Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (3): 35-43.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0667
Previous Articles Next Articles
LI Xin-peng1(
), ZHANG Wu-han2, ZHANG Li3, SHU Fu2, HE Qiang2, GUO Yang1, DENG Hua-feng2, WANG Yue1(
), SUN Ping-yong2(
)
Received:2024-07-12
Online:2025-03-26
Published:2025-03-20
Contact:
WANG Yue, SUN Ping-yong
E-mail:2634747985@qq.com;wangyue515@163.com;zlspy23@126.com
LI Xin-peng, ZHANG Wu-han, ZHANG Li, SHU Fu, HE Qiang, GUO Yang, DENG Hua-feng, WANG Yue, SUN Ping-yong. Creation of Rice Mutant by Gamma-ray and Its Molecular Identification[J]. Biotechnology Bulletin, 2025, 41(3): 35-43.
水稻材料 Rice material | 粒长 Grain length/mm | 粒宽 Grain width/mm | 长宽比 Length-width ratio | 千粒重 Thousand-seed weight/g |
|---|---|---|---|---|
| NIL-GRF4 | 12.60±0.46 | 2.69±0.20 | 4.68±0.27 | 36.95 |
| 23cs3 | 11.98±0.73 | 3.30±0.20 | 3.63±0.33 | 44.30 |
| 23cs4 | 12.29±0.51 | 2.73±0.17 | 4.50±0.12 | 39.34 |
| 23cs5 | 11.07±0.43 | 2.80±0.19 | 3.95±0.45 | 37.98 |
| 23cs6 | 9.94±0.69 | 3.11±0.19 | 3.20±0.03 | 35.71 |
| 23cs7 | 11.05±0.62 | 3.41±0.20 | 3.24±0.05 | 36.06 |
| 23cs8 | 11.22±0.54 | 2.69±0.24 | 4.17±0.21 | 36.89 |
| 23cs9 | 11.04±0.63 | 2.78±0.20 | 3.97±0.10 | 32.07 |
| 23cs10 | 9.00±0.54 | 2.16±0.19 | 4.17±0.14 | 24.40 |
| 23cs11 | 10.86±0.46 | 2.75±0.19 | 3.95±0.12 | 36.80 |
| 23cs22 | 10.43±0.53 | 2.59±0.19 | 4.03±0.11 | 29.29 |
| 23cs24 | 10.57±0.46 | 2.66±0.19 | 3.97±0.26 | 28.10 |
| 23cs25 | 11.04±0.53 | 2.66±0.25 | 4.15±0.24 | 35.28 |
| 23cs31 | 10.95±0.52 | 2.67±0.20 | 4.10±0.49 | 32.06 |
| 23cs32 | 14.10±0.69 | 2.77±0.22 | 5.09±0.19 | 45.80 |
| 23cs33 | 9.68±0.53 | 2.98±0.15 | 3.25±0.04 | 36.97 |
Table 1 Comparison of phenotype between wild-type and grain shape mutants
水稻材料 Rice material | 粒长 Grain length/mm | 粒宽 Grain width/mm | 长宽比 Length-width ratio | 千粒重 Thousand-seed weight/g |
|---|---|---|---|---|
| NIL-GRF4 | 12.60±0.46 | 2.69±0.20 | 4.68±0.27 | 36.95 |
| 23cs3 | 11.98±0.73 | 3.30±0.20 | 3.63±0.33 | 44.30 |
| 23cs4 | 12.29±0.51 | 2.73±0.17 | 4.50±0.12 | 39.34 |
| 23cs5 | 11.07±0.43 | 2.80±0.19 | 3.95±0.45 | 37.98 |
| 23cs6 | 9.94±0.69 | 3.11±0.19 | 3.20±0.03 | 35.71 |
| 23cs7 | 11.05±0.62 | 3.41±0.20 | 3.24±0.05 | 36.06 |
| 23cs8 | 11.22±0.54 | 2.69±0.24 | 4.17±0.21 | 36.89 |
| 23cs9 | 11.04±0.63 | 2.78±0.20 | 3.97±0.10 | 32.07 |
| 23cs10 | 9.00±0.54 | 2.16±0.19 | 4.17±0.14 | 24.40 |
| 23cs11 | 10.86±0.46 | 2.75±0.19 | 3.95±0.12 | 36.80 |
| 23cs22 | 10.43±0.53 | 2.59±0.19 | 4.03±0.11 | 29.29 |
