QI Ze-zheng, ZHOU Chang-jun, YU Ji-dong. Screening and Biocontrol Effect of Antagonistic Bacteria against Soybean Root Rot [J]. Biotechnology Bulletin, 2024, 40(7): 216-225. |
[2] | XU Wei-fang, LI He-yu, ZHANG Hui, HE Zi-ang, GAO Wen-heng, XIE Zi-yang, WANG Chuan-wen, YIN Deng-ke. Efficacy and Its Mechanism of Bacterial Strain HX0037 on the Control of Anthracnose Disease of Trichosanthes kirilowii Maxim [J]. Biotechnology Bulletin, 2024, 40(4): 228-241. |
[3] | XU Pei-dong, YI Jian-feng, CHEN Di, PAN Lei, XIE Bing-yan, ZHAO Wen-jun. Research Progress in the Biocontrol Secondary Metabolites of Bacillus velezensis [J]. Biotechnology Bulletin, 2024, 40(3): 75-88. |
[4] | LI Xue, LI Rong-ou, KONG Mei-yi, HUANG Lei. The Growth Promoting Effect of Bacillus amyloliquefaciens SQ-2 on Rice [J]. Biotechnology Bulletin, 2024, 40(2): 109-119. |
[5] | WANG Jun-fang, HUANG Qiu-bin, ZHANG Piao-dan, ZHANG Peng-pai. Structure and Biosynthesis of Surfactin as well as Its Role in Biological Control [J]. Biotechnology Bulletin, 2024, 40(1): 100-112. |
[6] | CHU Rui, LI Zhao-xuan, ZHANG Xue-qing, YANG Dong-ya, CAO Hang-hang, ZHANG Xue-yan. Screening and Identification of Antagonistic Bacillus spp. Against Cucumber Fusarium wilt and Its Biocontrol Effect [J]. Biotechnology Bulletin, 2023, 39(8): 262-271. |
[7] | ZHANG Le-le, WANG Guan, LIU Feng, HU Han-qiao, REN Lei. Isolation, Identification and Biocontrol Mechanism of an Antagonistic Bacterium Against Anthracnose on Mango Caused by Colletotrichum gloeosporioides [J]. Biotechnology Bulletin, 2023, 39(4): 277-287. |
[8] | YI Xi, LIAO Hong-dong, ZHENG Jing-yuan. Research Progress in Plant Endophytic Fungi for Root-knot Nematode Control [J]. Biotechnology Bulletin, 2023, 39(3): 43-51. |
[9] | WANG Wei-chen, ZHAO Jin, HUANG Wei-yi, GUO Xin-zhu, LI Wan-ying, ZHANG Zhuo. Research Progress in Metabolites Produced by Bacillus Against Three Common Plant Pathogenic Fungi [J]. Biotechnology Bulletin, 2023, 39(3): 59-68. |
[10] | YANG Dong-ya, QI Rui-xue LI, Zhao-xuan , LIN Wei, MA Hui, ZHANG Xue-yan. Screening, Identification and Growth-promoting Effect of Antagonistic Bacillus spp. Against Cucumber Fusarium solani [J]. Biotechnology Bulletin, 2023, 39(2): 211-220. |
[11] | LUO Ning, JIAO Yang, MAO Zhen-chuan, LI Hui-xia, XIE Bing-yan. Advances of Trichoderma in Controlling Root Knot Nematodes and Cyst Nematodes [J]. Biotechnology Bulletin, 2023, 39(2): 35-50. |
[12] | ZHANG Lin-lin, SHEN Hu-sheng, YANG Bing, HE Meng-han, PIAO Feng-zhi, SHEN Shun-shan. Control Ability and Identification of Biocontrol Agent HK11-9 Against Corynespora Leaf Spot of Cucumber [J]. Biotechnology Bulletin, 2023, 39(12): 209-218. |
[13] | LI Ying, SONG Xin-ying, HE Kang, GUO Zhi-qing, YU Jing, ZHANG Xia. Isolation and Identification of Bacillus velezensis ZHX-7 and Its Antibacterial and Growth-promoting Effects [J]. Biotechnology Bulletin, 2023, 39(12): 229-236. |
[14] | MA Sai-mai, LI Tong-yuan, MA Yan-jun, HAN Fu-jun, PENG Hai, KONG Wei-bao. Research Progress in Chitinase Involving in the Biocontrol of Crop Diseases and Pests [J]. Biotechnology Bulletin, 2023, 39(10): 29-40. |
[15] | ZU Xue, ZHOU Hu, ZHU Hua-jun, REN Zuo-hua, LIU Er-ming. Isolation and Identification of Bacillus subtilis K-268 and Its Biological Control Effect on Rice Blast [J]. Biotechnology Bulletin, 2022, 38(6): 136-146. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||