| 23cs24 | 10.57±0.46 | 2.66±0.19 | 3.97±0.26 | 28.10 |
| 23cs25 | 11.04±0.53 | 2.66±0.25 | 4.15±0.24 | 35.28 |
| 23cs31 | 10.95±0.52 | 2.67±0.20 | 4.10±0.49 | 32.06 |
| 23cs32 | 14.10±0.69 | 2.77±0.22 | 5.09±0.19 | 45.80 |
| 23cs33 | 9.68±0.53 | 2.98±0.15 | 3.25±0.04 | 36.97 |
Fig. 1 Comparison of grain shape and leaf color between wild type NIL-GRF4 and mutantsA: Comparison of grain shape between wild-type NIL-GRF4 and mutants; B: leaf color comparison between wild-type NIL-GRF4 and mutants, the one on the left is the zebra leaf mutant, and the one on the right is the wild type; C: leaf color phenotype of mutant 23cs20 in field
材料 Rice material | 穗长 Spike length/cm | 总粒数 Total grains | 实粒数 Filled grain number | 一次枝梗 Number of primary branches | 二次枝梗 Number of secondary branches | 结实率 Seed setting rate/% |
|---|---|---|---|---|---|---|
| NIL-GRF4 | 32.9±0.35 | 207±12.70 | 128±5.58 | 14±1.00 | 33±3.06 | 62.01±2.42 |
| 23cs13 | 33.3±1.06 | 186±19.00 | 5±0.58 | 13±0.58 | 35±4.04 | 2.50±0.43 |
| 23cs14 | 32.8±0.36 | 186±4.93 | 6±1.53 | 12±0 | 32±1.00 | 3.05±0.75 |
| 23cs29 | 32.4±0.47 | 232±2.64 | 14±1.73 | 12±0 | 44±1.73 | 6.03±0.68 |
Table 2 Comparison of panicle traits between wild type and sterile mutants
材料 Rice material | 穗长 Spike length/cm | 总粒数 Total grains | 实粒数 Filled grain number | 一次枝梗 Number of primary branches | 二次枝梗 Number of secondary branches | 结实率 Seed setting rate/% |
|---|---|---|---|---|---|---|
| NIL-GRF4 | 32.9±0.35 | 207±12.70 | 128±5.58 | 14±1.00 | 33±3.06 | 62.01±2.42 |
| 23cs13 | 33.3±1.06 | 186±19.00 | 5±0.58 | 13±0.58 | 35±4.04 | 2.50±0.43 |
| 23cs14 | 32.8±0.36 | 186±4.93 | 6±1.53 | 12±0 | 32±1.00 | 3.05±0.75 |
| 23cs29 | 32.4±0.47 | 232±2.64 | 14±1.73 | 12±0 | 44±1.73 | 6.03±0.68 |
Fig. 2 Phenotypes of sterile and tillering mutantsA: Microscopic examination of wild type fertility. B: Microscopic examination of mutant fertility. C: Comparison of seed setting rates between wild type NIL-GRF4 and sterile mutant 23cs29. D: Comparison of sterility between wild type NIL-GRF4 and mutant 23cs29. E: Comparison of tiller and plant height between wild type NIL-GRF4 and mutant 23cs26. Wild type on the left and mutant on the right
Fig. 3 Genotypic identification of wild type and mutants by functional markersM: 250 bp maker; A and C: PF+DMR+PR primer combination; B and D: PF+XMR+PR primer combination; 1-26: mutants; 27-33: NIL-GRF4, Huahang 32, Xiangzaoxian 6, Ganninggeng 1, Nongxiang 42, Chuan 7 and Zhuxiangzhan, respectively
Fig. 4 Amplification of wild-type NIL-GRF4 and mutants by SSR primersM: 100 bp maker; 1-16: primer RM471, RM72, RM19, RM119, RM339, RM17, RM551, RM331, RM3331, RM443, RM85, RM336, RM209, RM232, RM481, RM224, respectively; DNA sequence is wild type, mutant 23cs13 and 23cs22
| 1 | 石少龙. 中国大米安全风险分析 [J]. 中国稻米, 2020, 26(1): 6-10. |
| Shi SL. Analysis on the risk of rice safety in China [J]. China Rice, 2020, 26(1): 6-10. | |
| 2 | 王楠, 陈从喜, 郭文华, 等. 中国耕地面积-粮食产量重心迁移轨迹特征及空间错位关系 [J]. 济南大学学报: 自然科学版, 2024, 38(1): 53-60. |
| Wang N, Chen CX, Guo WH, et al. Characteristics of transfer trajectory of barycenter and spatial mismatch relationship between cultivated land area and grain yield in China [J]. J Univ Jinan Sci Technol, 2024, 38(1): 53-60. | |
| 3 | 丁佳宁, 周利斌. 我国水稻辐射诱变育种研究进展 [J]. 辐射研究与辐射工艺学报, 2024, 42(2): 4-20. |
| Ding JN, Zhou LB. Progress on radiation-induced mutation breeding of rice in China [J]. J Radiat Res Radiat Process, 2024, 42(2): 4-20. | |
| 4 | 吴正景, 职钤华, 刘素娟, 等. 化学诱变提高植物抗逆性的研究进展 [J]. 核农学报, 2024, 38(2): 274-281. |
| Wu ZJ, Zhi QH, Liu SJ, et al. Chemical mutagenesis in improving plant stress resistance [J]. J Nucl Agric Sci, 2024, 38(2): 274-281. | |
| 5 | 郎红, 赵云昊, 姜明亮. 航天诱变育种在园艺作物中的应用进展 [J]. 北方园艺, 2024, (14):135-141. |
| Lang H, Zhao YH, Jiang ML. Research progress on space mutation breeding application of horticultural crops [J]. Northern Horticulture, 2024, (14):135-141. | |
| 6 | Mudgett JS, Taylor WD. Recombination between irradiated shuttle vector DNA and chromosomal DNA in African green monkey kidney cells [J]. Mol Cell Biol, 1990, 10(1): 37-46. |
| 7 | Takahashi N, Hieda K, Morohoshi F, et al. Base substitution spectra of nalidixylate resistant mutations induced by monochromatic soft X and 60Co gamma-rays in Bacillus subtilis spores [J]. J Radiat Res, 1999, 40(2): 115-124. |
| 8 | 刘宝海, 刘晴, 聂守军, 等. 60Co-γ辐射对广适性水稻品种绥粳18的诱变影响 [J]. 安徽农业大学学报, 2021, 48(4): 523-530. |
| Liu BH, Liu Q, Nie SJ, et al. Mutagenic effect of 60Co-γ on radiation widely-adapted rice variety Suijing18 [J]. J Anhui Agric Univ, 2021, 48(4): 523-530. | |
| 9 | 赵新辉, 唐倩莹, 周群丰, 等. 辐射诱变华恢8612创制镉低积累水稻新种质辐8612-12 [J]. 杂交水稻, 2024, 39(1): 44-52. |
| Zhao XH, Tang QY, Zhou QF, et al. New rice germplasm fu 8612-12 with low cadmium accumulation was created by radiation mutagenesis of Huahui 8612 [J]. Hybrid Rice, 2024, 39(1): 44-52. | |
| 10 | 韶也, 彭彦, 毛毕刚, 等. M1TDS技术及镉低积累杂交水稻亲本创制与组合选育 [J]. 杂交水稻, 2022, 37(1): 1-11. |
| Shao Y, Peng Y, Mao BG, et al. M1TDS technology and creation of low-cadmium accumulation parents for hybrid rice breeding [J]. Hybrid Rice, 2022, 37(1): 1-11. | |
| 11 | 吴孝波, 冯慧, 黄强, 等. 利用辐射诱变技术创制抗稻瘟病紫叶两系水稻新材料 [J]. 四川农业科技, 2018(8): 47-49. |
| Wu XB, Feng H, Huang Q, et al. Creation of new purple-leaf two-line rice materials with rice blast resistance by radiation mutation technology [J]. Sichuan Agric Sci Technol, 2018(8): 47-49. | |
| 12 | 章清杞, 李美德, 黄荣华. 巨胚糯稻恢复系福巨糯2号的选育 [J]. 杂交水稻, 2020, 35(5): 27-30. |
| Zhang QQ, Li MD, Huang RH. Breeding of waxy rice restorer line fujunuo 2 with giant embryo [J]. Hybrid Rice, 2020, 35(5): 27-30. | |
| 13 | 李景鹏, 余丽霞, 张鑫, 等. 水稻新品种东稻122选育及应用 [J]. 北方水稻, 2021, 51(6): 44-47. |
| Li JP, Yu LX, Zhang X, et al. Breeding and application of a new rice variety Dongdao-122 [J]. N Rice, 2021, 51(6): 44-47. | |
| 14 | Zhang WH, Sun PY, He Q, et al. Fine mapping of GS2 a dominant gene for big grain rice [J]. Crop J, 2013, 1(2): 160-165. |
| 15 | Sun PY, Zhang WH, Wang YH, et al. OsGRF4 controls grain shape, panicle length and seed shattering in rice [J]. J Integr Plant Biol, 2016, 58(10): 836-847. |
| 16 | 孙平勇, 张武汉, 张莉, 等. 水稻氮高效、耐冷基因OsGRF4功能标记的开发及其利用 [J]. 作物学报, 2021, 47(4): 684-690. |
| Sun PY, Zhang WH, Zhang L, et al. Development and application of functional marker for high nitrogen use efficiency and chilling tolerance gene OsGRF4 in rice [J]. Acta Agron Sin, 2021, 47(4): 684-690. | |
| 17 | Li S, Tian YH, Wu K, et al. Modulating plant growth-metabolism coordination for sustainable agriculture [J]. Nature, 2018, 560(7720): 595-600. |
| 18 | Che RH, Tong HN, Shi BH, et al. Control of grain size and rice yield by GL2-mediated brassinosteroid responses [J]. Nat Plants, 2015, 2: 15195. |
| 19 | Duan PG, Ni S, Wang JM, et al. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice [J]. Nat Plants, 2015, 2: 15203. |
| 20 | Hu J, Wang YX, Fang YX, et al. A rare allele of GS2 enhances grain size and grain yield in rice [J]. Mol Plant, 2015, 8(10): 1455-1465. |
| 21 | Li SC, Gao FY, Xie KL, et al. The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice [J]. Plant Biotechnol J, 2016, 14(11): 2134-2146. |
| 22 | 胡书娟, 刘璐, 陈希, 等. 利用PCR产物确定杂交水稻品种与亲本间的亲缘关系 [J]. 杂交水稻, 2020, 35(1): 45-47. |
| Hu SJ, Liu L, Chen X, et al. Identification of genetic relationship of hybrid rice varieties to their parents with PCR amplification products [J]. Hybrid Rice, 2020, 35(1): 45-47. | |
| 23 | 张刚, 朱林, 聂豪杰, 等. 基于文献计量学BSA在作物育种领域的应用现状与展望 [J]. 遗传, 2024,46(5):360-372. |
| Zhang G, Zhu L, Nie HJ, et al. Application and prospect of BSA method based on bibliometrics in crop breeding [J]. Hereditas (Beijing), 2024,46(5):360-372. | |
| 24 | 陈析丰, 刘亚萍, 马伯军. 图位克隆技术新型遗传学实验教学项目的设计与实践 [J]. 植物学报, 2019, 54(6): 797-803. |
| Chen XF, Liu YP, Ma JM. Design and practice of a new teaching project of the map-based cloning experiment in genetics [J]. Chin Bull Bot, 2019, 54(6): 797-803. | |
| 25 | Giovannoni JJ, Wing RA, Ganal MW, et al. Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations [J]. Nucleic Acids Res, 1991, 19(23): 6553-6558. |
| 26 | Michelmore RW, Paran I, Kesseli RV. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations [J]. Proc Natl Acad Sci USA, 1991, 88(21): 9828-9832. |
| 27 | Zhang JB, Panthee DR. PyBSASeq: a simple and effective algorithm for bulked segregant analysis with whole-genome sequencing data [J]. BMC Bioinformatics, 2020, 21(1): 99. |
| 28 | Young ND. Potential applications of map-based cloning to plant pathology [J]. Physiol Mol Plant Pathol, 1990, 37(2): 81-94. |
| 29 | 朱洪慧, 李映姿, 高远卓, 等. 水稻短宽粒基因SWG1的图位克隆 [J]. 中国农业科学, 2023, 56(7): 1260-1274. |
| Zhu HH, Li YZ, Gao YZ, et al. Map-based cloning of the short and widen grain 1 gene in rice(Oryza sativa L.) [J]. Sci Agric Sin, 2023, 56(7): 1260-1274. | |
| 30 | Majeed A, Johar P, Raina A, et al. Harnessing the potential of bulk segregant analysis sequencing and its related approaches in crop breeding [J]. Front Genet, 2022, 13: 944501. |
| 31 | Gao YH, Xu ZP, Zhang LJ, et al. MYB61 is regulated by GRF4 and promotes nitrogen utilization and biomass production in rice [J]. Nat Commun, 2020, 11(1): 5219. |
| 32 | Chen XL, Jiang LR, Zheng JS, et al. A missense mutation in Large Grain Size 1 increases grain size and enhances cold tolerance in rice [J]. J Exp Bot, 2019, 70(15): 3851-3866. |
| 33 | 曹煜东, 肖湘谊, 叶乃忠, 等. 生长素调控因子OsGRF4协同调控水稻粒形和稻瘟病抗性 [J]. 中国水稻科学, 2021, 35(6): 629-638. |
| Cao YD, Xiao XY, Ye NZ, et al. Auxin regulator OsGRF4 simultaneously regulates rice grain shape and blast resistance [J]. Chin J Rice Sci, 2021, 35(6): 629-638. | |
| 34 | 林孝欣, 黄明江, 韦祎, 等. 水稻籽粒伸长突变体lgdp的鉴定与基因定位 [J]. 作物学报, 2023, 49(6): 1699-1707. |
| Lin XX, Huang MJ, Wei Y, et al. Identification and gene mapping of long grain and degenerated Palea (lgdp) in rice (Oryza sativa L.) [J]. Acta Agron Sin, 2023, 49(6): 1699-1707. | |
| 35 | 黄仁权, 曾晓芳, 赵德刚. 贵州地方稻种来拢大粒突变体bs3光合特性分析 [J]. 分子植物育种, 2018, 16(20): 6847-6854. |
| Huang RQ, Zeng XF, Zhao DG. Photosynthetic characterization of big seed mutant bs3 from Guizhou local cultivar rice lailong [J]. Mol Plant Breed, 2018, 16(20): 6847-6854. | |
| 36 | 徐林峰, 张伟, 毛光峰, 等. 水稻长粒突变体"浙恢7954-LG2" 的特性及其应用价值 [J]. 作物研究, 2013, 27(1): 1-4. |
| Xu LF, Zhang W, Mao GF, et al. Characteristics of long-grain mutant"Zhehui 7954-LG2"in rice and its application value [J]. Crop Res, 2013, 27(1): 1-4. | |
| 37 | 管柳蓉, 刘祖培, 徐冉, 等. 一个新的OsBRI1弱等位突变体的鉴定及其调控种子大小的功能研究 [J]. 植物学报, 2020, 55(3): 279-286. |
| Guan LR, Liu ZP, Xu R, et al. Identification of a new OsBRI1 weak allele and analysis of its function in grain size control [J]. Chin Bull Bot, 2020, 55(3): 279-286. | |
| 38 | 高海京, 杨芝笛. 水稻小粒突变体tm282的遗传分析和初步定位 [J]. 南方农业, 2023, 17(12): 248-251. |
| Gao HJ, Yang ZD. Genetic analysis and preliminary localization of rice small grain mutant tm282 [J]. South China Agric, 2023, 17(12): 248-251. | |
| 39 | 张青, 符永庆, 钟其全, 等. 基于叶色标记不育系的杂交水稻全程机械化制种技术 [J]. 杂交水稻, 2021, 36(5): 25-28. |
| Zhang Q, Fu YQ, Zhong QQ, et al. Full mechanization seed production techniques of hybrid rice based on leaf color labeling sterile line [J]. Hybrid Rice, 2021, 36(5): 25-28. | |
| 40 | 董凤高, 朱旭东, 熊振民, 等. 以淡绿叶为标记的籼型光—温敏核不育系M2S的选育 [J]. 中国水稻科学, 1995, 9(2): 65-70. |
| Dong FG, Zhu XD, Xiong ZM, et al. Breeding of a photo-thermoperiod sensitive genie male sterile indica rice with a pale-green-leaf marker [J]. Chin J Rice Sci, 1995, 9(2): 65-70. | |
| 41 | 沈圣泉, 舒庆尧, 吴殿星, 等. 白化转绿型水稻三系不育系白丰A的选育 [J]. 杂交水稻, 2005, 20(5): 10-11. |
| Shen SQ, Shu QY, Wu DX, et al. Breeding of new rice CMS line Baifeng A with a green-revertible albino leaf color marker [J]. Hybrid Rice, 2005, 20(5): 10-11. |
| [1] | FANG Hui-min, GU Yi-shu, ZHANG Jing, ZHANG Long. Isolation and Physicochemical Properties Analysis of Starch from Rice Leaves [J]. Biotechnology Bulletin, 2025, 41(2): 51-57. |
| [2] | JIN Su-kui, GUO Qian-qian, LIU Qiao-quan, GAO Ji-ping. A Simplified Method for Extracting Genomic DNA from Rice Leaves [J]. Biotechnology Bulletin, 2025, 41(1): 74-84. |
| [3] | LIU Wen-zhi, HE Dan, LI Peng, FU Ying-lin, ZHANG Yi-xin, WEN Hua-jie, YU Wen-qing. Paenibacillus polymyxa New Strain X-11 and Its Growth-promoting Effects on Tomato and Rice [J]. Biotechnology Bulletin, 2024, 40(9): 249-259. |
| [4] | LI Qing-mao, PENG Cong-gui, QI Xiao-han, LIU Xing-lei, LI Zhen-yuan, LI Qin-yan, HUANG Li-yu. Screening and Identification of Excellent Strains of Endophytic Bacteria Promoting Rice Iron Absorption from Wild Rice [J]. Biotechnology Bulletin, 2024, 40(8): 255-263. |
| [5] | SUN Zhi-yong, DU Huai-dong, LIU Yang, MA Jia-xin, YU Xue-ran, MA Wei, YAO Xin-jie, WANG Min, LI Pei-fu. Genome-wide Association Analysis of γ-aminobutyric Acid in Rice Grains [J]. Biotechnology Bulletin, 2024, 40(8): 53-62. |
| [6] | PANG Meng-zhen, XU Han-qin, LIU Hai-yan, SONG Juan, WANG Jia-han, SUN Li-na, JI Pei-mei, YIN Ze-zhi, HU You-chuan, ZHAO Xiao-meng, LIANG Shan-shan, ZHANG Si-ju, LUAN Wei-jiang. Gene Identification and Functional Analysis of Yellowish and Early Heading Mutant hz1 in Rice [J]. Biotechnology Bulletin, 2024, 40(7): 125-136. |
| [7] | TIAN Sheng-ni, ZHANG Qin, DONG Yu-fei, DING Zhou, YE Ai-hua, ZHANG Ming-zhu. Effects of Acid Mine Drainage on Physicochemical Factors and Nitrogen-fixing Microorganisms in the Root Zone of Mature Rice [J]. Biotechnology Bulletin, 2024, 40(6): 271-280. |
| [8] | KONG De-ting, QI Xiao-han, LIU Xing-lei, LI Li-ping, HU Feng-yi, HUANG Li-yu, QIN Shi-wen. Comparison and Analysis of Endophytic Bacterial Communities in Different Perennial Rice Varieties [J]. Biotechnology Bulletin, 2024, 40(5): 225-236. |
| [9] | YANG Qi, WEI Zi-di, SONG Juan, TONG Kun, YANG Liu, WANG Jia-han, LIU Hai-yan, LUAN Wei-jiang, MA Xuan. Construction and Transcriptomic Analysis of Rice Histone H1 Triple Mutant [J]. Biotechnology Bulletin, 2024, 40(4): 85-96. |
| [10] | LI Xing-rong, TAN Zhi-bing, ZHAO Yan, LI Yao-kui, ZHAO Bing-ran, TANG Li. Cloning and Functional Analysis of OsLCT3, a Low-affinity Cation Transporter Gene of Rice [J]. Biotechnology Bulletin, 2024, 40(4): 97-109. |
| [11] | LIU Jia-ning, LI Meng, YANG Xin-sen, WU Wei, PEI Xin-wu, YUAN Qian-hua. Impact of Different Water Management Cultivation Methods on the Rhizosphere Bacteria Community of Shanlan Upland Rice [J]. Biotechnology Bulletin, 2024, 40(3): 242-250. |
| [12] | LI Xue, LI Rong-ou, KONG Mei-yi, HUANG Lei. The Growth Promoting Effect of Bacillus amyloliquefaciens SQ-2 on Rice [J]. Biotechnology Bulletin, 2024, 40(2): 109-119. |
| [13] | ZHANG Chao, WANG Zi-rui, SUN Ya-li, MAO Xin-chen, TANG Jia-qi, YU Heng-xiu. Functional Study of Vitamin B1 Synthesis-related Gene OsTHIC in Rice [J]. Biotechnology Bulletin, 2024, 40(2): 99-108. |
| [14] | QI Wang, BI Yi-fan, XUAN Qiang-bing, ZHANG Xin, ZHOU Hui-gang, NIE Yuan-qing, CHENG Biao-biao, ZHANG Yu-shun, WANG Jun-jie, LIANG Wei-hong. Overexpression of OsRhoGDI1 Gene Regulates Grain Shape and Seed Vigor in Rice [J]. Biotechnology Bulletin, 2024, 40(11): 152-161. |
| [15] | XIONG Xin-yi, LIU Li-ping, FENG Jie, ZHANG Jin-song, LI De-shun, LIU Peng, LIU Yan-fang. Effect and Mechanism of Cordyceps militaris Extract on Lowering Uric Acid in Hyperuricemia Rats [J]. Biotechnology Bulletin, 2024, 40(11): 34-46. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||